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Good neighbors, bad neighbors: 
the frequent network 
neighborhood mapping 
of the hippocampus enlightens 
several structural factors 
of the human intelligence 
on a 414‑subject cohort
Máté Fellner1, Bálint Varga1 & Vince Grolmusz1,2*

The human connectome has become the very frequent subject of study of brain-scientists, 
psychologists and imaging experts in the last decade. With diffusion magnetic resonance imaging 
techniques, united with advanced data processing algorithms, today we are able to compute 
braingraphs with several hundred, anatomically identified nodes and thousands of edges, 
corresponding to the anatomical connections of the brain. The analysis of these graphs without 
refined mathematical tools is hopeless. These tools need to address the high error rate of the MRI 
processing workflow, and need to find structural causes or at least correlations of psychological 
properties and cerebral connections. Until now, structural connectomics was only rarely able of 
identifying such causes or correlations. In the present work we study the frequent neighbor sets 
of the most deeply investigated brain area, the hippocampus. By applying the Frequent Network 
Neighborhood mapping method, we identified frequent neighbor-sets of the hippocampus, which may 
influence numerous psychological parameters, including intelligence-related ones. We have found 
“Good Neighbor” sets, which correlate with better test results and also “Bad Neighbor” sets, which 
correlate with worse test results. Our study utilizes the braingraphs, computed from the imaging data 
of the Human Connectome Project’s 414 subjects, each with 463 anatomically identified nodes.

Our brain contains approximately 80 billion neurons, each connected to hundreds or even thousands of other 
neurons. All brain functions are closely connected to this network of the brain, frequently called “the connec-
tome”1–3. Today, the neuronal-level connectome (or braingraph), where the nodes correspond to the 80 billion 
neurons, and two nodes are connected by an edge if the corresponding neurons are connected by an axon, is 
unknown for us. The only full developed species with known neuronal-level braingraph is that of the nematode 
Caenorhabditis elegans, with 302 neurons, determined in the 80’s by electron-microscopic techniques (4, the 
graph can be downloaded from http://brain​graph​.org5). More recently, serious developments are reported in 
the mapping of the neuronal-level braingraph of the fruitfly Drosophila melanogaster with 100,000 neurons6.

With currently available techniques the human braingraph can be constructed and analyzed in a much 
coarser resolution than the neuronal level, with the help of diffusion magnetic resonance imaging (MRI)7. In 
these graphs, the nodes are anatomically identified 1−1.5 cm2 areas of the gray matter (frequently addressed 
as “ROIs”, i.e., Regions Of Interests), and two nodes are connected by an edge if the diffusion MRI analyzing 
workflow7–10 finds axonal fiber tracts between them. Therefore, we can construct today braingraphs upto 1015 
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nodes and several thousands edges. One of the most reliable human MRI datasets to date are the public releases 
of the Human Connectome Project (HCP)11.

The graph‑theoretical analysis of the braingraph.  The exact, robust and graph-theoretical analysis 
of the human braingraphs is a fast developing and important area today. Our research group has contributed 
numerous results in this field, analyzing the HCP data. We have computed hundreds of braingraphs5, and pre-
pared the Budapest Reference Connectome Server, which generates the graph of k-frequent edges of the human 
connectome of n = 477 people, where 1 ≤ k ≤ n , and the k-frequent edges are those, which are present in at least 
k braingraphs out of the n = 477. The parameter k is selectable, along with other parameters at the webserver 
https​://pitgr​oup.org/conne​ctome​/, and the resulting consensus graph can be visualized and downloaded from 
the site12,13.

In the work14 we have mapped the individually more and less variable lobes of the human brain on 395 sub-
jects, with the help of a natural measure: the distribution function. We have shown that the frontal and the limbic 
lobes are more conservative, while the edges in the temporal and occipital lobes show more diversity between the 
individual braingraphs. We have also compared the lobes of the brain by computing numerous graph-theoretical 
parameters in the sub-graphs, induced by the vertices of the lobes in15. We have found that the right temporal 
and the right parietal lobes have better connectedness-related graph-theoretical parameters, than the left ones 
(e.g., larger minimum vertex cover, larger Hoffman-bound). More interestingly, the left frontal lobe has better 
such parameters than the right one.

We have compared the volumetric properties of the male and female brain areas in16, and the sex differences in 
the human brain connectomes in17–19. We have shown a strong statistical advantage of the female connectomes in 
the connectedness-related advanced graph theoretical parameters in a smaller cohort in17 and in a larger cohort 
in18. In19 we have clarified that the better, connectedness-related braingraph parameter-results of women cannot 
be due to the brain-volume differences: we have identified 36 large-brain females and 36 small-brain males, such 
that the brain volumes of all females were larger in the group than those of all males, and the advantage of the 
women remained valid even after this subject selection.

The development of the connections in the mammal brains is a hot research area today with many open ques-
tions. Lots of information were learned from embryonic rat and mouse brain microscopy from the development 
of single neuronal tracts20,21. In human brains much less is known about the phases of the axonal development 
and growth. By analyzing the features of the publicly available Budapest Reference Connectome Server http://
conne​ctome​.pitgr​oup.org, we have discovered the phenomenon of the Consensus Connectome Dynamics (CCD), 
which, by our hypothesis, describes the individual axonal development of the human brain22–25. The CCD phe-
nomenon is also applicable for directing the edges of the braingraph24,25.

Robust methods.  The robust analysis of the MR imaging data is an important point in all applications, 
since there are numerous complex steps, where noise or data processing artifacts may appear in the image pro-
cessing workflow. For example, one such area is the tractography phase, where the crossing axonal fibers may 
induce errors in the processing26–28. Therefore, the error-correcting analytical methods have an utmost impor-
tance in the processing of these data.

Our research group pioneered several such methods, by examining the frequently appearing substructures. 
This approach will not consider rarely appearing errors, since if we deal with substructures, which appear with a 
minimum frequency of, say, 80% or 90%, then the infrequent errors will be filtered out. The Budapest Reference 
Connectome Server generates the k-frequent edges12,13. In the work29 we have mapped the frequently appearing 
subgraphs of the human connectome. The frequent complete subgraphs of the human braingraph were identi-
fied in30.

Numerous publications attempt to find correlations between the psychological and anatomical, more exactly, 
connectomical, or graph theoretical properties of the braingraph (e.g.,31). The difficulty of identifying structural-
psychological correlations lies in the individual diversity of the cerebral connections. One possible solution to 
this difficulty is the comparison of the frequent substructures with the results of psychological measurements.

In the publication32 we defined the Frequent Network Neighborhood Mapping.

The frequent network neighborhood mapping.  Here we would like to formalize the frequent neigh-
borhood mapping. The motivation of the formalism below is identification of the robust, frequent neighbor-
hoods of some important node u, where the word “frequent” means that the same neighborhood of u appears 
frequently in the braingraphs of the N subject of ours:

Let G(V, E) be a graph with vertex-set V and edge-set E. Let u be a vertex. Vertex v is a neighbor of u if the 
unordered pair {u, v} is an edge of G. Then Ŵ(u) , called the neighbor-set of u, contains all the neighbors of vertex 
u, that is:

Now, let us consider N graphs G1(V ,E1),G2(V ,E2), . . . ,GN (V ,EN ) on the very same vertex-set V. Let u ∈ V  , 
and let

In other words, Ŵi(u) is the neighborhood of u in graph Gi.
We say that the vertex-set W ⊂ V  is a k-frequent neighborhood of u if there are at least k indices i, such that 

W ⊂ Ŵi(u) . If, say, k/N ≥ 0.8 , then W is a frequent neighbor set of u with a cut-off value (or threshold) of 80%.

Ŵ(u) = {v ∈ V : {u, v} ∈ E}.

Ŵi(u) = {v ∈ V : {u, v} ∈ Ei}, for i = 1, 2, . . . ,N .

https://pitgroup.org/connectome/
http://connectome.pitgroup.org
http://connectome.pitgroup.org
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In the work32 we have identified the frequent neighbor sets of the hippocampus of size at most 4, with thresh-
old of 90%. We have also identified the frequent neighbor-sets of the hippocampus, which were more frequent 
in male and in female subjects, respectively.

The structural factors of intelligence.  Intelligence-related connectomics analyses were published by 
several authors, e.g.,33–38. Most of the previous work on this field applied functional MRI studies, which are usu-
ally difficult to reproduce39. Here we study structural connectomes, on a large cohort (n = 414), with robust tech-
niques: only the frequent neighbor sets are analyzed. In the present contribution we apply the Frequent Network 
Neighborhood Mapping method for finding neighbor sets of the hippocampus, which positively or negatively 
influence some intelligence-measures of the subjects. Since the hippocampus has important roles in the spatial 
coordination and in turning the short-time memory to long-time memory, it should have a role in performing 
some intelligence-related tests. The frequent neighbor sets, appearing significantly more frequently with higher 
scores in these tests, are called “Good Neighbors”. The frequent sets, which appear significantly more frequently 
with lower scores, are called “Bad Neighbors”.

Discussion and results
The hippocampus is, perhaps, the most frequently and deeply investigated area of the brain: it is a part of the 
limbic system, it has a role in turning short-time memory into long-time memory, in spatial orientation, naviga-
tion and memory40–43. It is a sea-horse-shaped entity, and it is present in the left- and also in the right hemisphere: 
that is, there are a left- and a right hippocampus in the brain.

Here we identify the frequent hippocampus neighbor sets of size up to 4, for hippocampi in both hemispheres. 
Next, we investigate whether the presence of these neighbors of the hippocampus have any statistical significance 
with some, intelligence-related test results of the subjects.

The motivation of this study is as follows: by the best of our knowledge, no connections were proven between 
the presence or absence of any single connectome-edge and any psychological property of the subjects exam-
ined. This failure may be due to the great variability and plasticity of the brain connections12–14. Here we want 
to overcome these difficulties in two-fold strategy: 

	 (i)	 Instead of the individual appearances of graph-theoretical objects we consider frequent objects;
	 (ii)	 Instead of frequent single edges from vertex u we consider frequent subsets of the neighbor-set Ŵ(u).

Measures of intelligence.  In the present study we consider two psychological tests, which were adminis-
tered to the subjects of the Human Connectome Project:

PMAT24_A_CR: Penn Matrix Test: Number of Correct Responses; scored from 0 to 24. This is a multiple 
choice test where the subject needs to choose the best fit from a list of objects into the one empty position of a 
small matrix of objects. The PMAT test is believed to assess the mental abstraction and flexibility44. The higher 
scores show better mental abilities. We grouped the scores as “low” between 0 and 16, and “high” between 17 
and 24; the cut-off score 17 is the median.

IWRD_TOT: Penn Word Memory Test: Total Number of Correct Responses, scored from 0 to 40. In the first 
phase of the test, the subjects need to memorize 20 written words. In the recognition phase, 40 words are shown, 
and the participants need to decide whether the words were seen in the first phase or not. The score is the number 
of the correct answers. We valued the scores 0–35 as “low” and 36–40 as “high”, the cut-off score 36 is the median.

Table 1 shows the results of the Frequent Network Neighborhood Mapping for these two tests. The table list 
the numbers of the frequent neighbor sets of the left- and the right hippocampus in the connectomes of the 
subjects with high- and low PMAT24 and IWRD test scores, respectively.

In the columns, labeled by 1, 2, 3 and 4 the numbers of the 1, 2, 3 and 4-element frequent neighbor-sets are 
given, for the subjects with high and low test scores. The threshold for “frequent” sets is 80% in the case of the 
right- and the left hippocampi, and 90% in the case of the union of their neighbor-sets, given in the rows, labelled 
by “hippocampus”. The column with “sign.” label contains the number of the neighborhood sets of the statisti-
cally differing (p = 0.01) frequencies in the “low” and the “high” test scores (called briefly “significant sets”). The 
column with label “sign. for whom” contains the number of the significant sets with higher frequencies in the low 
and in the high test group, respectively. Note that the sum of the two values of the column with label “sign. for 
whom” equals to the number in the “sign.” column. In the case of PMAT24 tests, the majority of the significant 
sets are related to the high test values. This may imply that these neighborhoods of the hippocampus are beneficial 
for the PMAT24 test results, so, these are the “good neighbors” of the hippocampus.

Some of these “good neighbor” sets of the left hippocampus are listed as follows (we are using the ROI nomen-
clature at https​://githu​b.com/LTS5/cmp_nipyp​e/blob/maste​r/cmtkl​ib/data/parce​llati​on/lausa​nne20​08/Parce​llati​
onLau​sanne​2008.xls. The “lh” and the “rh” prefixes abbreviate the “left-hemisphere” and “right-hemisphere” 
localizations).

Left-Caudate, lh.fusiform_7, lh.inferiorparietal_5, lh.isthmuscingulate_2
or:
Left-Pallidum, lh.lingual_7, lh.superiortemporal_3, lh.transversetemporal_2
The complete list of the “good neighbor” sets of the left hippocampus is available as supplementary Table S1.
In the case of the IWRD test, the majority of the significant sets are related to the low test values. That is, these 

neighbors are “bad” for the IWRD test results.
Some of the “bad” neighbor sets of the right hippocampus:
rh.insula_4, rh.precuneus_2, rh.precuneus_3, rh.superiortemporal_1
or:

https://github.com/LTS5/cmp_nipype/blob/master/cmtklib/data/parcellation/lausanne2008/ParcellationLausanne2008.xls
https://github.com/LTS5/cmp_nipype/blob/master/cmtklib/data/parcellation/lausanne2008/ParcellationLausanne2008.xls
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rh.insula_4, rh.precuneus_3, rh.supramarginal_9, rh.transversetemporal_1
All the neighbor-sets of the right hippocampus with significantly higher frequency in subjects with lower-

scored IWRD results can be found in supplementary Table S10.

Materials and methods
The braingraphs in our work was computed from the Human Connectome Project’s (HCP) Public Data Release 
at http://www.human​conne​ctome​.org/docum​entat​ion/S50011. The data set applied in this study contains the dif-
fusion MRI recordings of 500 healthy human subjects of age 22–35 years. The details of the HCP data acquisition 
pipeline and the subjects are available at https​://www.human​conne​ctome​.org/stora​ge/app/media​/docum​entat​
ion/s500/hcps5​00meg​2rele​asere​feren​ceman​ual.pdf.

The workflow, by which the graphs were computed by our group from the HCP data set, is described in 
detail in5. In short, we applied the CMTK toolkit10 including the FreeSurfer tool8 and the MRtrix tractography 
program45. The tractography applied random seeding and the deterministic streamline method with 1 million 
streamlines. The parcellation labels were specified in the CMTK suite, in the nypipe GitHub repository at the 
address https​://githu​b.com/LTS5/cmp_nipyp​e/blob/maste​r/cmtkl​ib/data/parce​llati​on/lausa​nne20​08/Parce​llati​
onLau​sanne​2008.xls.

We were able to complete the braingraph computations for 413 subjects (238 women and 175 men). The 
graphs are available freely for download at the site: https​://brain​graph​.org/cms/downl​oad-pit-group​-conne​ctome​
s/. In this work we have applied unweighted graphs with 463 nodes.

The computation of the frequent neighbor sets of the hippocampus, which facilitated the Frequent Network 
Neighborhood Mapping, used an apriori-like algorithm46,47, with small modifications: http://adata​analy​st.com/
machi​ne-learn​ing/aprio​ri-algor​ithm-pytho​n-3-0/. The details of the frequent neighbor set mapping is described 
in detail in32.

The statistical analysis used a χ2 test with significance bound of p = 0.01 , with Holm-Bonferroni corrections48.

Conclusions
By the application of Frequent Network Neighborhood Mapping, we examined the neighbors of the human 
hippocampus, and found that some frequent neighbor sets correlate with the better PMAT24 test results, and 
some frequent neighbor sets correlate with worse IWRD test results. By our knowledge, this is the first demon-
stration, which statistically connects the intelligence-related test measures with the neighbor-sets of the human 
hippocampus. Our results are robust, since we have considered only the frequent neighbor sets, therefore, small 

Table 1.   The table list the numbers of the frequent neighbor sets of the left- and the right hippocampus 
and their union, labeled by “hippocampus”, in the connectomes of the subjects with high- and low PMAT24 
and IWRD test scores, respectively. In the columns, labeled by 1, 2, 3 and 4 the numbers of the 1, 2, 3 and 
4-element frequent neighbor-sets are given, for the subjects with high and low test scores. The threshold for 
“frequent” sets is 80% in the case of the right- and left hippocampi, and 90% in the case of the hippocampus 
(where we consider the union of the neighbors of the right and the left hippocampi). The column with “sign.” 
label contains the number of the neighborhood sets of the statistically significantly differing ( p = 0.01) 
frequencies in the “low” and the “high” test scores (called briefly “significant sets”). The column with label 
“sign. for whom” contains the number of the significant sets with higher frequencies in the low and in the 
high test group. Note that the sum of the two values of the column with label “sign. for whom” equals to the 
number in the “sign.” column. In the case of PMAT24 tests, the majority of the significant sets are related to 
the high test values. In the case of the IWRD test, the majority of the significant sets are related to the low test 
values. The last column, labeled by “No.”, contains the reference number to the listing of the significant sets in 
the supplementary material: Table Sx contains the list of the significant sets, corresponding to the row, with 
reference x (where x = 1, 2, . . . , 12 ). The supplementary tables can be downloaded in Excel format from http://
urati​m.com/hinte​ll/table​s.zip.

1 2 3 4 Sign. Sign. for whom No.

PMAT24

Hippocampus left High 39 665 6,646 42,854 2,331 2,328 1

Hippocampus left Low 41 631 5,164 25,824 3 2

Hippocampus right High 50 873 8,142 48,521 1,788 1,757 3

Hippocampus right Low 49 817 7,059 37,558 31 4

Hippocampus High 62 1,325 15,297 113,579 5,345 5,313 5

Hippocampus Low 54 1,036 10,761 70,252 32 6

IWRD

Hippocampus left High 39 637 5,684 31,139 963 0 7

Hippocampus left Low 41 691 6,675 41,200 963 8

Hippocampus right High 47 833 7,663 43,337 456 41 9

Hippocampus right Low 49 850 7,705 43,918 415 10

Hippocampus High 55 1,082 11,219 72,613 5,484 0 11

Hippocampus Low 62 1,307 15,077 114,860 5,484 12

http://www.humanconnectome.org/documentation/S500
https://www.humanconnectome.org/storage/app/media/documentation/s500/hcps500meg2releasereferencemanual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s500/hcps500meg2releasereferencemanual.pdf
https://github.com/LTS5/cmp_nipype/blob/master/cmtklib/data/parcellation/lausanne2008/ParcellationLausanne2008.xls
https://github.com/LTS5/cmp_nipype/blob/master/cmtklib/data/parcellation/lausanne2008/ParcellationLausanne2008.xls
https://braingraph.org/cms/download-pit-group-connectomes/
https://braingraph.org/cms/download-pit-group-connectomes/
http://adataanalyst.com/machine-learning/apriori-algorithm-python-3-0/
http://adataanalyst.com/machine-learning/apriori-algorithm-python-3-0/
http://uratim.com/hintell/tables.zip
http://uratim.com/hintell/tables.zip
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errors in the data acquisition and processing workflow do not influence our results. We have used a strong p=0.01 
significance bound, as an additional robustness precaution.

Data availability
The data source of this study is Human Connectome Project’s Public Data Release at http://www.human​conne​
ctome​.org/docum​entat​ion/S50011.

The parcellation data, containing the ROI labels, is listed in the CMTK nypipe GitHub repository https​://githu​
b.com/LTS5/cmp_nipyp​e/blob/maste​r/cmtkl​ib/data/parce​llati​on/lausa​nne20​08/Parce​llati​onLau​sanne​2008.xls.

The braingraphs, computed by our group, can be downloaded from the https​://brain​graph​.org/cms/downl​
oad-pit-group​-conne​ctome​s/ site, by choosing the “Full set, 413 brains, 1 million streamlines” option. In the 
present study we have used exclusively the 463-node resolution graphs.

The significant neighbor sets of the hippocampus are listed in 12 supplementary tables (two of which are 
intentionally left empty), numbered from Table S1 through Table S12; the numbers, following the S letter, cor-
respond to the reference number in the last column of Table 1. The supplementary tables in MS Excel form can 
be downloaded as a zip file from http://urati​m.com/hinte​ll/table​s.zip.
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