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Reciprocity Between Skeletal Muscle AMPK Deletion and
Insulin Action in Diet-Induced Obese Mice
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Insulin resistance due to overnutrition places a burden
on energy-producing pathways in skeletal muscle (SkM).
Nevertheless, energy state is not compromised. The hy-
pothesis that the energy sensor AMPK is necessary to
offset the metabolic burden of overnutrition was tested
using chow-fed and high-fat (HF)-fed SkM-specific
AMPKa1a2 knockout (mdKO) mice and AMPK«a1a2lox/
lox littermates (wild-type [WT]). Lean mdKO and WT mice
were phenotypically similar. HF-fed mice were equally
obese and maintained lean mass regardless of genotype.
Results did not support the hypothesis that AMPK is
protective during overnutrition. Paradoxically, mdKO mice
were more insulin sensitive. Insulin-stimulated SkM glu-
cose uptake was approximately twofold greater in mdKO
mice in vivo. Furthermore, insulin signaling, SkM GLUT4
translocation, hexokinase activity, and glycolysis were
increased. AMPK and insulin signaling intersect at mam-
malian target of rapamycin (mTOR), a critical node for
cell proliferation and survival. Basal mTOR activation
was reduced by 50% in HF-fed mdKO mice, but was
normalized by insulin stimulation. Mitochondrial function
was impaired in mdKO mice, but energy charge was
preserved by AMP deamination. Results show a surpris-
ing reciprocity between SkM AMPK signaling and insulin
action that manifests with diet-induced obesity, as in-
sulin action is preserved to protect fundamental ener-
getic processes in the muscle.

Obesity and type 2 diabetes are associated with insulin
resistance characterized by impairments in insulin-stimulated
skeletal muscle (SkM) glucose uptake and energy-producing
oxidative pathways. Despite these deficits, SkM energy
state is maintained (1). The energy sensor AMPK is

a heterotrimeric kinase consisting of one catalytic subunit
o and two regulatory subunits, B and . The a subunit, of
which two isoforms exist (a1l and «2), contains the kinase
domain and a critical reversible phosphorylation site
aThr172, the phosphorylation of which is required for full
kinase activity. Tasked with maintaining cellular energy
charge during times of metabolic stress, AMPK acutely
activates metabolic pathways that promote nutrient oxi-
dation and energy production (2). As such, SkM AMPK
stimulates lipid breakdown, mitochondrial biogenesis, glu-
cose transport, and other processes involved in cellular
homeostasis.

AMPK is activated in SkM by exercise (2) and may
contribute to the increase in SkM glucose utilization (3).
Accordingly, pharmacological activation of AMPK has been
proposed as a means to circumvent the metabolic impair-
ments due to insulin resistance, as it mimics positive
metabolic effects of exercise training (4-6). Studies con-
ducted in vitro have suggested that AMPK activity may
promote SkM insulin sensitivity, most notably through
induction of SkM GLUT4 translocation and glucose uptake
(6-9). However, this is controversial in vivo. Studies have
demonstrated that the insulin-sensitizing effects of calorie
restriction, exercise, contraction, and 5’-aminoimidazole-
4-carboxymide-1-B3-D-ribofuranoside (AICAR) in SkM are
AMPK dependent (3,10,11). More recently, it was reported
that pharmacological activation of AMPK effectively pro-
motes SKM glucose uptake in mice and primates (12-14).

In contrast, results from high-fat (HF)-fed mouse
models with reduced SkM AMPK activity are unclear, with
studies showing both aggravation of glucose tolerance
(15,16) and no effect (17,18). These in vivo studies vastly
differed from each other in terms of the genetic modification
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and background strain, as well as in diet paradigms and
measurements of insulin action and glucose tolerance.
The importance of AMPK to glucose tolerance is poorly
defined, and studies that show how the presence of AMPK
affects insulin resistant states are lacking. These are
major deficits in our current understanding of the meta-
bolic role of AMPK in insulin resistance. This lack of clarity
is of particular significance in obese insulin-resistant sub-
jects, as they are candidates for AMPK-targeted treatments.
AMPK activation and insulin stimulation share common
signaling hubs and metabolic flux effects that are subject to
complex interactions, such as those related to possible
feedback inhibition, mitochondrial function, and energy
homeostasis.

In this study, we show that mice lacking both AMPKa1
and AMPKa2 catalytic subunits specifically in SkM
(SkM-specific AMPKala2 knockout mice [mdKO]) do not
display exacerbated insulin resistance on HF diet. Remark-
ably, they exhibit a profound amelioration of diet-induced
insulin resistance by dramatically enhancing SkM insulin-
stimulated glucose uptake. The fate of the glucose con-
sumed by SkM in the presence of insulin is altered in the
absence of AMPK, as glucose is diverted from glycogen
storage to glycolytic flux. We show that AMPK-deficient
SkM has impaired mitochondrial function but sustained
energy status due to increased ATP formation by glycolysis
and AMP removal by deamination. The increase in insulin-
stimulated glucose uptake and glycolytic flux provides
a critical compensatory mechanism that allows for main-
tenance of SkM energy balance. This compensatory mech-
anism attenuates resistance to insulin-stimulated SkM
glucose uptake due to overnutrition.

RESEARCH DESIGN AND METHODS

Mouse Model

SkM AMPK-deficient mice (AMPKa1"#a2%® human SkM
actin-Cre ", hereafter referred to as mdKO) (19) and their
control littermates (AMPKOLlﬂ/ Ay ﬂ, hereafter referred
to as wild-type [WT]), backcrossed to a C57BL/6J back-
ground, were fed chow (13.5% calories from fat; 5001;
LabDiet) or an HF diet (45% calories from fat, Research
Diets D12451 starting at 12 weeks of age for the oral
glucose tolerance test [OGTT]; or 60% calories from fat,
BioServ F3282 starting at 6 weeks of age for all other
studies). Mice were housed in a temperature/humidity-
controlled environment with a 12-h light cycle. Body
composition was determined by nuclear magnetic resonance.
Hyperinsulinemic-euglycemic clamps were performed on
18-week-old 5-h-fasted male mice. OGTTs were performed
on 24-week-old 16-h-fasted male mice. The Vanderbilt
Animal Care and Use Committee approved all animal
procedures specific to this study. The OGTT was approved
by the Paris Descartes University Ethics Committee
(CEEA34.BV.157.12) and performed under a French autho-
rization to experiment on vertebrates (75-886) in accor-
dance with European guidelines.

Lantier and Associates 1637

Hyperinsulinemic-Euglycemic (Insulin) Clamp

Catheters were surgically placed in the carotid artery and
jugular vein for sampling and infusions, respectively,
1 week before clamps were performed. Mice were fasted
for 5 h before clamps. Mice were neither restrained nor
handled during clamp experiments (20). [3-3H] glucose was
primed and continuously infused fromt = —90 min to t =
0 min (0.04 pnCi/min). The insulin clamp was initiated at
t = 0 min with a continuous insulin infusion (4 mU - kgf1 .
min~ 1) and variable glucose infusion rate (GIR), both
maintained until ¢t = 155 min. The glucose infusate con-
tained [3—3H]glucose (0.06 nCi/pL) to minimize changes in
plasma [3-*H]glucose-specific activity. Arterial glucose was
monitored every 10 min to provide feedback to adjust the
GIR so as to maintain euglycemia. Erythrocytes were infused
to compensate for blood withdrawal. [3-3H] glucose kinetics
were determined at —15 min and —5 min for the basal
period and every 10 min between 80 and 120 min for the
clamp period to assess whole-body R,, Ry, and endogenous
glucose production (endoR,). Whole-body glycolytic rate
was determined by the *H,0O formation rate, and SkM
glucose storage was calculated as the difference between
Rq and glycolysis (21). A 13-pCi intravenous bolus of
2-[14C]—deoxyglucose ([**C]2DG) was administered at
120 min to determine the R,, an index of tissue-specific
glucose uptake. Blood samples were collected at 122, 125,
135, 145, and 155 min to measure [*4C]2DG disappearance
from plasma. At 155 min, mice were anesthetized and
tissues immediately harvested and freeze-damped. Plasma
and tissue processing are described in the Supplementary
Materials and Methods. Full step-by-step descriptions of
the surgery, isotope clamp method, and calculations are
available from the Vanderbilt Mouse Metabolic Pheno-
typing Center (MMPC) website (www.vmmpc.org).

OGTT

To confirm that clamp results at Vanderbilt University are
consistent with related measurements at a second site,
OGTTs were performed at the Institut Cochin, INSERM.
See Supplementary Materials and Methods for details.

High-Resolution Respirometry on Permeabilized
Muscle Fibers

High-resolution respirometry was performed on permeabi-
lized muscle fibers from white gastrocnemius as previously
described (22). Oxygen consumption was assessed with
tricarboxylic acid cycle intermediates/NADH-generating
substrates (2 mmol/L ADP plus 2 mmol/L malate plus
increasing concentrations of pyruvate [5-5,000 wmol/L]).
The dose-response curves were fitted to a Michaelis-Menten
equation in order to determine V., and K., (GraphPad
Prism). Citrate synthase activity was measured in white
gastrocnemius homogenates spectrophotometrically (23).

Statistics
Data are expressed as mean = SE. Samples from mice were
excuded automatically and without investigator intervention
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from subsequent analysis if >50% of the clamp data were
over £1.5 SDs from the final group mean. The program
excluded 1 chow WT, 1 chow mdKO, 2 HF WT, and 2 HF
mdKO studies (i.e., 6 mice were excluded out of 52 total
clamp studies). Statistical analyses were performed using
two-tailed unpaired Student t test (two-group analysis) or
two-way ANOVA followed by Tukey post hoc tests (four-
group analysis). Basal states among genotypes were com-
pared by Student t test. Significance level for all tests was
P < 0.05 (*P < 0.05; **P < 0.01; **P < 0.001).

Additional methodological details are included in the
Supplementary Materials and Methods.

Data and Resource Availability

The data sets generated and analyzed during the current
study are available from the corresponding author upon
reasonable request.

RESULTS

Body Weight and Composition Are Unchanged in mdKO
Mice Regardless of Diet

WT and mdKO littermates were placed on chow or HF diet
for 12 weeks starting at 6 weeks of age. Body weight was
not different among genotypes within diets (Fig. 14).
Chow-fed mdKO mice had a similar percentage of fat mass
(Fig. 1B) but increased percentage of lean mass (Fig. 10),
consistent with the increased muscle mass previously de-
scribed in this model (19). WT and mdKO mice on an HF
diet (Fig. 1A) had similar body weight gain and composi-
tion (Fig. 1D and E).

HF mdKO Mice Have Improved Skeletal Muscle Insulin
Action

Oral glucose tolerance was not different among genotypes
in mice on a chow diet (Fig. 1F and G), but was significantly
improved in HF mdKO mice compared with HF WT mice
(Fig. 1H and I).

Fasting arterial glucose, arterial insulin, and glucose
fluxes were not different among genotypes, regardless of
diet (Table 1 and Fig. 2). Blood glucose for all mice was
maintained at euglycemia during the clamp (Fig. 24 and G).
The GIR was not different among genotypes on a chow diet
(Fig. 2B). In contrast, the GIR was markedly increased in
HF-fed mdKO mice compared with their WT littermates
(Fig. 2H). Clamp endoR, was unchanged among genotypes
regardless of diet (Fig. 2C and I). Clamp R4 was not
different among the chow-fed mice (Fig. 2D). However, in
HF-fed mice, Rq was significantly increased in the mdKO
mice (Fig. 2J).

Administration of [**C]2DG during the insulin clamp
was used to determine insulin-stimulated R, in specific
tissues. HF-fed mdKO mice exhibited a strong increase in
SkM R,, regardless of muscle type (gastrocnemius, vastus
lateralis, tibialis anterior, extensor digitorum longus [EDL],
and soleus) (Fig. 2K and L). Fasting nonesterified fatty acid
levels were unchanged among genotypes and were similarly
suppressed by insulin during the clamp (Table 1).
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Clamp insulin levels in HF mdKO mice trended higher
compared with HF WT mice (Table 1). Although differ-
ences were not significant, this trend complicates the
interpretation of clamps. This trend was due to four HF
mdKO mice that had more than twofold higher insulin
levels compared with the cohort average. A subgroup of
clamp insulin-matched HF mice was created and analyzed
after exclusion of these mice. The clamp data for this
subgroup are presented in Supplementary Table 1. Results
show that even when insulin levels are matched, HF mdKO
mice exhibit markedly improved insulin action associated
with increased SkM glucose uptake.

HF mdKO Mice Have Improved SkM Insulin Signaling,
GLUT4 Translocation, and Hexokinase Il Content

To probe potential mechanisms for the improved SkM
insulin action in mdKO mice, components of the SkM
signaling pathway were investigated. The phosphorylation
state of five sites on four key insulin-signaling proteins
(insulin receptor substrate 1 [IRS1]-Ser302, Akt-Thr308,
Akt-Serd73, Akt substrate 160 kDa [AS160]-Ser588, and
mammalian target of rapamycin [mTOR]-Ser2448) were
measured in vastus collected from chow and HF mice after
a 5-h fast (basal) or clamp (insulin) (Figs. 3A and 4A). In
chow-fed mice, phosphorylation of IRS1, Akt, AS160, and
mTOR was unaffected by genotype, with unchanged in-
sulin activation folds (Fig. 3A-G). Hexokinase II (HKII)
levels were also unchanged (Fig. 3F).

In HF WT mice (Fig. 4), insulin modestly stimulated the
phosphorylated (P-)Akt/Akt ratio, but neither P-IRS1/
IRS1 nor P-AS160/AS160 ratios, indicative of SkM insulin
resistance. In contrast to WT mice, insulin potently stim-
ulated the phosphorylation state of all these signaling
molecules in HF mdKO mice (Fig. 4A-E), as the insulin-
induced activation fold for these sites was significantly
increased in HF mdKO mice. GLUT4 translocation to the
SkM plasma membrane was assessed in insulin-clamped
HF WT and mdKO muscle by immunofluorescence. Sar-
colemmal GLUT4 was significantly increased in HF mdKO
SkM (Fig. 4F and G). HKII protein was significantly in-
creased in HF mdKO muscle (Fig. 4H).

The activation state of proteins in the mTOR pathway
was investigated in HF mice (Fig. 5). HF mdKO mice
exhibited a reduction in fasting P-mTOR/mTOR, which is
apoint of intersection for insulin and AMPK signaling (Fig.
5A and B). We substantiated the effectiveness of mTOR
activation by probing the phosphorylation state of two
downstream effectors of mTOR, p70S6K, and S6 (Fig. 5C-
E). A similar profile was observed in the phosphorylation
state of these proteins, with reduced activation during
fasting but increased insulin responsiveness. This further
supports that the deficit in mTOR activation observed
during insulin stimulation in HF WT mice was corrected in
HF mdKO mice. We further examined mTOR pathway
regulation in HF mice by analysis of Raptor and tuberous
sclerosis complex 2 (TSC2) activation states (Fig. 5F-H).
The phosphorylation state of Raptor-Ser792, a site
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Figure 1—Glucose tolerance is improved in HF-fed mdKO mice. A: Body weight was monitored weekly in WT and mdKO on chow and HF
diet (HFD). N = 20/group. B-E: Body composition, expressed as percentage total body weight, was assessed at 18 weeks of age in all four
groups of mice. N = 6-9/group for chow mice; N = 16/group for HF mice. Oral glucose tolerance was assessed in chow (F) or HF-fed mice
(H) after 12 weeks of diet. Area under the curve (AUC) was calculated using the trapezoidal rule (G and /). N = 10-12/group for chow mice; N =

7-9/group for HF mice. *P < 0.05; **P < 0.01.

phosphorylated by AMPK that inhibits mTOR (24), was
unaffected by insulin and insignificantly reduced in the
mdKO muscle (Fig. 5F). TSC2 is a negative regulator for
mTOR, and its activity is regulated by numerous phos-
phorylation sites (25). Two key phosphorylation sites are
an inhibition site at Thr1462 (allowing for greater mTOR
activation) and an activating site at Ser1387 (allowing for
inhibition of mTOR). The phosphorylation state of these
sites was unchanged by insulin in both HF WT and mdKO mice
(Fig. 5G and H). Together, these data suggest that neither
regulation by TSC2 nor Raptor is responsible for the insulin-
dependent changes in mTOR activity in HF mdKO mice.
Gene expression for key markers of protein autophagy
was reduced in HF mdKO muscle (Supplementary Fig. 1A).
Staining for endothelial marker CD31 in gastrocnemius
showed no difference among groups (Supplementary Fig.
1B). SKM fibrosis, as assessed by trichrome blue staining
on gastrocnemius was unchanged among genotypes in
HF-fed mice (Supplementary Fig. 1B). Gene expression for
four collagens (collal, colla2, col3al, and col4al) was un-
changed among genotypes on HF diet (Supplementary Fig. 1C).

HF mdKO Mice Display Increased Muscle Glycolytic
Flux and Decreased Mitochondrial Respiration

In order to determine the fate of the increased glucose
uptake, rates of glycolysis and glucose storage were
assessed during the insulin clamp. Whole-body glycolysis
during the clamp was significantly increased in HF mdKO
mice (Fig. 6A). The clamp rate of glucose storage was not
different between genotypes (Fig. 6B). SkM glucose-6-
phosphate was unchanged (Fig. 6C). Direct biochemical
measurement of SkM glycogen confirmed these results.
SkM glycogen was significantly reduced in HF mdKO mice
(Fig. 6D). SKM glycogen was also reduced in chow mdKO
mice compared with their WT littermates (Supplementary
Fig. 2A). Plasma lactate was increased in HF mdKO mice
(Fig. 6E). SKM triglyceride content was unchanged between
HF WT and mdKO mice (Fig. 6F).

SkM mitochondrial function was assessed in permea-
bilized gastrocnemius fibers from HF WT and mdKO mice.
To assess muscle respiratory capacity specifically on gly-
colytic substrates, O, consumption was measured in the
presence of ADP, malate, and increasing concentrations of
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Table 1—Metabolic parameters of insulin-clamped WT and mdKO mice

Chow diet HF diet
WT mdKO WT mdKO

N 11 9 11 15
Body weight (g) 271 + 0.7 26.6 = 0.6 45.0 + 0.9 45.4 = 1.0
Arterial blood glucose (mg/dL)

Fasting 121 £ 5 137 = 3* 154 = 5 147 = 7

Clamp 143 =3 139 = 4 154 = 3 150 = 2
Arterial plasma insulin (hg/mL)

Fasting 0.3 = 0.1 0.3 £ 0.1 3.7 £ 0.5 6.0 =15

Clamp 1.8 £ 0.2 1.2 = 0.1* 95+ 1.8 15.1 £ 3.5
Arterial NEFA (mmol/L)

Fasting 0.73 = 0.06 0.74 = 0.06 0.65 = 0.04 0.73 = 0.05

Clamp 0.17 = 0.03 0.16 = 0.03 0.38 = 0.03 0.37 = 0.02
Liver triglycerides (mg/g tissue) 7.9 +0.3 6.0 = 0.7* 276 = 3.6 257 = 1.9
Liver glycogen (mg/g tissue) 19.6 = 2.1 14.4 = 3.3 226 = 1.6 20.0 = 0.6

Data are mean = SEM unless otherwise indicated. NEFA, nonesterified fatty acid. *P < 0.05 vs. WT (same diet).

pyruvate. The pyruvate-dependent O, consumption rate in
muscle fibers from mdKO mice was nonsignificantly re-
duced compared with the WT at the higher pyruvate
concentrations (Fig. 6G). The pyruvate-based respiration
dose response was fitted to a Michaelis-Menten curve
(goodness-of-fit r* = 0.83 for WT and #* = 0.77 for mdKO),
allowing for determination of O, consumption V., and K.
Vimax was significantly reduced in mdKO fibers (Fig. 6G). In
contrast, K, remained unchanged (Fig. 6G).

Fasting chow-fed mice showed no detectable difference
in mitochondrial content, as measured by oxidative phos-
phorylation complexes or voltage-dependent anion-selective
channel abundance (Supplementary Fig. 2B). In contrast,
in HF mice, citrate synthase (CS) activity, an index of
mitochondrial content, was significantly reduced in HF
mdKO white gastrocnemius (Fig. 6H). Complex III of the
electron transport chain was significantly reduced in HF
mdKO SkM, while voltage-dependent anion-selective
channels remained unchanged (Supplementary Fig. 2C).
Gene expression for pgcla, a master regulator of mito-
chondrial biogenesis, was unaffected by genotype (Sup-
plementary Fig. 2D). The pgcla target mitochondrial
transcription factor A (tfam) and two of its downstream
targets (cytochrome c oxidase subunits cox1 and cox4), key
markers of mitochondrial biogenesis, were downregulated.
Overall, our findings point toward a reduction in mito-
chondrial electron transport components in HF mdKO SkM.

We tested whether the impaired mitochondrial func-
tion in HF mdKO muscle resulted in an energy deficit.
Adenine nucleotide content was determined in gastrocne-
mius from 5-h—fasted HF WT or mdKO mice. AMP, ADP,
and ATP were all significantly decreased in muscle from
mdKO mice, resulting in an overall reduction in the total
adenine nucleotide (TAN) pool (Fig. 6I-L). Despite the
reduced adenine nucleotide pool, SkM of HF mdKO mice
maintained energy charge at levels observed in HF WT
mice (Fig. 6M). Inosine monophosphate (IMP) levels tended

to be higher in mdKO musdle, but differences did not reach
significance (Fig. 6N). SkM AMP deaminase (AMPD) activity
was significantly increased in mdKO (Fig. 60). This was
associated with an increase in AMPD protein content (Fig.
6P). Adenylate kinase activity was not altered (Supplemen-
tary Fig. 2E). While both NAD and NADP levels were
significantly reduced, there were no changes in the NAD/
NADH or NADP/NADPH ratios (Supplementary Table 2).
Numerous nucleotides were significantly reduced in SkM
of HF mdKO mice (nicotinamide, nicotinamide mononu-
cleotide, ADP-ribose, GDP, and GTP, among others) (Sup-
plementary Table 2).

DISCUSSION

AMPK is important in allowing cells to meet energetic
needs in the face of metabolic challenges. Overnutrition
resulting from a calorie-rich diet places a burden on in-
sulin-sensitive cells that results in metabolic dysregulation
and insulin resistance. Despite the metabolic stress, mus-
cle mass and energy status are uncompromised (1). There
is little clarity of the role of AMPK in vivo in this setting.
We hypothesized that AMPK is protective in the insulin-
resistant state because it promotes nutrient oxidation and
maintains cellular energy. We tested this by deleting AMPK
in mice made insulin resistant by overnutrition. This hy-
pothesis was not borne out. The presence of AMPK is not
necessary to preserve energy status in the insulin-resistant
mouse. Instead, we found that a seemingly paradoxical
increase in insulin action compensates for SkM AMPK
deletion. This finding is even more surprising as one con-
siders that pharmacological compounds that activate AMPK
have shown promise for their potential insulin-sensitizing
effects (26). We provide evidence that deletion as well as
activation of AMPK (13) promote glucose tolerance and
insulin action in vivo.

The demonstration that mdKO mice on a regular chow
diet have normal insulin action is in line with previous
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Figure 2—Insulin action and glucose clearance are improved in HF-fed mdKO mice. A and G: Blood glucose was monitored throughout the
clamp at 10-min intervals by sampling from the arterial catheter. Blood glucose was maintained at euglycemia (130-140 mg/dL) in both chow
(A) and HF-fed (G) mice. B and H: Rate of glucose infused in the venous catheter in order to maintain euglycemia in chow (B) or HF-fed (H)
mice. C and /: endoR, in chow (C) or HF-fed (/) mice. D and J: Ry in chow (D) or HF-fed (J) WT and mdKO mice, determined by administration of
[3-*Hlglucose. Rg in gastrocnemius (Gastroc), vastus lateralis (Vastus L.), tibialis anterior (Tibialis A.), EDL, perigonadal adipose tissue (PG
AT), soleus, brown adipose tissue (Brown AT), heart, and brain determined by administration of nonmetabolizable glucose (['*C]2DG) in chow
(E and F) or HF-fed (K and L) WT and mdKO mice. *P < 0.05; **P < 0.01; **P < 0.001.
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Figure 3—SkM insulin signaling is unaffected in chow-fed mdKO mice. A-G: Vastus lateralis homogenates from 5-h—fasted (basal) or insulin-
clamped mice were applied to a 4-12% SDS-PAGE. Western blotting was performed for P-IRS1 (Ser302), IRS1, P-Akt (Thr308 and Ser473),
Akt, P-AS160 (Ser588), AS160, HKIl, P-mTOR (Ser2448), mTOR, and GAPDH. Integrated intensities were normalized to respective total
protein or GAPDH. *P < 0.05, **P < 0.01 vs. basal (same genotype) by Tukey post hoc. N = 8/group. Insulin-induced activation fold for IRS1,
Akt, AS160, and mTOR in insulin-clamped chow WT and mdKO vastus lateralis, relative to the 5-h—fasted basal state, was calculated as

follows: (phospho/total ratio)insyiin-stimulated state/(PhOspho/total ratio)asted state- N = 8/group. A.U., arbitrary units.

reports showing that mice expressing a muscle-specific
dominant-negative AMPK (AMPKa2-DN) (7,17) and SkM-
specific AMPKB132 KO mice (27) display normal glucose
and insulin tolerances and no impairments in ex vivo
insulin-stimulated SkM glucose uptake. While we did
observe decreased muscle glycogen stores in lean mdKO
mice, this did not contribute to overt deficits in glucose
homeostasis. We did not detect changes in mitochondrial
content in lean mdKO mice. This is consistent with previous
studies showing that AMPK-stimulatory effects on mito-
chondrial biogenesis are only manifested under circumstan-
ces that accelerate the need for mitochondrial biogenesis
(e.g., exercise training or chronic B-guanidinopropionic acid
treatment) (28-30).

When mdKO mice were fed an HF diet for 12 weeks,
weight increased at the same rate regardless of genotype,

showing that total energy balance was unaffected. Whole-
body adiposity, liver, and muscle lipid accumulation also
increased to the same degree as WT, indicating that SkM
AMPK does not protect against ectopic lipid accumulation
that occurs with overnutrition. These findings support similar
conclusions reached with HF-fed AMPK«a2-DN mice (15,17).
In contrast to intraperitoneal glucose tolerance studies in
HE-fed AMPKa2-DN mice, we observed a marked improve-
ment in oral glucose tolerance and insulin action during
clamps in mdKO mice fed an HF diet. It is noteworthy that
HF-fed AMPKB1B2 KO mice do not show differences in
insulin action compared with WT using different approaches
to glucose dlamping (4). The difference in results could reflect
differences in the models or methodology (31).

Despite the improvement in insulin action in the HF
mdKO mice, the full effects of insulin as seen in SkM of
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lean mice are not recapitulated. SkM insulin action in HF  shows that rates reach 75% of those seen in lean mice. The
mdKO mice, while markedly improved relative to HF WT  postprandial rise in insulin typically stimulates glucose
mice, was still impaired when compared with chow-fed storage and, less so, glycolysis (32). In the absence of
mice. This is reflected by the reduction in whole-body ~AMPK, however, insulin-stimulated SkM glucose uptake
glucose kinetics in HF mdKO mice. The primary reason was directed to the ATP-producing glycolytic pathway (Fig.
that the whole-body effect is not restored in HF mdKO 7). This was associated with a reduction in glycogen mass,
mice compared with lean mice is that the liver remains consistent with the correlation between SkM AMPK ac-
fully insulin resistant. Specific examination of SkM Rg tivity and glycogen content (2). This redirection of glucose
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to glycolysis allows mdKO SkM to compensate for mito-
chondrial dysfunction and subsequent defects in ATP
generation. This may be directly linked to the critical
importance of AMPK in the control of glycogen mass
(33-40). We propose that in the absence of AMPK, in-
creased insulin-stimulated glycolytic flux is key to main-
taining energy state (Fig. 7).

Pyruvate, the end point product of the glycolytic path-
way, is a key substrate for mitochondrial respiration and
ATP regeneration. We show that both pyruvate-based
mitochondrial respiratory function and mitochondrial

content, as reflected by a decrease in CS activity, were
reduced by ~20%. This suggests that the decreased oxi-
dative metabolism may be linked to decreased mitochon-
drial content. This is consistent with previous reports that
show that AMPK-deficient mice have reduced mitochon-
drial biogenesis (19,27). The increased glycolytic flux in
mdKO SkM, in the absence of efficient pyruvate-based
mitochondrial respiration, was supported by the increase
in arterial lactate in HF mdKO mice. These data support
studies showing increased lactate production in chow-fed
AMPKa2-DN during exercise (41).
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Figure 6 —Increased glycolytic flux in mice compensates for decreased mitochondrial respiration, allowing for maintenance of energy charge
in muscle of HF-fed mdKO. Rate of glycolysis (A) and rate of glucose storage (B) in HF-fed WT and mdKO mice as measured during the insulin
clamp by administration of [3-H]glucose. C: Glucose-6-phosphate (G6P) was measured in frozen gastrocnemius from insulin-clamped
HF-fed WT and mdKO mice. N = 11-15/group. D: Glycogen levels were measured in vastus lateralis of 5-h—fasted HF WT and mdKO mice.
N = 12/group. E: Plasma lactate was measured from plasma collected during the clamp in HF WT and mdKO mice. N = 11-15/group. F:
Triglycerides were measured from gastrocnemius of 5-h—fasted HF WT and mdKO mice. N = 12/group. G: High-resolution respirometry was
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Energy can be derived in SkM from protein autophagy ~mdKO mice, and SkM mass was unchanged. Muscle mass
(42). In line with previous findings (19,43), we found that and myocyte homeostasis are controlled in large part by
genes regulating autophagy were downregulated in HF  mTOR, which is an important node common to AMPK and
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Figure 7—Improved insulin action and anaerobic glycolysis in HF
mdKO SkM. Absence of AMPK in SkM induces chronic energy
deficit due to depleted glycogen stores, reduced autophagy, and
reduced mitochondrial content and function. The SkM compensates
for these deficiencies by increasing glycolytic flux through increased
insulin action, thanks to the activation and upregulation of key
components of the glucose uptake machinery. This allows for in-
creased muscle glucose uptake and ATP generation through an-
aerobic glycolysis, thereby maintaining energy production and
muscle energy state. Restoration of mTOR responsiveness to insulin
may contribute to maintenance of lean mass. Green arrows indicate
increased measurement compared with HF WT mice, while red
arrows indicate reduced measurement compared with HF WT mice.

insulin signaling. Mice with a genetic SkM deficiency in
mTOR signaling show severe reductions in SkM mass and
mitochondrial metabolism, along with increased glycogen
mass and Akt phosphorylation (44,45). Preserving mTOR
signaling is critical to the maintenance of muscle mass and
function (46). The balance between the mTOR and AMPK
signaling pathways allows for maintenance of muscle mass
while preserving energy state. Deficient SkM mTOR sig-
naling results in AMPK activation (47), and conversely,
deficient SkM AMPK signaling has been linked to increased
mTOR signaling in lean mice (48). This interplay appears
to be disrupted by HF feeding, as we found that fasting HF
mdKO mice have reduced mTOR activation, despite re-
duced TSC2 phosphorylation at Ser1387, a state that
would be expected to reduce the inhibitory activity of TSC2
on mTOR. However, the increase in insulin action in HF
mdKO muscle fully corrects this impaired mTOR activa-
tion, without changes in TSC2 or Raptor phosphorylation.
We postulate that the restored mTOR response to a phys-
iological rise in insulin is critical for SkM metabolism, and
this may contribute to the maintenance of SkM mass in the
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HF mdKO mice. However, the increased phosphorylation
of mTOR in the insulin-stimulated state will increase the
energetic burden on SkM by directly promoting protein
synthesis, an energy-demanding process (46). In the con-
text of reduced oxidative capacity, reduced glycogen stores,
and reduced adenine nucleotide pool, downregulation of
protein autophagy associated with net protein synthesis
may further deprive SkM of energy-producing substrates
and contribute to the reliance of the HF mdKO muscle on
glycolysis.

Although SkM energy status as reflected by energy
charge was unchanged in mdKO, nucleotides were signif-
icantly reduced in mdKO SkM (such as adenine nucleo-
tides, NAD, NADP, GDP, and GTP, among others). It is
notable that, in addition to energy charge, the ratios of
NAD/NADH and NADP/NADPH were maintained in HF
mdKO muscle. This preserves the thermodynamics of ATP-
coupled reactions and redox state. Moreover, the ratio of
GDP to GTP was unchanged despite reductions in the
nucleotides. This preserves the capacity for G-protein-
coupled reactions. These findings highlight the ability of
the AMPK-deficient muscle cell to exquisitely fine-tune its
metabolism to maintain energy homeostasis in spite of
limited nucleotide availability and mitochondrial dysfunc-
tion. Energy status was protected by an increase in an-
aerobic glycolysis, which generates ATP, and an increase
in AMPD, which prevents the buildup of the low-energy
adenine nucleotides.

We found that SkM of the resting HF mdKO mice is
similar metabolically to SkM following high-intensity ex-
ercise. In both cases, glycogen stores are depleted, TANs
are reduced, while AMPD flux is increased, and insulin
action is increased (49-53). During exercise, the rise in
IMP concomitant with adenine nucleotide depletion
occurs via increased AMPD flux, a critical reaction for
maintenance of energy charge in situations in which ATP
regeneration is unable to meet demand (54). The de-
creased nucleotide pool and increased AMPD flux are not
typically observed in the SkM of resting obese mice (55).
This is in contrast with our findings in the HF mdKO
muscle. This exercise-like state could be one mechanism
for the increased activation of the insulin-signaling cas-
cade observed in our model (53,56,57). In light of this
metabolic resemblance, it is not surprising that SkM
AMPK-deficient mouse models are exercise intolerant
(2).

Studies have shown that increased blood flow is an
important component of improved SkM glucose uptake
(53). While an increase in the number of CD31% cells,
a vascular endothelial cell marker, did not reach signifi-
cance in HF-fed mdKO mice, the possibility that hemody-
namic factors are important cannot be ruled out. Increased
vascular reactivity, microvascular perfusion, and endothe-
lial insulin permeability may contribute to the improved
insulin action of the mdKO muscle. In this regard, studies
have shown that AMPKa2-DN mice have impaired blood
flow due to reduced NOS activity (41).
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The decreased glycogen stores in basal HF mdKO could
also contribute to the increase in SkM insulin action (32).
Muscle glycogen was reduced to the same concentration in
chow mdKO and HF mdKO; however, in HF mice, the
magnitude of the reduction relative to the WT mice appears
more severe. Studies have shown an inverse relationship
between SkM glycogen content and insulin-stimulated SkM
glucose uptake (58). Further, insulin-induced cell-surface
GLUT4 content also inversely correlates with SkM glycogen
content (59), and insulin-stimulated SkM Akt phosphory-
lation is enhanced with low glycogen content (60,61). The
present studies support a link between decreased glycogen
stores and increased insulin action in overnutrition.

Our findings are complementary to the studies carried
out by Fentz et al. (62), in which muscle glucose uptake was
assessed in mdKO mice during exercise. As was expected,
mdKO mice displayed severe exercise intolerance; however,
glucose uptake during matched exercise was found to be
significantly increased in both soleus and EDL muscles of
mdKO mice, with concomitant increases in GLUT4 and HKII
protein content. Taken together with our findings, it appears
that both exercise and HF feeding constitute a significant
stressor to the AMPK-deficient musde, triggering compen-
satory mechanisms that include increased glycolytic flux.

IRS1 receives negative feedback from both the insulin-
signaling pathway and the mTOR pathway, and this is
thought to be an important mechanism for termination
of insulin action (63-65). We speculate that the lack of IRS1
phosphorylation in either chow or HE WT muscle after the
insulin clamp is due to the fact that the insulin clamp
maintains high cdirculating insulin for 155 min, allowing
enough time for these negative-feedback mechanisms to exert
their effects on IRS1 and the insulin receptor (66,67). The
finding that IRS1 phosphorylation remains high in HF mdKO
muscle after completion of the insulin clamp might point to
a disruption in the negative-feedback loop in this model and
could contribute to the improved insulin action in these mice.

There is evidence that increased AMPK activation may
counter impairments in insulin action (26). The current
study shows a surprising reciprocity by which enhanced
insulin action compensates for the absence of AMPK in
SkM of obese but not lean mice. HF mdKO SkM exhibits
reduced mitochondrial content and function, reduced gly-
cogen stores, and reduced ATP regeneration. The increased
insulin-stimulated SkM glucose uptake and glycolytic flux
compensate for these impairments and contribute to the
maintenance of SkM energy balance (Fig. 7). Moreover, an
increase in insulin-stimulated mTOR activation may pre-
serve lean mass homeostasis in HF mdKO SkM. These
compensatory effects have whole-body consequences that
manifest in the HF-fed mice as increased insulin action and
glucose tolerance. In lean mice, the insulin-sensitizing
effect of SkM AMPK deletion is not observed, likely because
the metabolic burden on lean mice is lower, and Ry and rates
of glycolysis are high enough to sustain energy status. It is
only when these fluxes are impaired, such as during insulin
resistance, that mechanisms that maintain energy state in
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the absence of AMPK become important. In conclusion,
chronic absence of AMPKala2 subunits in SkM does not
contribute to insulin resistance due to HF diet but ameli-
orates HF diet-induced glucose intolerance by dramatically
enhancing SkM insulin action. SkM function during over-
nutrition is of such importance that insulin action is not
compromised by AMPK deletion, but rather is increased to
protect fundamental energetic processes.
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