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Proteome activity landscapes of tumor cell lines
determine drug responses
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Integrated analysis of genomes, transcriptomes, proteomes and drug responses of cancer cell

lines (CCLs) is an emerging approach to uncover molecular mechanisms of drug action. We

extend this paradigm to measuring proteome activity landscapes by acquiring and integrating

quantitative data for 10,000 proteins and 55,000 phosphorylation sites (p-sites) from 125

CCLs. These data are used to contextualize proteins and p-sites and predict drug sensitivity.

For example, we find that Progesterone Receptor (PGR) phosphorylation is associated with

sensitivity to drugs modulating estrogen signaling such as Raloxifene. We also demonstrate

that Adenylate kinase isoenzyme 1 (AK1) inactivates antimetabolites like Cytarabine. Con-

sequently, high AK1 levels correlate with poor survival of Cytarabine-treated acute myeloid

leukemia patients, qualifying AK1 as a patient stratification marker and possibly as a drug

target. We provide an interactive web application termed ATLANTiC (http://atlantic.

proteomics.wzw.tum.de), which enables the community to explore the thousands of novel

functional associations generated by this work.
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Integration of genomic, transcriptomic, and proteomic profiles
of tumor cell lines with phenotypic drug response data has
extended our understanding of tumor biology and helped to

delineate the mechanisms of action (MoA) of several drugs1,2.
However, post-translational modifications (PTMs) have been
rarely investigated systematically in the context of drug sensitiv-
ity3, even though it is well-established that proteome activity
regulated by e.g., dynamic phosphorylation plays a major role in
cancer initiation, progression, and response to drugs. Conse-
quently, many kinase inhibitors that target phosphorylation-
regulated signaling pathways have been developed as cancer
drugs, and some have transformed the clinical management of
several cancer entities4,5.

Here, we profile the baseline phosphoproteomes of the NCI60
and CRC65 cell line panels (Fig. 1a) to an overall depth of
>55,000 p-sites using a consistent and reproducible mass spec-
trometry workflow (Fig. 1b), in order to further improve our
understanding of the molecular mechanisms of action (MoA) of
cancer drugs and how the signaling repertoire of cancer cells
affects drug response. In addition, we reacquire data on the
proteomes of the NCI60 cell line panel6 to a depth of >10,000
proteins. The newly generated proteomic and phosphoproteomic
data is integrated with our previously published CRC65 data7, as
well as with published phenotypic drug sensitivity (~900 drugs)
and published molecular drug target selectivity information (224
drugs) from our laboratory8 (Fig. 1a). Based on these data, we
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Fig. 1 Proteome and phosphoproteome profiling of 125 tumor cell lines. a Overview of the datasets included in this study, covering the NCI60 (n= 60 cell
lines) and CRC65 cell line panels (n= 65 cell lines), six public drug-sensitivity datasets and a dataset containing drug targets of clinical kinase inhibitors
(see Supplementary Methods for details on all datasets). Cell lines are colored by tissue of origin. This color scheme is consistent across figures. b
Schematic representation of the biochemical and data analysis workflows. FP and P denote full proteome and phosphoproteome, respectively. The results
can be explored interactively on the ATLANTiC website. (ACN= acetonitrile, SMBPLSR= sparse multiblock partial least squares regression) c Circular bar
plot showing the number of identified proteins and p-sites per cell line (n= 125 cell lines). Shaded areas indicate the sum of the proteins and p-sites within
each tumor entity. We identified a grand total of >10,000 protein groups and >55,000 p-sites. dMultiple co-inertia analysis of phospho- and full proteome
data of the NCI60 panel showing the first two components (n= 59 cell lines). Bases and ends of arrows represent the full proteome and phosphoproteome
data of a given cell line, respectively. Short arrows indicate a good correlation between phospho- and full proteome. The RV coefficient quantifies the
correlation of two matrices analogous to the Pearson correlation coefficient. A RV close to 1 indicates high correlation. e Representative pathways
significantly (Fisher’s exact test; Benjamini–Hochberg corrected P < 0.05) enriched in functional associations recapitulated by our proteomics data (left
panel), phosphoproteomics data (right panel) or both (middle panel). Source data are provided as a Source Data file.
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compute activity landscapes of tumor cell lines and compare both
outlier and correlation-based drug response markers in relative
terms among cell lines. The raw mass spectrometric data and
processed tandem mass spectra are accessible for further
exploration via the PRIDE9 repository and ProteomicsDB10,
respectively. In addition, all of the data can be explored using the
interactive web application ATLANTiC (http://atlantic.
proteomics.wzw.tum.de), which allows users to visualize activity
landscapes and protein/p-site abundance information across the
entire dataset, to query the results of all drug response modeling
analyses and to deconvolute the target space of kinase inhibitors
in specific cell lines. We envision that ATLANTiC will enable the
research community to perform many additional investigations
based on the tens of thousands of observations in this study, only
few of which can be highlighted in this report. For example, we
reveal that PGR phosphorylation is correlated with sensitivity to
endocrine therapy in PGR-positive breast cancer. We also show
that AK1 is capable of inactivating antimetabolites like Cytar-
abine and that AK1 protein levels correlate with poor survival of
Cytarabine-treated acute myeloid leukemia patients. This qua-
lifies AK1 as a patient stratification marker and possibly as a drug
target.

Results
Comparison of proteomics and phosphoproteomics data. Fig-
ure 1c gives an overview of the depth of this highly consistent
dataset (Supplementary Fig. 1A–E, Supplementary Data 1–3,
Supplementary Methods), which is the basis for all integrative
analyses presented herein and available through our ATLANTiC
web application, such as the deconvolution of the target space of
kinase inhibitors in specific cell lines (Supplementary Fig. 1F, G).

Focusing on differences and similarities between proteomics
and phosphoproteomics data, multiple co-inertia analysis11 based
on the proteins and p-sites of the NCI60 panel confirms the
previous notion6 that cell lines from certain tumor entities are
molecularly similar to each other (e.g., leukemia), whereas other
entities are highly heterogeneous (e.g., breast cancer; Fig. 1d,
Supplementary Methods). The analysis also reveals that baseline
p-site abundance generally follows protein abundance (short
arrows; RV coefficient 0.93 for NCI60 and 0.90 for CRC65 data;
Supplementary Fig. 1H), indicating that phosphorylation has
many roles in basic cellular homeostasis beyond its dynamic
regulation of cellular signaling. To investigate this in more detail,
we asked which biological pathways recorded in pathway
databases are recapitulated at the level of proteins, phosphopro-
teins or both in all of the cell lines. To be able to compare the
phosphoproteomics data with public pathway databases, which
only contain information at the protein level, we first summed up
all phosphopeptide intensities for each cell line and protein group
to yield phosphoprotein intensities (Supplementary Methods)
similar to what was done previously12. The authors point out that
this is a strong simplification because phosphorylation of
different sites on the same protein may be regulated by different
kinases and phosphatases and can result in different effects on
cellular signaling (e.g., activating versus inactivating p-sites). We
then focused on functional associations between any two proteins
recorded in pathway databases and compared the abundance
correlation of these two proteins across the NCI60 and CRC65
cell line panels at the protein and phosphoprotein level
(Supplementary Methods). Interestingly, only 32 and 51% of
the functional associations recapitulated at the phosphoprotein
level are also recapitulated at the protein level in the NCI60 and
CRC65 dataset, respectively (Supplementary Fig. 2). Therefore,
we performed separate analyses at the protein, phosphoprotein
and p-site level throughout this manuscript. Enrichment analysis

of functional associations (Supplementary Data 4) suggests that
biological pathways recapitulated at the protein level are enriched
in basic cellular functions such as spliceosomal assembly. In
contrast, functional associations recapitulated at the phospho-
protein level are enriched in dynamic processes such as PLK-
mediated events in the cell cycle. Functional associations
recapitulated at both levels include the cell-cycle-associated
Aurora B signaling pathway (Fig. 1e), reflecting that cell-cycle
control requires extensive changes of protein as well as
phosphoprotein levels. This analysis clearly shows that including
phosphorylation profiling in the molecular characterization of
cancer cell lines adds a dimension of data that contains
information not available when measuring proteomes alone.

Pathway and kinase activity landscapes of tumor cell lines.
Based on the quantitative (phospho)proteome data, we computed
activity landscapes in order to assess the relative activity of sig-
naling pathways (by integrating information on proteins and p-
sites involved in a pathway) and kinases (by integrating infor-
mation on kinase abundance, kinase phosphorylation and kinase-
substrate phosphorylation) in cell lines (Fig. 2a, b, Supplementary
Fig. 3A, B; Supplementary Methods). Activity landscapes of
pathways and kinases (Supplementary Data 5) feature mountains
and basins representing high (close to 1) and low (close to 0)
relative pathway or kinase activity, respectively. The topography
connects cell lines with similar activity profiles and allows quickly
identifying the main biology underlying their pathogenic/carci-
nogenic phenotypes. For example, the mountain WNT signaling
in the CRC65 dataset (Fig. 2a) recapitulates that aberrant WNT
signaling is frequently driving colorectal cancer13. Similarly,
hyperactivation of cell-cycle proteins in leukemia cell lines is in-
line with their generally short doubling time (Supplementary
Fig. 3A). The kinase activity landscapes also recapitulate high
ABL1 kinase activity in K562 cells (Fig. 2c) caused by the BCR-
ABL gene fusion14 and high ALK activity in SR cells (Fig. 2d) and
C10 cells (Supplementary Fig. 3B) that carry the NPM1-ALK and
EML4-ALK gene fusions, respectively15,16. More globally, such
landscapes efficiently visualize the very large molecular hetero-
geneity of cancer cell proteomes and phosphoproteomes, which
likely reflect their heterogeneous phenotypic characteristics.

Correlation networks functionalize proteins and p-sites. While
(phospho)proteomic data can be generated efficiently today, the
challenge arises that not all proteins and only very few p-sites are
functionally annotated. We, therefore, developed a new method
incorporating weighted gene correlation network analysis17 and
gene set variation analysis18 to place proteins and p-sites into new
functional and phenotypic contexts simultaneously using a guilt-
by-association approach (Supplementary Methods). Figure 2e
gives one example for such an analysis for the CRC65 cell lines
that are characterized by microsatellite instable (MSI+) or stable
(MSI−) genomes. Here, we first concatenated the quantitative
protein and p-site data and grouped them by functional anno-
tations such as gene ontology terms or membership in protein
complexes into groups of functionally related proteins/p-sites
(nodes on 1st axis). Next, we clustered the combined proteins and
p-sites by the similarity of their abundance profiles across the
CRC65 dataset into groups of abundance-related proteins/p-sites
(nodes on 2nd axis). Finally, we grouped cell lines by their MSI
status (nodes on 3rd axis). Connections between the three axes
represent significant relations between nodes. For example, con-
nections between the 1st and 2nd axis show groups of func-
tionally related proteins/p-sites significantly enriched in groups of
abundance-related proteins/p-sites. Similarly, connections
between the 1st/2nd and 3rd axis highlight groups of
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functionally/abundance-related proteins/p-sites with significant
differential abundance between groups of MSI+ and MSI− cells,
respectively. Colored nodes and connections are full circles.
Supporting the significance of this approach, we observed that
many proteins/p-sites with significantly higher abundance (FDR
< 0.05; fold-changes between 1.3 and 13.7; moderated t-statistic)
in MSI− cells (red nodes and edges) compared to MSI+ cells are
involved in DNA mismatch repair (MMR), while proteins/p-sites
with significantly higher abundance (FDR < 0.05; fold-changes
between 1.3 and 40.1; moderated t-statistic) in MSI+ cells (blue
nodes and edges) compared to MSI− cells are primarily involved
in transcriptional processes. Focusing on proteins/p-sites with
significantly higher abundance in MSI− cells compared to MSI+

cells highlights the DNA helicases MRE11A and RAD50
(involved in double-strand break repair) and the putative RNA
helicase DDX27 as associated with MMR proficiency alongside
the known MMR proteins MSH2 and PMS219 (Fig. 2f). MRE11A
and RAD50 are known to be frequently mutated in MSI+ cells20

and DDX27 was recently described to promote colorectal cancer
growth and metastasis21. Similarly, a p-site (ASXL2_pS1319) on a
protein previously shown to be part of the PR-DUB complex22

promoting the deubiquitination of histone H2A at lysine 119 and
regulating DNA double-strand break repair is significantly higher
abundant (FDR= 1 × 10−5; fold-change of 2.5; moderated t-sta-
tistic) in MSI− cells compared to MSI+ cells. These data, toge-
ther with the fact that proteins involved in DNA double-strand

a b

c d

fe

Fig. 2 Activity landscapes of pathways and kinases functionalize proteins/p-sites. a Activity landscape of cellular pathways for the CRC65 panel (n= 64
cell lines) and b of kinases for the NCI60 panel (n= 60 cell lines; Supplementary Methods). Relative activity ranges from 0 to 1 representing minimal and
maximal relative activity, respectively. Areas of high activity are labelled. c, d Waterfall plots visualizing the relative activity of kinases in c K562 cells and
d SR cells. The kinases with the highest relative activity are highlighted. The color of the data points corresponds to the color scale of panel b. Relative
activity ranges from 0 to 1 representing minimal and maximal relative activity, respectively. e Hive plot showing significant associations between groups
of functionally related proteins/p-sites, cell lines with the same MSI status and groups of abundance-related proteins/p-sites (highly correlated proteins
and p-sites) identified by weighted gene correlation network analysis in the CRC65 dataset (Supplementary Methods). Colored edges (blue=MSI+, red=
MSI−) represent significant associations between corresponding nodes on all three axes. f Volcano plot visualizing single proteins/p-sites from colored
groups of abundance-related proteins/p-sites in c, which show significantly higher abundance in MSI+ (n= 17; blue) or MSI− (n= 47; red) cells
(Benjamini–Hochberg corrected P < 0.05, moderated t-test). Proteins/p-sites in the top right corner are highly abundant in MSI− cell lines and their
functional annotations are shown in the magnification (right panel). The light red color in the right panel (In databases+) indicates proteins/p-sites, which
are part of the functional annotations enriched in the corresponding group of abundance-related proteins/p-sites from C (e.g., MSH2), while the solid red
color (In databases−) highlights proteins/p-sites for which we suggest new functional annotations using guilt-by-association (e.g., ASXL2_pS1319). Shaded
areas highlight proteins/p-sites with common functions (blue text). Source data are provided as a Source Data file.
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break repair are frequently mutated in MSI+ colorectal cancers23

suggest that ASXL2 may also be mutated in MSI+ colorectal
cancers. A similar analysis was performed for the NCI60 cell lines
(Supplementary Fig. 3C), and this concept can be readily exten-
ded to other phenotypic categories such as the mutational status
of known oncogenes. The thousands of functional associations
obtained by this analysis can be explored using ATLANTiC to
provide testable hypothesis in more specialized experiments (see
also Supplementary Data 6).

Outlier proteins and p-sites often explain drug sensitivity.
Next, we explored the possibility of using protein and p-site
abundance to explain drug sensitivity and first focused on outliers
(i.e., proteins/p-sites with substantially higher abundance in a
particular cell line relative to all other cell lines; Supplementary
Methods). Outliers are particularly attractive because of their
potential ease of interpretation. Clustering outlier p-site abun-
dance across cell lines reveals hundreds of strong phosphorylation
events from the same pathway context in particular cell lines
(Fig. 3a, b; Supplementary Data 7). Examples include p-sites on
BCR-ABL fusion protein in K562 cell lines (e.g., ABL1_pY204,
BCR_pY177, Supplementary Data 7), as well as on pathway
members such as LYN_pY193, INPPL1_ pY1162 or STAT5-
A_pY9024. This provides an additional way of functionalizing p-
sites, because p-sites with similar outlier behavior might represent

novel pathway members of hyperactive kinases in the respective
cell lines.

Furthermore, this analysis can prioritize potential activity-
driven drug response markers. Supporting this notion, the
analysis based on p-sites recapitulates that K562 cells harbor
high levels of BCR-ABL activity (at least 7-fold higher compared
to other cell lines), which explains their exquisite sensitivity
towards the BCR-ABL inhibitors Imatinib and Nilotinib (Fig. 3c).
Similarly, we observed that KM12 and NCI-H716 cells show high
abundance of NTRK1 (e.g., NTRK1_pY398; only detected in
KM12 cells) and FGFR2 phosphorylation (e.g. FGFR2_pY378;
10-fold higher compared to other cell lines) and these cells are
sensitive to the ALK/NTRK1 inhibitor Crizotinib and designated
FGFR/VEGFR inhibitors such as Lenvatinib (Fig. 3c, d),
respectively, which was previously only observed at the mRNA
level16. Another example is the sensitivity of SR cells to Crizotinib
and Ceritinib due to high abundance of ALK phosphorylation
(e.g., ALK_pY1092; 8-fold higher compared to other cell lines),
likely caused by constitutive kinase activity of the NPM1-ALK
fusion protein15 (Fig. 3c). This outlier characteristic is not always
as apparent at the mRNA25 or protein level (Supplementary
Fig. 4A), underscoring the value of measuring the phosphopro-
teome in addition to the proteome and transcriptome of tumor
cell lines. In addition, outlier p-site abundance (but not protein
abundance) of MET_pY1234, as well as pY1189 and pY1190 on
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Fig. 3 Outlier proteins and p-sites abundance often explain drug sensitivity. a, b Heatmaps of outlier p-sites in the a NCI60 (n= 60 cell lines) and
b CRC65 panel (n= 64 cell lines). Selected cell lines and p-site clusters are annotated. c, d Beeswarm plots visualizing selected drugs for which outlier cell
lines were identified in the c DTP (n= 59 cell lines) and d CTRP drug-sensitivity datasets (Lenvatinib: n= 71 cell lines; Cediranib: n= 41 cell lines;
Tivozanib: n= 72 cell lines; Pazopanib: n= 71 cell lines; AZD4547: n= 66 cell lines; Axitinib: n= 69 cell lines; sAUC= 1-standardized area under the dose-
response curve; GI50= growth inhibitory concentration analogous to an IC50). Cell lines are colored by tissue of origin as in Fig. 1. e Circular bar plot
highlighting the outlier abundance of selected pY-sites on MET and MST1R in HDC-8 cells (red bars; n= 65 cell lines). f Dose-response curves visualizing
the synergistic effect of targeting MET (using Tepotinib) and MST1R (using MK-2461) simultaneously in HDC-8 cells. Error bars represent the minimum
and maximum relative viability of technical triplicates. Source data are provided as a Source Data file.
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MST1R isoform 2 suggests that HDC-8 cells may be driven by
MET and MST1R activity (Fig. 3e). Given that these p-sites also
indicate crosstalk between MET and MST1R26, we hypothesized
that HDC-8 cells may be vulnerable to combined inhibition of
these two receptor tyrosine kinases. This is confirmed by
observing mild synergy when combining Tepotinib (a selective
MET inhibitor) and MK-2461 (an MST1R inhibitor) in in vitro
experiments (Combination Index 0.85 at ED50; Fig. 3f; Supple-
mentary Fig. 4B). These results show that outlier p-sites can
represent (pharmacodynamic) markers for drug sensitivity in
cells and can also be useful to select rational drug treatment
combinations based on functionally relevant molecular
associations.

Phosphorylation aside, there are many examples for protein
expression outliers including the drug exporter ABCB1, which is
associated with multidrug-resistance in NCIADRRES cells
(Supplementary Fig. 4C). Similarly, SLC16A10, which mediates
the uptake of aromatic amino acids27 is only detected in MOLT4
cells (GluC data), which are sensitive to the DNA alkylating agent
Bendamustine. Given that Bendamustine is an aromatic acid, we
hypothesize that SLC16A10 may be responsible for the sensitivity
of MOLT4 cells to this drug (Supplementary Fig. 4D).

Correlation-based markers of drug sensitivity. Since prominent
outliers at both drug and protein/p-site level are rare in relative
terms, we next associated proteins/p-sites with phenotypic drug-
sensitivity data using elastic net and random forest regression, as
well as by calculating the correlation for protein- or p-site-drug
combinations with at least seven pairwise-complete observations
(Supplementary Fig. 4E; Supplementary Methods). These analyses
cover 872 drugs and resulted in 4,558,128 protein-drug and
6,970,493 p-site-drug associations, which can be explored using
ATLANTiC.

At the protein level, elastic net regression reveals that the
protein SLFN11 is the most common sensitivity marker in the
Developmental Therapeutics Program (DTP) drug dataset
(Fig. 4a). Its protein abundance (intensity [AU] fold-change of
172 from the lowest= 1 × 106.40 to the highest= 1 × 108.63 value)
is highly correlated with topoisomerase inhibitors including
Irinotecan (R= 0.60, P-value= 1 × 10−6), confirming prior obser-
vations at the mRNA level28, as well as with response to DNA
synthesis inhibitors such as Gemcitabine (R= 0.64, P-value= 2 ×
10−7) and Triethylenemelamine (R= 0.62, P-value= 4 × 10−7;
Supplementary Fig. 5A, B). This may be rationalized by the recent
discovery that SLFN11 blocks stressed replication forks indepen-
dently of ATR29 and hints at a potentially fundamental biological
role of this poorly studied protein. Focusing on preclinical and
clinical drugs allowed the identification of proteomic markers for
specific modes of action. We found that the sensitivity to the
EGFR inhibitor Cetuximab is associated with low EPHA2 protein
abundance (intensity [AU] fold-change of 342 from the lowest=
1 × 106.92 to the highest= 1 × 109.46 value; Supplementary Fig. 5C,
D), corroborating earlier observations30. Another example is
ADK, which we found to be a sensitivity marker for Triciribine-5′-
monophosphate (intensity [AU] fold-change of 21 from the
lowest= 1 × 108.81 to the highest= 1 × 1010.12 value; Supplemen-
tary Fig. 5E, F). The drug is prone to inactivation by extracellular
dephosphorylation31 but can be converted back to its active form
by intracellular ADK32, possibly explaining the increased
sensitivity of high ADK expressing cells to this drug. A third
example is Arsenic trioxide, which induces oxidative stress in
human cell lines32 (Fig. 4b). Elastic net and network analysis
(Supplementary Methods) suggest that high levels of proteins
involved in glutathione homeostasis are resistance markers for this
compound. For example, we observed that glutathione reductase

(GSR), the catalytic subunit of glutamate-cysteine ligase (GCLC;
the first rate-limiting enzyme of glutathione synthesis) and several
other members of their molecular network (including the
oxidoreductase NQO1) show significant associations with Arsenic
trioxide resistance. This suggests that high activity of enzymes
involved in glutathione homeostasis can overcome the oxidative
stress induced by Arsenic trioxide.

Correlating the p-site data to drug sensitivity revealed that the
response to kinase inhibitors can largely be explained by the
phosphorylation status of their primary targets or downstream
pathway members. For instance, cell lines sensitive to Selumetinib
(a MEK inhibitor) show high phosphorylation of
RPS6KA3_pS715 (RSK2; intensity [AU] fold-change of 23 from
the lowest= 1 × 107.04 to the highest= 1 × 108.39 value), which is
downstream of MEK-MAPK signaling (Fig. 4c). In contrast, high
phosphorylation of T581 on the GATOR complex protein
WDR24 (intensity [AU] fold-change of 12 from the lowest=
1 × 106.52 to the highest= 1 × 107.59 value) is a resistance marker
for Selumetinib. We hypothesize that WDR24_pT581 may inhibit
the GATOR1 sub-complex, which suppresses the responsiveness
to MEK inhibition via activating mTORC1 and the
TORC1 signaling pathway33,34. Similarly, MAPK3_pY204,
MAPK1_pY187, as well as RPS6KA1_pT368 are associated with
resistance to Perifosine (an AKT inhibitor; intensity [AU] fold-
change of at least 30 from the lowest= 1 × 106.40 to the highest=
1 × 107.88 value; Fig. 4d, e). The former two sites are well-known
indicators of kinase activity35. Recently, it was shown that
phosphorylation of MAPK1/3 decreases upon AKT-induced
phosphorylation of FOXO136. Hence, high abundance of
MAPK3_pY204 and MAPK1_pY187 might be indicators of low
AKT activity and thus resistance to AKT inhibition. In addition,
BRAF_pS151 is associated with resistance to the IGF1R inhibitors
Linsitinib and BMS-754807 (intensity [AU] fold-change of 151
from the lowest= 1 × 106.64 to the highest= 1 × 108.82 value;
Supplementary Fig. 5G, H). Earlier work has shown that Insulin
receptor upregulation is a resistance mechanism for BRAF
inhibitors37, suggesting that when BRAF_S151 is not phosphory-
lated, cells may be sensitive towards IGF1R inhibition and
conversely, when BRAF_S151 is phosphorylated, co-inhibition of
the two kinases may have favorable effects.

To study the potential of combining kinase inhibitors with
other drugs systematically in silico, we correlated the abundance
of activity-enhancing or inhibitory p-sites on kinases with the
response to all drugs (Supplementary Fig. 5I). This revealed that
e.g. CHEK1_pS186 (an inhibitory site) is positively correlated
with Artesunate sensitivity, suggesting that co-treatment with
Artesunate and CHEK1 inhibitors may have a synergistic effect.
This agrees with the observation that Artesunate generates
oxidative DNA damage, which triggers the activation of CHEK1
and other DNA damage proteins38. We observed that most of the
p-site-drug associations are not detectable at the proteome level.
Therefore, the extensive phosphorylation data presented here is a
unique resource complementary to other omics data, which can
be used to investigate complex tumor biology and study the mode
of action (MoA) of drugs.

Next, we asked the question whether the sensitivity of cell lines
to drugs can be explained by the levels of proteins that are
involved in their metabolism. As an example, we trained random
forest models (Supplementary Methods) on the CRC65 dataset
using all combinations of 14 proteins involved in the metabolism
of the antimetabolite drug 5-fluorouracil (5FU; frequently used to
treat colorectal cancer) in order to capture non-linear relation-
ships between protein abundance and drug sensitivity. Models
using 3–7 proteins achieve good prediction accuracy in colorectal
cancer cell lines of the NCI60 panel (R ~ 0.7; Fig. 4f,
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Supplementary Data 7), but not in most other entities.
Interestingly, the models trained on CRC cell lines perform even
better in predicting sensitivity to 5FU for leukemia cell lines.
Therefore, we performed additional in vitro experiments based on
the two best 5-protein models (which shared TYMP, RRM1,
UPP1, and UCK1 and contained either PPAT or UCK2) using
two CRC and two leukemia cell lines that are predicted to be
sensitive or resistant to 5FU (Fig. 4g). In-line with the prediction,
the leukemia cell line RPMI8226 (ED50 0.40 µM) was 17 times
more sensitive to 5FU than CCRFCEM cells (ED50 6.96 µM;
Fig. 4h). The same held true for the selected colorectal cancer cell
line pair (ED50 0.18 µM in HCC2998 vs. ED50 1.83 µM in KM12),
suggesting that modeling drug response as a function of proteins

involved in a drugs’ metabolism can be a powerful tool for
predicting drug sensitivity.

Identifying markers for drugs with the same mode of action. So
far, we analyzed each drug in isolation in search of (phospho)
proteomic markers for drug response. Based on the hypothesis
that the responses to drugs targeting the same pathways might be
explained by the same group of molecular phosphoprotein/p-site
markers, we applied an extended sparse multiblock partial least
square regression (SMBPLSR) algorithm39, which clusters drugs
sharing similar phenotypic profiles and associates (the intensities
of) multiple phosphoproteins and/or p-sites that show divergent
abundance patterns with these drugs (Supplementary Methods).

a b

c d e

f g h

RESISTANT SENSITIVE

Fig. 4 Correlation-based (phospho)proteome markers often explain drug sensitivity. a General sensitivity and resistance protein markers of the NCI60
panel in the DTP drug response dataset (Supplementary Methods). b Volcano plot of protein markers associated with response to Arsenic trioxide in the
NCI60 panel (Supplementary Methods). GCLC, GSR, and NQO1 are resistance markers (left panel). Right panel: highly connected network (according to
https://string-db.org/) enriched by Arsenic trioxide resistance markers. c, d Volcano plots of p-sites associated with c Selumetinib and d Perifosine
sensitivity and resistance (Supplementary Methods). e Significant negative correlation between Perifosine sensitivity and MAPK1_pY187 abundance (n=
60 cell lines; Pearson correlation; P < 0.05). Cell lines are colored by tissue of origin as in Fig. 1. f Prediction accuracy (Pearson correlation) between
predicted and measured 5FU sensitivity of the top 5 random forest models combining 3–7 proteins involved in 5FU metabolism (n= 25 models each;
Supplementary Methods). g Correlation between predicted (using a random forest model) and measured 5FU sensitivity for leukemia and colorectal
cancer cell lines (n= 13 cell lines; DTP data; not used for training). KM12 (colon) and CCRFCEM (leukemia) are resistant cell lines, while HCC2998 (colon)
and RPMI826 (leukemia) are sensitive cell lines (GI50= growth inhibitory concentration analogous to an IC50). Cell lines are colored by tissue of origin as
in Fig. 1. h Cell viability assay confirming the predicted drug sensitivity (red) and resistance (blue) of cell lines from panel g. Error bars represent the
minimum and maximum relative viability of technical triplicates. Source data are provided as a Source Data file.
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This way, we identified for example high relative abundance of
multiple p-sites on BCL3 (intensity [AU] fold-change of at least
140 from the lowest= 1 × 105.90 to the highest= 1 × 108.05 value),
a regulator of cell proliferation and apoptosis40, as sensitivity
markers for topoisomerase II inhibitors, such as Teniposide,
Etoposide, and Doxorubicin (Fig. 5a–c). Similarly, the sensitivity
of multiple EGFR inhibitors (e.g., Lapatinib, Gefitinib, and Afa-
tinib; Fig. 5d–f) is associated with high relative abundance of p-
sites in the EGFR signaling pathway. These include GAB1_pY689
(intensity [AU] fold-change of 9 from the lowest= 1 × 106.61 to
the highest= 1 × 107.55 value), the primary mediator of EGF-
stimulated activation of PI3K/AKT41, and PTPN11_pY62
(intensity [AU] fold-change of 27 from the lowest= 1 × 106.61 to
the highest= 1 × 108.05 value), a phosphatase that depho-
sphorylates GAB1 and EGFR42. Several kinase inhibitors form a

strong cluster that is enriched in drugs targeting the BRAF-MEK-
ERK1/2 axis, including Vemurafenib (BRAF), Selumetinib
(MEK), PD98059 (MEK), and Hypothemycin (MAPK1/ERK3;
Fig. 5g). The associated sensitivity markers include STK4_pS410
and multiple p-sites on the transcription factor SOX10 (including
T240). A recent study has shown that ERK1/2 suppress the
transcriptional activity of SOX10 through phosphorylation of
T240 in BRAF mutant cell lines. Consequently, transcriptional
targets of SOX10, including FOXD3, which mediates adaptive
resistance to RAF inhibitors, were downregulated43. Our analysis
suggests that high abundance of SOX10_pT240 (intensity [AU]
fold-change of 446 from the lowest= 1 × 106.27 to the highest=
1 × 108.92 value) is associated with sensitivity to BRAF, MEK, and
ERK inhibitors. These results underscore the importance of
understanding the signaling network of kinases in detail, since

a b c

fed

g h

Fig. 5 Common markers explain sensitivity to drugs sharing the same mode of action. a Cluster containing several Topoisomerase II inhibitors identified
by sparse multiblock partial least square regression (SMBPLSR). Nodes represent compounds with size indicating effect size (SMBPLSR score of drugs;
Supplementary Methods), while edges visualize the correlation of the sensitivity between two drugs across cell lines (white= low, blue= high). b The bar
plot shows phosphoprotein and p-site markers associated with drugs in the network depicted in the left panel (red= sensitivity marker, blue= resistance
marker). c Selected markers include multiple p-sites on BCL3, one of which (BCL3_pS374) is significantly (Pearson correlation test; P < 0.05) positively
correlated with Etoposide sensitivity (right panel; n= 52 cell lines). Cell lines are colored by tissue of origin. d Same as in panel a, but for the drug cluster
containing mainly EGFR inhibitors. e Here, GAB1 and PTPN11 phosphoproteins are selected as sensitivity markers (middle panel). f PTPN11_pY62 shows
significant (Pearson correlation test; P < 0.05) positive correlation with Afatinib (right; n= 52 cell lines). (g, h) Networks of drug clusters driven by g kinase
inhibitors h DNA alkylating agents. Source data are provided as a Source Data file.
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inhibiting an upstream kinase might result in pathway rewiring,
which could be avoided by targeting the downstream protein on
which these different pathways converge. Additional clusters are
driven by other MoAs (e.g., DNA alkylating agents and anti-
metabolites; Fig. 5h) or contain drugs with different or unknown
MoAs. Markers identified by SMBPLSR, which cannot be directly
linked to the MoA of the drugs with which they are associated
thus help us to improve our understanding of why different drugs
may have similar sensitivity profiles across the cell lines (Sup-
plementary Data 8).

Response of phospho-PGR+ patients to endocrine cancer
drugs. In order to validate potential biomarkers suggested by
SMBPLSR, we focused on a cluster of drugs containing several

modulators of estrogen signaling (e.g., Raloxifene; Fig. 6a), which
are primarily used for the treatment of hormone-receptor-
positive breast cancer44. Progesterone receptor (PGR) phospho-
protein abundance as well as several p-sites (pS20, pS81, and
pS162) are associated with this cluster of drugs, as well as
GREB1_pS1193 (Fig. 6b). Even though the function of this par-
ticular p-site is not known, GREB1 has been found to be
important for ESR1 signaling45. The breast cancer cell lines
MCF7 and T47D are very sensitive to a selection of antihormonal
drugs (Fig. 6c), which prompted us to investigate whether ESR1,
PGR, and GREB1 protein show similar abundance profiles across
the NCI60 panel as their p-sites. Interestingly, protein abundance
fails to set MCF7 and T47D apart from the remainder of the
panel, while both GREB1_pS1193 and PGR_pS162 clearly
establish them as outlier cell lines (Fig. 6d). It is known that the

a b

e

c

d

f

Fig. 6 High phosphorylation of PGR predicts benefit from endocrine therapy in breast cancer. a Cluster containing several hormone-receptor inhibitors
identified by sparse multiblock partial least square regression (SMBPLSR; n= 10 drugs). Nodes represent compounds with size indicating effect (SMBPLSR
score of drugs; Supplementary Methods), while edges visualize the correlation of the sensitivity between two drugs across cell lines (white= low, blue=
high). b Bar plot showing examples for phosphoprotein or p-site markers associated with drugs in panel a including PGR (pS162) and GREB1 (pS1193;
sensitivity markers in red, resistance markers in blue). c Sensitivity of NCI60 cell lines towards hormone-receptor inhibitors (SR16157: n= 52 cell lines;
Fulvestrant: n= 52 cell lines; Raloxifene: n= 53 cell lines). MCF7 and T47D cells are particularly sensitive outlier cell lines. Cell lines are colored by tissue
of origin as in Fig. 1. d Circular bar plot showing relative protein expression of ESR1, GREB1, and PGR, as well as the abundance of GREB1_pS1193 and
PGR_pS162 across the NCI60 panel (n= 57 cell lines). Cell lines are colored by tissue of origin as in Fig. 1. e Representative pictures of breast cancer tissue
microarrays (TMAs) stained for PGR protein and PGR_pS162 (pPGR). Triple-negative breast cancer (TNBC) cases served as negative controls. f
Kaplan–Meier plot of breast cancer patients showing that PGR+/pPGR+ patients survive significantly longer than PGR+/pPGR− and PGR- patients (log-
rank test). The number of patients at risk is shown below the Kaplan–Meier plot. Source data are provided as a Source Data file.
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phosphorylation of S162 induces the transcriptional activity of
PGR46. Therefore, we hypothesized that, in addition to the
clinically established measurement of hormone-receptor expres-
sion as a selector for antihormonal therapy in breast cancer47, the
activity status of PGR could potentially further stratify hormone-
receptor-positive patients and may predict sensitivity to anti-
hormonal therapy in this preselected patient population. To lend
support for this hypothesis, we performed immunohistochemistry
staining of PGR and PGR_pS162 in a cohort of 361 breast cancer
patients with known hormone-receptor status (PGR +/− and/or
ER +/−; Fig. 6e, Supplementary Methods). As expected,
hormone-receptor-positive patients (here exemplarily selected by
PGR positivity) who received endocrine therapy +/− che-
motherapy survive significantly longer than hormone-receptor-
negative patients who received alternative therapies (Fig. 6f;
Supplementary Methods). Interestingly, individuals with high
levels of phosphorylation of PGR (PGR_pS162 H-scores ≥ 110;
Supplementary Methods) among PGR+ patients show even
longer survival (Fig. 6f), which is, however, only marginally sta-
tistically significant (HR= 3.26, P-value= 0.012, log-rank test).
Cox proportional-hazards models were used to evaluate potential
confounding factors, revealing that pPGR is confounded by age
(P-value= 0.06) and the T grading scale (P-value= 0.10) but
independent of tumor grade (P-value= 0.01) and HER2 status
(P-value= 0.02; Supplementary Data 9). While these initial

findings are interesting, they need to be reproduced in an inde-
pendent cohort before they can be considered for further trans-
lational research.

High AK1 levels determine chemotherapy resistance in AML.
Encouraged by the potential clinical translatability of the phos-
phoproteomics data on breast cancer, we also mined the pro-
teomics data for proteins with potential functional implications in
the metabolism of antimetabolites commonly used in che-
motherapy. One of the proteins frequently expressed at low levels
in antimetabolite-sensitive cell lines (e.g., MOLT4 and
CCRFCEM with intensity [AU] fold-changes of at least 0.22 and
0.25, i.e., about 4-fold lower compared to other cell lines,
respectively) is Adenylate kinase isoenzyme 1 (AK1). AK1 acts as
a balancing enzyme for cellular nucleotide ratios by transferring
the terminal phosphate of NTPs to AMP or dAMP48 and also
harbors broad nucleoside diphosphate kinase activity49. Inter-
estingly, the two drugs that are most strongly negatively corre-
lated with AK1 abundance (Fig. 7a) are Zalcitabine and
Nelarabine (Cytarabine showed a lower but clear correlation; R=
−0.39 for Cytarabine versus R=−0.79 for Zalcitabine). This
observation is driven by two leukemia cell lines (Fig. 7b) and led
to the hypothesis that AK1 may dephosphorylate and thereby
inactivate this class of drugs as has recently been reported for
SAMHD1 and Cytarabine50. In vitro dephosphorylation assays

a b c

fed

Fig. 7 High AK1 levels signify chemotherapy resistance in AML. a Correlation analysis (Supplementary Methods) identified AK1 protein expression to be
strongly negatively correlated with response to antimetabolite drugs including Zalcitabine and Nelarabine. b AK1 expression (left panel) and drug-
sensitivity analysis of Zalcitabine, Nelarabine and Cytarabine in the NCI60 panel (right three panels; n= 59 cell lines). Cell lines are colored by tissue of
origin as in Fig. 1. c Quantification of antimetabolites by multiple reaction monitoring (Supplementary Methods) in their active nucleotide triphosphate form
(NTP) showing that AK1 decreases NTP abundance significantly in vitro (t-test; P < 0.05; ara-CTP= Cytarabine; ara-GTP=Nelarabine; ddCTP=
Zalcitabine; dfCTP=Gemcitabine). ATP served as a positive control. Error bars represent the standard deviation of three biological replicates. d Western
blot confirming successful overexpression of AK1 in Jurkat cells (Supplementary Methods). e AK1 overexpression (red) in combination with Cytarabine
treatment in Jurkat cells resulted in significantly reduced apoptosis in a concentration- and time-dependent manner (time-point-wise t-test, P < 0.05). The
width of blue and red lines represents the range of relative apoptosis across three technical replicates. f Kaplan–Meier analysis of AML patients stratified
by AK1 expression. Patients with low AK1 expression (blue) survive significantly longer than patients with high AK1 expression (red; log-rank test, P <
0.0001). The number of patients at risk is shown below the Kaplan–Meier plot. Source data are provided as a Source Data file.
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using recombinant AK1 show that AK1 can indeed reduce the
levels of several tri-phosphorylated nucleotide analogues (Fig. 7c;
Cytarabine/ara-CTP, Nelarabine/ara-GTP, Zalcitabine/ddCTP
and Gemcitabine/dfCTP; Supplementary Data 9). In-line with
these results, overexpression of AK1 (Fig. 7d) in Cytarabine-
sensitive Jurkat cells renders the cells more resistant (Fig. 7e). To
test if this phenomenon may be relevant in clinical practice, we
analyzed a cohort of 79 Cytarabine-treated AML patients for AK1
expression using immunohistochemistry (tumor samples were
taken at diagnosis before therapy). We found that patients with
low AK1 expression (IHC staining scores of 0 and 1; Supple-
mentary Methods) have a very significantly higher 4-year survival
probability than patients with high AK1 expression (IHC staining
scores of 2 and 3; Fig. 7f). High abundance of AK1 is a significant
predictor for shorter survival even when potential confounding
factors such as the mutational status of FLT3 or NPM are
included in Cox proportional-hazards models (Supplementary
Data 9). We performed a similar analysis for AK1 in the TCGA
dataset on the transcript level using www.oncolnc.org51. When
splitting the TCGA AML cohort according to the expression of
AK1 mRNA into high and low expressing groups in the same
ratio as our AML cohort, the findings for AK1 are confirmed at
the transcript level. These results indicate that AK1 may depho-
sphorylate nucleoside analogue drugs in vivo, thereby rendering
them less effective. As such, AK1 expression would appear to be
an attractive patient stratification biomarker that may enable
physicians to administer appropriate drug doses. AK1 may also
represent a drug target for combination with nucleoside analogue
chemotherapy.

Discussion
Taken together, our study shows that activity landscapes of tumor
cell lines as measured by quantitative (phospho)proteomics can
make considerable contributions to understanding and predicting
the response of cancer cell lines to a wide variety of cancer drugs. In
prototypical examples, we show the potential of the data and of this
approach for basic science and translational research, albeit stres-
sing again that the findings on the breast cancer and AML patient
cohorts need further validation in independent cohorts before they
may be translated into clinical practice. We also anticipate that
many more such opportunities may be identified when engaging
the scientific community via ATLANTiC and ProteomicsDB. This
work also highlights the pressing need for the functionalization of
the tens of thousands of p-sites that can nowadays be measured
relatively easily. While we demonstrate some ways in which this
may be done using bioinformatics, further mechanistic insights into
how phosphorylation regulates molecular processes in cancer cells
and how this explains or influences the action of drugs will require
additional efforts in the future. In particular, the glaring lack of
systematic information on kinase-substrate relationships needs
addressing with great urgency.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Annotated spectra were uploaded to ProteomicsDB10. Additionally, all raw mass
spectrometry files and MaxQuant result files are available via PRIDE and
ProteomeXchange9 using the accession code PXD013615. The source data underlying
Fig. 1c–e, 2–7 and Supplementary Figs. 1–5 are provided as a Source Data file. Our
previously published full proteome data on the CRC65 cell line panel7 have the accession
code PXD005354. Source data are provided with this paper.

Code availability
The code supporting the current study is available on github here https://github.com/
kusterlab/ATLANTiC and we will help our readers to reproduce the analyses presented
in the current study if the need arises. Source data are provided with this paper.
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