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Abstract

Purpose of Review—This review highlights the history, recent advances, and ongoing 

challenges of artificial intelligence (AI) technology in colonic polyp detection.

Recent findings—Hand-crafted AI algorithms have recently given way to convolutional neural 

networks with the ability to detect polyps in real-time. The first randomized-controlled trial 

comparing an AI system to standard colonoscopy found a 9% increase in adenoma detection rate, 

but the improvement was restricted to polyps smaller than 10 mm and the results need validation. 

As this field rapidly evolves, important issues to consider include standardization of outcomes, 

dataset availability, real-world applications, and regulatory approval.

Summary—AI has shown great potential for improving colonic polyp detection while requiring 

minimal training for endoscopists. The question of when AI will enter endoscopic practice 

depends on whether the technology can be integrated into existing hardware and an assessment of 

its added value for patient care.
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Introduction

Colorectal cancer (CRC) is the second leading cause of cancer death worldwide.[1] The 

decline in CRC mortality has been partly attributed to the increasing use of screening 

colonoscopy, [2, 3] but colonoscopy remains an imperfect test. Tandem colonoscopy studies 

show high polyp miss rates of up to 27% for diminutive polyps.[4, 5] The most widely 

accepted quality metric for screening colonoscopy is the adenoma detection rate (ADR), 

which is defined as the percentage of colonoscopies performed by an endoscopist in which 

at least one adenoma is detected. In a patient population with both women and men, the US 

Multi-Society Task Force on Colorectal Cancer recommends a target ADR ≥25%.[6] ADR 

is inversely correlated with the risk of interval cancer, such that every 1% increase in ADR 

is associated with a 3% decrease in the risk of CRC and 5% decrease in the risk of fatal 

CRC.[7]

Many technologies have been developed with the goal of increasing ADR. Both optical and 

mechanical approaches have shown promise in polyp detection.[8] Many of these devices 

share common shortcomings, such as the need to purchase specialized hardware or an 

initial learning curve required to use the device effectively.[9–11] On the other hand, high 

definition resolution—which is built into modern endoscopes and does not require additional 

equipment or training—has also been shown to improve ADR.[12, 13]

Artificial intelligence (AI) is a rapidly growing field with active investigation in many 

areas of medicine.[14, 15] Within gastroenterology, there has been keen interest in using 

AI as an adjunctive detection method in endoscopy. AI offers the promise of increasing 

polyp detection and even optical polyp diagnosis, all with minimal training on the part 

of the endoscopist. Although current clinical applications involve additional hardware, it 

is conceivable that future iterations of AI could be integrated directly into endoscope 

processors. In this review, we describe the history of AI in colonic polyp detection, recent 

research, and challenges ahead.

Hand-crafted Algorithms

Machine learning research for polyp detection began in the early 2000’s. The research 

was driven primarily by computer scientists and engineers using polyps as a basis for 

developing computer vision algorithms. Algorithms were “hand-crafted” to detect polyps 

based on certain features chosen by the designers. Commonly extracted features included 

color, shape, or textural information. While these algorithms typically showed high accuracy 

on carefully chosen datasets, they were limited in real-world applicability either due to slow 

processing time or variability in video quality. Additionally, because they were explicitly 

designed to detect certain features, lesions that did not have a typical appearance may not 

have been recognized, and non-polyp lesions that share characteristics with a polyp (e.g., 

stool or “suction polyp”) may result in a false positive result. Some notable work during this 

early period are summarized below and in Table 1.

Karkanis et al. developed an algorithm using color wavelet covariance (CWC) to detect 

textural changes that could indicate adenomatous tissue.[16] The algorithm was developed 
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and tested on 60 videos of 5–10 s each that contained polyps. From this dataset, a training 

set of 180 representative still images was chosen by an expert panel and a non-overlapping 

random set of 1200 images was chosen for testing. The algorithm performed well, with 

93.6% sensitivity and 99.3% specificity for polyps that were confirmed to be adenomatous 

or hyperplastic on histology. The main limitation of this algorithm was the long processing 

time, which precluded real-time processing even in future iterations.[17, 18]

Recognizing the limitations of studying still images, Angermann et al. attempted to adapt 

algorithms designed for still-frame analysis to real-time video analysis.[19] They designed 

the algorithm to track a given polyp between frames, thus taking advantage of the additional 

temporal information of the video format as compared to still pictures. Applying different 

permutations of their algorithm to a publicly available dataset (CVC-ClinicVideoDB), the 

investigators were able to achieve 100% polyp detection but with variable processing time. 

Although they were able to process frames in as little as 20 ms, the total delay in detection 

was between 300 ms and 1.8 s, which again precluded real-time analysis.

Finally, in 2015 Wang et al. developed an algorithm approaching real-time analysis at 10 

frames per second using edge detection.[20] The group reported results in terms of recall, 

defined as detection rate on a per-polyp basis rather than a per-frame basis. The system 

achieved 97.7% recall on 53 videos, missing only one polyp that was rejected by the 

algorithm for having blurred frames. This study is significant for being one of the first to 

apply an algorithm in a realistic test set running at near real-time speed.

Convolutional Neural Networks

A common limitation in earlier AI research was the available hardware. The bulk of data 

processing is performed by commercial graphics processing units (GPU’s). Researchers 

often conducted initial studies on the equivalent of personal computers, with plans to scale 

up using more robust systems in the future. In the last 3–4 years, the advent of a new 

generation of modern GPU’s has ushered in a second wave of innovation in AI. Modern 

algorithms have begun to use convolutional neural networks (CNN) and deep learning for 

computer-aided detection (CAD) of polyps. These algorithms are not designed to capture 

specific features of a polyp. Instead, the algorithm is trained to identify polyp and non-polyp 

features on a large dataset without explicit input from researchers.

CNN’s are modeled after the hierarchical visual processing system in the human brain. The 

basic idea is that neurons in the visual cortex process an image into progressively more 

complex shapes. An image is initially broken down into edge boundaries based on light vs. 

dark interfaces, then combined into simple shapes, and finally merged into recognizable 

complex features in subsequent layers (Figure 1).[21] A CNN seeks to replicate this 

idea with multiple layers of artificial neurons. A common architecture involves several 

“convolutional” layers, which segment the image into small chunks that can be easily 

processed. The outputs of these layers feed into “pooling” layers to reduce data size 

and reduce noise. Sequential layers feed into a neural network that ultimately produces 

a probability map that describes the likelihood of the image containing a desired target. 

The advantage of this system is that it can be trained to find any arbitrary feature in an 
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image without the designer describing specific features. This avoids the primary limitation 

of prior hand-crafted algorithms that required hard-coding specific identifying features into 

the software. In the case of polyps, it may be difficult for an endoscopist to describe the 

features of a polyp in detail, but they may “know it when they see it”. Given an annotated 

dataset with sufficient sample size, CNN’s can be trained to recognize polyps or any other 

object.

Early CNN Work

Billah et. al achieved 99% sensitivity and specificity on a public dataset by processing 

images using both hand-crafted features and a CNN.[22] The outputs from these algorithms 

were fed into a final algorithm (support vector machine) that reconciled the data to produce 

a single output. Although the reported sensitivity is high, the authors did not report 

processing time and therefore it is unclear if this method would be feasible in real-time.

Zhang et al. used a novel approach to solve the problem of limited training data.[23] 

They employed “transfer learning,” in which the algorithm initially trains on non-medical 

images before learning from polyp images. Using ImageNet, a database that includes natural 

images of objects such as cars, boats, and animals, the researchers increased the size of 

the training set to millions of images rather than the thousands typically used in polyp 

studies. This algorithm achieved 98% sensitivity and 1.00 area under the receiver operating 

characteristic (AUROC) curve. This study was also unique for comparing the performance 

of the algorithm to the performance of expert endoscopists. The algorithm outperformed the 

endoscopists in terms of accuracy (86% vs. 74%).

Real-time Analysis

Urban et al. reported one of the first algorithms applied in real-time.[24] They used 

ImageNet for pre-training and subsequently trained and tested the algorithm on multiple 

sets of colonoscopy images (see Table 2). They also tested the algorithm with a deliberately 

challenging set of 11 videos that showed quick withdrawal past polyps. The algorithm 

achieved 97% sensitivity at a specificity of 95%, with an overall accuracy of 96%.

This study also demonstrated the real-world utility of CAD by showing the results of CNN-

assisted video review by expert endoscopists. In 9 standard colonoscopy videos, 28 polyps 

were removed during the index colonoscopy. On expert review, without CNN assistance, 36 

total polyps were identified. With the assistance of the CNN system, reviewers were able 

to identify 45 polyps, for a total of 17 polyps that were not seen on the index colonoscopy. 

However, none of the polyps detected with CNN assistance were larger than 10 mm. Perhaps 

most importantly, the algorithm ran at speeds faster than necessary for real-time analysis. 

Colonoscopy video runs at 25–30 fps or 33–40 ms per frame, and the algorithm was able 

to run at 10 ms per frame, which is more than 3 times the speed necessary for real-time 

analysis.

In-vivo Studies

Only two studies have applied CAD in-vivo during a live colonoscopy.
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Klare et al. studied CAD prospectively on a series of 55 live colonoscopies.[25] 

Endoscopists in the study performed the colonoscopy as usual, while a second observer 

monitored the output of their polyp-detection system. The algorithm was not described 

in detail but used a combination of color, structure, and texture to identify polyps, with 

only a 50 ms delay. The group reported comparable polyp detection rate (PDR) (51% 

vs. 56%) and ADR (29% vs. 31%) between the CAD system and the endoscopists on a 

per-patient basis. However, on a per-polyp basis the system only detected 55 of 73 polyps 

identified on endoscopy. The system did not detect any additional polyps that were missed 

by the endoscopists. Therefore, the added value of this system in a real-world setting is 

questionable.

In 2019, Wang et al. published the only randomized clinical trial to date comparing a CAD 

system to standard colonoscopy for polyp detection.[26] The system is a CNN that processes 

data in real-time at 25 fps, with only a 77 ms delay on a secondary monitor. When a polyp is 

detected, a blue box appears on the screen over the area of the polyp and is accompanied by 

a sound cue (Figure 2).

The trial included 1058 patients who were randomized to either standard colonoscopy or 

colonoscopy with a CAD system. The results showed increased ADR in the CAD group 

(29.1% vs.20.3%) and increased number of adenomas per patient (0.53 vs.0.31). The 

increased ADR was restricted to diminutive and small polyps, and there was no difference in 

polyps larger than 10 mm. In addition, a higher proportion of polyps detected by the CAD 

system were hyperplastic (43.6% vs.34.9%) and there was no difference in the proportion 

of advanced adenomas or sessile serrated polyps detected. There were only 39 reported 

non-polyp false positives in the CAD group, which is on average 0.075 false alarms per 

colonoscopy.

Total withdrawal time was slower in the CAD group (6.89 min vs.6.39 min), but the time 

difference was no longer statistically significant when time spent on removing polyps was 

excluded. This suggests that the additional withdrawal time was spent not on evaluating 

whether the system correctly identified a polyp but rather on resecting the detected polyps.

This study highlighted the full potential of AI in polyp detection, as well as its drawbacks. 

The system raised ADR with minimal increase in procedure time, but most of the 

adenomas detected were non-advanced and carry relatively low malignant potential.[27–30] 

The system also detected a larger number of hyperplastic polyps, which could increase 

procedural time and risk for unnecessary resection. Further development in real-time 

diagnosis of clinically relevant polyps could potentially counteract this issue. Another 

limitation of the study is that the ADR in the control group (20%) was lower than the 

quality benchmark recommended in the US.[31] This may be attributable to the fact that the 

study was conducted in China, where colorectal cancer incidence is lower than the US.[1] It 

remains to be seen whether these results will be confirmed in a Western population with a 

higher prevalence of adenomas.
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Recent Abstracts

Within the last year, a number of conference abstracts on CAD have described some 

important and novel features. Many of these studies ran at real-time rates, and some used 

full-length, uncut colonoscopy videos. With real-world testing, these may develop into 

viable clinical AI systems. A summary of selected abstracts is shown in Table 3.

Current Challenges

In this section, we highlight a number of challenges that remain in AI research for polyp 

detection.

Standardization of outcomes

Studies to date have used a wide range of study design and a number of primary outcomes. 

This can be partially attributed to the dual-specialty nature of the technology. Inherently, 

development of AI for use in colonoscopy requires the input of both engineers who design 

the software, as well as clinicians who can tailor it to clinical use. Earlier research frequently 

reported outcomes such as per-frame detection rate and recall, which are unfamiliar concepts 

to medical professionals. Instead, more clinically relevant outcomes include sensitivity, 

specificity, ADR, and polyp detection rate (PDR). These outcomes are seen more commonly 

in studies conducted by physicians.

In 2015, there was a notable attempt at a large-scale collaboration. The Medical Image 

Computing and Computer Assisted Intervention conference held an Automatic Polyp 

Detection challenge in which eight academic groups participated.[32] The competition 

tested these eight algorithms on three public databases, thus comparing the results in 

a standardized fashion. Although the performance of the algorithms was lackluster—

the highest recall or per-polyp sensitivity was only 71%—the conference represented a 

significant and necessary attempt to standardize outcomes in this field.

Gastroenterologists could decide as a specialty what detection thresholds for which 

important outcomes (e.g., sensitivity or change in ADR) would be acceptable for use 

in clinical practice. For instance, the American Society for Gastrointestinal Endoscopy 

(ASGE) published a Preservation and Incorporation of Valuable endoscopic Innovations 

(PIVI) statement that recommends technologies that perform real-time polyp classification 

should have at least 90% negative predictive value for adenoma in order to be used in 

a “diagnose-and-leave” strategy.[33] While this PIVI document addressed polyp diagnosis 

rather than detection, similar guidance from gastroenterology societies or experts would 

help to focus the research on the most clinically meaningful questions and to standardize 

outcomes.

Training and testing datasets

The necessity of collecting a large number of images to train and test algorithms poses a 

logistic challenge. The ImageNet database has continued to grow, and it currently includes 

over 14 million annotated images of common objects such as appliances and animals.[34] 

By comparison, the datasets used in most polyp detection studies generally contain hundreds 
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to thousands of images. Unfortunately, given the narrow scope of the research and the 

specialized knowledge required to annotate polyps, the work required to annotate millions 

of images is not feasible. There are several polyp datasets that are available either publicly 

or by request, but the largest of them is still less than 20,000 images.[35] As previously 

discussed, researchers have attempted to overcome this limitation by using transfer learning 

techniques that pre-trains an algorithm on a large generic dataset such as ImageNet prior to 

training the system on polyps.[23, 36] A collaborative effort to pool endoscopic images for 

research purposes would be another solution, and it may have the added benefit of serving as 

a gold standard test set for evaluating future algorithms.

Real-world application

Since the first clinical trial on this topic has already been published, all future studies 

should aim for real-world testing. Impressive outcomes on still images or pre-recorded 

videos in a lab setting may not translate to live testing. Real-time colonoscopy requires 

rapid processing time that may not be feasible with some algorithms, even with modern 

hardware. In addition, AI systems are often tested and trained on carefully curated high-

quality images or pre-recorded videos. In actual practice, algorithms need to overcome the 

considerable challenges posed by blurry images, suboptimal bowel preparation, and variable 

light conditions.

Regulatory approval and reimbursement

As is the case for many areas of technology, research development in AI has far 

outpaced the formulation of government regulations. In the US, an executive order on 

AI was issued in February 2019, but this focused primarily on promoting research rather 

than highlighting legal considerations.[37] In contrast, the European Union General Data 

Protection Regulation was adopted in 2016 and stipulates that patients have a “right to 

explanation” of the logic behind an AI algorithm output. Some have cited the “right to 

explanation” as a potential barrier to AI application since the decisions made by neural 

networks are inherently difficult if not impossible to explain.[38] However, it is unclear if 

the regulation would apply in this case since the ultimate decision to act on the information 

remains with the endoscopist.

Current malpractice law protects physician decisions that are consistent with a reasonable 

standard of care. By this rule, physicians can expose themselves to liability only by 

following non-standard AI recommendations that may result in a negative outcome. If AI 

becomes standard of care in the future, situations may arise in which physicians could be 

penalized for appropriately rejecting questionable AI recommendations.[39]

In addition to regulatory approval and liability, insurance reimbursement may also be 

a future hurdle. The capital investment required to obtain this technology is unclear. 

Most current systems include separate hardware in addition to the standard colonoscopy 

tower, although in the future the software could be integrated as a standard feature in 

the colonoscope. Physicians will reasonably expect to be compensated for the additional 

investment in this new technology. Currently, most reimbursement is based on a fee-for-

service model that does not reward physicians for improved outcomes. If quality-based 
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reimbursement becomes the standard in the future, AI could be considered an added value 

for its potential improvement in ADR.

Future Directions

In order to adopt AI in clinical practice, more clinical trial data based on live colonoscopies 

will be needed. Physicians will expect consistent, validated data that shows AI increases 

ADR before the technology is widely accepted. Since the only trial to date was conducted in 

China, replication in other regions and populations will be a crucial next step.

In parallel with polyp detection, there has also been a large volume of research conducted 

on the use of AI for computer-aided diagnosis (CADx) or “optical biopsy.”[40–44] The 

goal of this technology is not only to identify but also to classify different types of polyps, 

such as adenomatous vs. hyperplastic. This would potentially allow for a “diagnose-and-

leave” strategy in which hyperplastic polyps, which have no malignant potential, are left 

in place. Alternatively, for polyps determined to be adenomatous, a “resect-and-discard” 

strategy could help reduce pathology costs. Some current CADx systems are also capable 

of polyp detection, but many of the higher performance systems rely on the endoscopist to 

identify and capture high-quality images of polyps prior to classification.[42, 44, 45] Since a 

major potential pitfall of AI is time wasted on clinically non-significant polyps, a real-time 

combined detection and diagnosis system would provide the optimum efficiency in terms of 

time and cost.

Conclusions

AI technology for polyp detection remains in its infancy, but research is advancing rapidly. 

In a few years, the systems have progressed from still-frame analysis on carefully selected 

images to real-time analysis of uncut videos and even live colonoscopies. As the technology 

continues to mature, important questions about study design, regulatory approval, and 

possible integration with existing endoscopes need to be addressed. Notwithstanding these 

hurdles, it is more likely than not that the promise of AI-aided endoscopy in clinical practice 

will be realized in the near future.
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Fig. 1. 
Convolutional network algorithm schematic as applied to facial recognition.

The image of the Mona Lisa is used under permission of Adobe Stock Services.
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Fig. 2. 
Sample output from a real-time AI system.[26] Image courtesy of Dr. Pu Wang and Dr. Tyler 

M. Berzin.
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Table 1.

Summary of hand-crafted algorithm studies.

STUDY ALGORITHM 
TYPE

POLYP 
FEATURES 
EXTRACTED

STUDY 
DESIGN

IMAGE 
TYPE

TRAINING 
SET

TESTING 
SET

PROCESSING 
TIME

OUTCOMES

KARKANIS 
2003[46]

Hand-crafted Texture Ex-vivo Video 180 still 
images

60 videos, 5–
10 s each

1.5 min per 
video

Sensitivity 
94%, 
Specificity 
99%

HWANG 
2007[47]

Hand-crafted Shape Ex-vivo Video Not reported 8621 frames Not reported Per-polyp 
sensitivity 
96%

PARK 2012[48] Hand-crafted Combined 
spatial and 
temporal

Ex-vivo Video 364 video 
segments 
(300–1000 
frames 
each)

35 videos with 
>1 million 
frames

Not reported AUROC 0.89

BERNAL 
2015[49]

Hand-crafted Shape Ex-vivo Video Not reported CVC-
ClinicDB - 612 
frames

10.5 s per 
frame

Accuracy 
(PPV) 70%

TAJBAKHSH 
2015[50]

Hand-crafted Context-shape Ex-vivo Video Not reported 19400 frames 
(proprietary), 
300 frames in 
CVC-
ColonDB

2.6 s per frame 48% 
sensitivity on 
proprietary 
database, 88% 
sensitivity in 
CVC-
ColonDB

WANG 
2015[20]

Hand-crafted Texture Ex-vivo Video 8 videos 53 videos 0.1 s per frame Per-polyp 
sensitivity 
97.7%

GEETHA 
2016[51]

Hand-crafted Combined 
color-texture

Ex-vivo Still Not reported 703 frames Not reported Sensitivity 
95%, 
Specificity 
97%

ANGERMANN 
2017[19]

Hand-crafted Combined 
texture and 
spatio-
temporal 
coherence

Ex-vivo Video Not reported CVC-
ClinicVideoDB 
- 18 videos 
with 10,924 
frames

20–185 ms with 
0.3–1.8 s 
detection delay

100% per-
polyp 
sensitivity, 
50% PPV

Abbreviations: AUROC, Area Under the Receiver Operating Characteristic; PPV, positive predictive value
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Table 2.

Summary of convolutional neural network studies.

STUDY ALGORITHM 
TYPE

STUDY 
DESIGN

IMAGE 
TYPE

TRAINING 
SET

TESTING 
SET

PROCESSING 
TIME

OUTCOMES

BILLAH 
2017[22]

CNN Ex-vivo Still 14,000 
combined 
training/
testing

14,000 
combined 
training/
testing

Not reported 99% 
sensitivity, 
99% specificity

YU 2017[36] CNN Ex-vivo Video ASU-Mayo 20 
videos

ASU-Mayo 18 
videos

1.23 s per frame 71% 
sensitivity, 
88% PPV

MISAWA 
2018[52]

CNN Ex-vivo Video 411 video 
clips

135 video 
clips

Not reported 94% per-polyp 
sensitivity, 
90% per-frame 
sensitivity with 
60% false 
positive rate

PARK AND 
SARGENT 
2016[53]

CNN Ex-vivo Still 562 images Same set as 
training

Not reported 86% 
sensitivity, 
85% specificity

POGORELOV 
2018[54]

CNN Ex-vivo Still Multiple sets 
from 1350 to 
11954 frames

Multiple sets 
from 1350 to 
11954 frames

Not reported 75% 
sensitivity, 
94% specificity

ZHANG 
2017[23]

CNN Ex-vivo Still Pretrained on 
ImageNet 1.2 
mil and 
Places2015 
2.5mil; trained 
on2262

150 random + 
30 NBI 
images

Not reported 98% 
sensitivity, 
99% PPV, 1.00 
AUROC

URBAN 
2018[24]

CNN Ex-vivo Video Pretrained on 
ImageNet 1.2 
mil, trained on 
multiple sets: 
8641 images, 
1330 images, 
9 videos, 
53588 images 
from videos, 
11 
“challenging” 
videos

Multiple 
combinations 
of training 
datasets

10 ms per frame 
(real-time)

90% sensitivity 
with 0.5% false 
positive rate

KLARE 
2019[25]

CNN In-vivo 
cohort study

Live 
colonoscopy

Not available 55 live 
colonoscopies

50 ms latency Per-polyp 
sensitivity 
75%, ADR 
29% 
(compared to 
endoscopist 
31%)

WANG 
2019[26]

CNN Randomized 
controlled 
trial

Live 
colonoscopy

5545 images 1058 patients - 
536 standard 
colonoscopy, 
522 with CAD 
system

25 fps with 77 
ms latency

ADR increased 
in CAD group 
from 20% to 
29%, polyps 
per procedure 
0.97 vs. 0.51

Abbreviations: CNN, convolutional neural network; NBI, narrow-band imaging; PPV, positive predictive value; AUROC, Area Under the Receiver 
Operating Characteristic; ADR, adenoma detection rate; CAD, computer-aided detection
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Table 3.

Recent abstracts on computer-aided polyp detection

STUDY ALGORITHM 
TYPE

STUDY 
DESIGN

STILL/
VIDEO/
LIVE

TRAINING 
SET

TESTING 
SET

PROCESSING 
TIME

OUTCOMES NOVEL 
FEATURES

AHMAD 
2019[55]

CNN Ex-vivo Video 4664 frames 24596 
frames

Real-time Sensitivity 
85%, 
specificity 
93%

Performance 
improved 
after 
additional 
training on 
new dataset

EELBODE 
2019[56]

Recurrent CNN Ex-vivo Still Not reported 758 frames Not reported 92% 
sensitivity, 
85% 
specificity

Improved 
performance 
with blue 
light 
imaging 
compared to 
white light

KA-LUEN 
LUI 
2019[57]

CNN Ex-vivo Video 8500 NBI 
images

6 unedited 
videos

Real-time Per-polyp 
sensitivity 
100%, per-
frame 
sensitivity 
98.3%, 
specificity 
99.7%, 
AUROC 0.99

Utilizes NBI, 
mean polyp 
size was 
2.6mm

MISAWA 
2019[58]

CNN Ex-vivo Video 3,017,088 
frames

64 videos Not reported 86% 
sensitivity 
with 26% 
false positive 
frames

Re-trained 
previously 
described 
algorithm on 
largest 
reported 
dataset, but 
performance 
was not 
significantly 
improved

OZAWA 
2018 
UEG[59]

CNN Ex-vivo Still 16418 
images

7077 
images

20 ms per 
frame (real-
time)

92% 
sensitivity, 
86% PPV, 
classification 
accuracy 
83%, 
identified 
97% of 
adenomas

Real-time 
detection and 
polyp 
classification 
combined in 
one system

OZAWA 
2018 
DDW[60]

CNN (same as 
above)

Ex-vivo Still 16418 
images

3533 
images

Not reported 
(presumably 
real-time)

92% 
sensitivity, 
93% PPV, 
classification 
accurary 85%

Sensitivity 
and PPV 
were 
increased to 
98% and 
100% when 
only NBI 
images were 
used

REPICI 
2019[61]

CNN Ex-vivo Video Not reported 338 video 
clips 
containing 
polyps

Real-time Per-polyp 
sensitivity 
99.7% 
(337/338)

Compared 
detection 
time to 
reaction time 
of 
endoscopists, 
algorithm 
was 1.27 s 
faster on 
average
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STUDY ALGORITHM 
TYPE

STUDY 
DESIGN

STILL/
VIDEO/
LIVE

TRAINING 
SET

TESTING 
SET

PROCESSING 
TIME

OUTCOMES NOVEL 
FEATURES

SHICHIJO 
2019[62]

CNN Ex-vivo Still 9943 images 1233 
images

30 ms per 
image

Per-polyp 
sensitivity 
100%, per-
image 
sensitivity 
99%, 76% 
PPV

Dataset 
consisted 
entirely of 
laterally 
spreading 
tumors

YAMADA 
2018[63]

CNN Ex-vivo Video 139,983 
images

4840 
images

22 ms per 
image with 33 
ms latency

Sensitivity 
97%, 
specificity 
99%, AUROC 
0.975

Compared to 
human 
endoscopists 
-had higher 
diagnostic 
yield in less 
time

ZHENG 
2018[64]

CNN Ex-vivo 
prospective 
cohort

Video 50,000 
images

300 full 
colonoscopy 
videos

Not reported 94.6% 
concordance 
with human 
endoscopist, 
detected 91 
lesions that 
were not 
detected by 
endoscopists

Used 
algorithm to 
analyze full 
colonoscopy 
videos and 
had similar 
outcomes to 
human 
endoscopists 
-unclear 
outcome of 
additional 
lesions due 
to study 
design

ZHU 
2018[65]

CNN Ex-vivo Still Selection of 
616 images

Selection of 
same 616 
images

Not reported Sensitivity 
89% for 
SSA/P, 89% 
adenoma, 
92% 
classification 
accuracy 
overall

Combined 
detection and 
classification 
including 
SSA/P and 
adenomas in 
a small 
curated 
dataset

Abbreviations: CNN, convolutional neural network; NBI, narrow-band imaging; AUROC, Area Under the Receiver Operating Characteristic; PPV, 
positive predictive value; SSA/P, sessile serrated adenoma/polyp
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