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ABSTRACT
Background  Pandemic COVID-19 by severe acute 
respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) 
infection is facilitated by the ACE2 receptor and protease 
TMPRSS2. Modestly sized case series have described 
clinical factors associated with COVID-19, while ACE2 
and TMPRSS2 expression analyses have been described 
in some cell types. Patients with cancer may have worse 
outcomes to COVID-19.
Methods  We performed an integrated study of ACE2 
and TMPRSS2 gene expression across and within organ 
systems, by normal versus tumor, across several existing 
databases (The Cancer Genome Atlas, Census of Immune 
Single Cell Expression Atlas, The Human Cell Landscape, 
and more). We correlated gene expression with clinical 
factors (including but not limited to age, gender, race, body 
mass index, and smoking history), HLA genotype, immune 
gene expression patterns, cell subsets, and single-cell 
sequencing as well as commensal microbiome.
Results  Matched normal tissues generally display 
higher ACE2 and TMPRSS2 expression compared with 
cancer, with normal and tumor from digestive organs 
expressing the highest levels. No clinical factors were 
consistently identified to be significantly associated with 
gene expression levels though outlier organ systems were 
observed for some factors. Similarly, no HLA genotypes 
were consistently associated with gene expression 
levels. Strong correlations were observed between ACE2 
expression levels and multiple immune gene signatures 
including interferon-stimulated genes and the T cell-
inflamed phenotype as well as inverse associations with 
angiogenesis and transforming growth factor-β signatures. 
ACE2 positively correlated with macrophage subsets 
across tumor types. TMPRSS2 was less associated with 
immune gene expression but was strongly associated 
with epithelial cell abundance. Single-cell sequencing 
analysis across nine independent studies demonstrated 
little to no ACE2 or TMPRSS2 expression in lymphocytes 
or macrophages. ACE2 and TMPRSS2 gene expression 
associated with commensal microbiota in matched normal 
tissues particularly from colorectal cancers, with distinct 
bacterial populations showing strong associations.
Conclusions  We performed a large-scale integration 
of ACE2 and TMPRSS2 gene expression across clinical, 
genetic, and microbiome domains. We identify novel 

associations with the microbiota and confirm host 
immunity associations with gene expression. We suggest 
caution in interpretation regarding genetic associations 
with ACE2 expression suggested from smaller case series.

BACKGROUND
Severe acute respiratory syndrome (SARS) 
coronavirus 2 (SARS-CoV-2), which causes 
the disease COVID-19, was initially described 
near the end of 20191 2 and has caused a 
global pandemic. SARS-CoV-2 is a positive-
sense single-strand RNA virus related to 
the SARS and the Middle East respiratory 
syndrome (MERS) coronaviruses that have 
caused previous global health emergencies.3 
COVID-19 is characterized predominately 
by fever, cough, and pneumonia, with some 
patients presenting with diarrhea and other 
symptoms.4 5 Mortality rates are described as 
approximately 10 times higher than seasonal 
influenza in some clinical subgroups.6

Angiotensin-converting enzyme 2 (ACE2) 
has been identified as the receptor for the 
SARS-CoV family,7 and the SARS-CoV-2 spike 
protein binds ACE2 on host cells with greater 
affinity than previous SARS-CoV.8 9 Type II 
transmembrane serine protease TMPRSS2 is 
the primary human protease that mediates 
spike protein activation on infected cells, 
facilitating viral entry via receptor-mediated 
internalization.9 10 Multiple physiologic 
roles are known for ACE2 impacting systems 
such as cardiovascular, nephrology, and 
immune11 but perhaps most notably related 
to SARS-CoV-2, pulmonary, where ACE2 has 
been described to limit severe acute lung 
injury.12 Analyses of ACE2 protein expres-
sion by organ system have suggested high 
levels in epithelia of the lung and small intes-
tine, consistent with presenting symptoms 
of patients with COVID-19.13 However, these 
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studies have not integrated analysis of TMPRSS2 and inte-
grated analyses may better inform which organ systems 
express both genes and may be at greatest infection risk.

Gene expression studies by bulk RNA sequencing and 
single-cell approaches have attempted to delineate expres-
sion patterns of normal airway tract and other tissues.14–16 
These studies have suggested high ACE2 expression 
levels on the epithelia of oral and airway mucosa as well 
as small intestine. ACE2 has additionally been suggested 
as an interferon-response gene suggesting a compli-
cated interaction between viral infection and host anti-
viral response.15 Further, a report has been advanced 
suggesting that lymphocytes may directly be infected by 
SARS-CoV-2,17 a finding reported with MERS as well,18 
however of unclear clinical significance.

Patients with cancer may be at increased risk for 
SARS-CoV-2 infection and deleterious outcomes to 
COVID-19 disease though reports have varied by geog-
raphy and cancer histology. In a single hospital study from 
Wuhan, China, patients with cancer made up 1% of the 
overall prevalence of COVID-19,19 substantially higher 
than the overall incidence of cancer in the Chinese popu-
lation at 0.29%.20 Outcomes to COVID-19 appeared to be 
worse in patients with cancer with increased intensive care 
unit admission, mechanical ventilation, and mortality, 
especially those who had recently received chemotherapy 
or surgery.19 In western populations, risk has appeared to 
be higher for the cancer population as well. In the UK, a 
study of 800 patients demonstrated a 28% mortality rate 
in hospitalized patients with cancer with risk of death 
associated with age, male sex, and medical comorbidi-
ties but not clear interaction between recent treatment 
with specific anticancer agents.21 In North America, 
predominately the USA, 30-day all-cause mortality has 
been described as high for patients with cancer relative 
to the general population at 13% with regional variation 
demonstrating higher mortality on the eastern seaboard 
relative to the middle of the country or Canada.22 In this 
cohort, similar risk factors including age, male, smoking, 
increasing medical comorbidities, and performance 
status were observed.

Increased risk for some patients may also relate to 
treatment administered though data vary somewhat. 
In hematologic malignancies, increased mortality after 
infection has been widely observed23 with some connec-
tions to recent chemotherapy.24 In solid tumors, the risk 
of recent chemotherapy may also be linked to other high 
risk factors such as age with the impact of treatment 
being variable.22 Particularly, there has been concern that 
patients being treated with cancer immunotherapy drugs 
might be at increased risk given the possible overlapping 
immune-related toxicities for checkpoint blocking anti-
bodies with the pneumonitis and diarrheal syndromes 
seen in COVID-19. This remains an area of open investi-
gation with analyses even from the same institution giving 
conflicting results about the risk of immunotherapy, 
notably in advanced lung cancer.25 26 Multiple societies, 
including the Society for Immunotherapy of Cancer, have 

issued guidance for cancer care during the pandemic 
as well as the use of immunomodulatory agents such as 
anti-IL6.27

Several clinical associations have arisen from a smaller 
series of patients infected with COVID-19. Some include 
risk factors for poor outcomes such as elevated body mass 
index (BMI)28 and diabetes29 as well as possible associa-
tions with race.30 More broadly, germline genetics and 
host immune status may have a substantial impact on anti-
viral host defense,31 similar to what is seen with cancer 
immunotherapy.32

To better inform considerations surrounding 
SARS-CoV-2 and COVID-19 in patients with cancer and 
more broadly in the general population, we performed 
an integrated analysis of ACE2 and TMPRSS2 gene expres-
sion across clinical, genetic, and microbiome domains. 
We identify novel associations with the commensal micro-
biota and confirm host immunity associations with gene 
expression. We suggest caution against overinterpreta-
tion of clinical or genetic associations from smaller case 
series noting that these are not strongly associated with 
ACE2 or TMPRSS2 gene expression. We hope these data 
may better inform clinical considerations surrounding 
risk stratification and prevention approaches.

METHODS
Datasets
Sample metadata tables were downloaded from The 
Cancer Genome Atlas (TCGA) (Genomic Data Commons 
(GDC) portal: https://​portal.​gdc.​cancer.​gov). Out of 
11,093 aliquots total, 10,732 were selected to keep one 
unique aliquot per patient per sample type, as illustrated 
in online supplementary figure 1. The final cohort consists 
of 9,657 primary tumors, 367 metastatic samples (all from 
skin cutaneous melanoma), and 708 normal tissues from 
10,038 patients across 34 tumor types (33 primary and 
one metastatic) (online supplementary tables 1 and 2). 
Out of 708 normal tissues, 14 tumor types have 15 or 
more normal samples available and hence were included 
for statistical comparisons when applicable. The stan-
dardized, upper-quartile normalized, batch-corrected, 
and platform-corrected RNAseq expression of 20,531 
genes in RNA-Seq by Expectation Maximization (RSEM)-
quantified read count estimates were downloaded from 
Pan-Cancer Atlas consortium studies (https://​gdc.​cancer.​
gov/​about-​data/​publications/​pancanatlas) and log2-
transformed for further analysis. Fragments Per Kilobase 
of transcript per Million mapped reads (FPKM) quantifi-
cation of gene expression and whole-exome sequencing 
(WES) Binary Alignment Map (BAM) files were down-
loaded from GDC.33 Demographic and clinical informa-
tion were retrieved from the TCGA Pan-Cancer Clinical 
Data Resource.34 BMI and smoking history were retrieved 
from legacy clinical files. To the authors’ knowledge, only 
two tumor types had diabetes status information (pancre-
atic adenocarcinoma (PAAD) and uterine corpus endo-
metrial carcinoma (UCEC)), which was retrieved from 
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clinical XML files on GDC. Eighty-two percent of patients 
with PAAD and 7% of patients with UCEC have diabetes 
status recorded. Hence, only PAAD was included in anal-
ysis. Commensal microbiota abundance and viral pres-
ence of TCGA samples were downloaded from published 
studies.35 36 Single-cell RNAseq (scRNAseq) gene expres-
sion in malignant cells, immune cells, and normal cells 
were retrieved from nine studies consisting of patients 
diagnosed with cancer and healthy donors. Links to data 
files, single-cell cohorts, and bioinformatics software are 
provided in online supplementary table 3. Data generated 
in this study are accessible on GitHub repository https://​
github.​com/​riyuebao/​ACE2_​TMPRSS2_​multicorrelates.

ACE2 and TMPRSS2 gene expression correlation and 
percentile calculation
The gene expression of ACE2 (Entrez Gene ID 59272) and 
TMPRSS2 (Entrez Gene ID 7113) was retrieved from the 
RSEM-quantified RNAseq data and used for all analyses 
described in this study. Spearman’s correlation was calcu-
lated between the expression of the two genes in tumor 
(n=10,024) and normal (n=708) samples across all tumor 
types and within individual tumor types. The expres-
sion percentile was calculated separately within each of 
the four analysis sets (ACE2 in normal, ACE2 in tumor, 
TMPRSS2 in normal, TMPRSS2 in tumor) following two 
steps. First, the median expression of ACE2 or TMPRSS2 
was calculated within individual tumor types. Next, tumor 
types were ranked by the median expression of each gene 
from higher to lower, and the position of each tumor type 
in the ranked list was scaled to 0–100, hereafter regarded 
as “expression percentile” per tumor type, with smaller 
values indicating top-ranked tumor types. The same 
process was repeated for each gene in tumor samples (34 
tumor types) and normal tissues (14 tumor types).

Analysis of clinical correlates
The expression of ACE2 and TMPRSS2 was compared 
between designated clinical groups, split by age (younger 
(<65 years)/older (≥65 years) in tumor or normal), 
gender (female/male in tumor or normal), race (African 
American (AA)/Asian/White in tumor or normal), meno-
pause (not post/post in tumor or normal), BMI (level 1 
(<25)/level 2 (25–30)/level 3 (30–35)/level 4 (>35)37 
in tumor or normal), smoking history (never/light/
heavy38 in tumor or normal), tumor stage (I/II/III/IV in 
tumor), tumor grade (G1G2/G3G4 in tumor). For tumor 
grade, G1 and G2 were collapsed to indicate low-grade 
to mid-grade (G1G2), and G3 and G4 were collapsed to 
indicate high-grade (G3G4). Within each clinical factor, 
sub-groups of <15 samples were excluded. For each clin-
ical factor, comparisons were performed across all tumors 
and within individual tumor types. For all tumor types, 
first, data were fitted into a two-way analysis of variance 
(ANOVA) model with tumor type and clinical group as 
variables plus the interaction between the two. Second, 
if more than two clinical groups exist, Tukey’s honest 
significance test (HSD) was used with the fitted ANOVA 

model for pairwise comparisons while controlling for 
type I errors. Within each tumor type, Tukey’s HSD was 
used with one-way ANOVA models when more than two 
groups are present; otherwise Welch Two Sample t-test 
was used. The list of clinical groups and statistical results 
are provided in online supplementary tables 4–7.

Analysis of HLA correlates
HLA-A, HLA-B, and HLA-C genotypes were identified for 
9,559 patients from TCGA across 34 tumor types using 
OptiType (version 1.3.2) with WES BAM files. Consid-
ering each patient carries two copies of HLA-A, B, or 
C alleles, both copies were counted toward the total 
number (19,118) of A, B, or C alleles in the entire cohort. 
The calculation of HLA prevalence was performed at 
the allele level. The comparison of ACE2 and TMPRSS2 
gene expression between HLA genotypes was performed 
at patient level, given that gene expression was estimated 
per sample. First, for each allele, labels 0, 1, or 2 were 
assigned per patient (0=this patient does not carry this 
allele; 1=this patient carries one copy of this allele; 2=this 
patient carries two copies of this allele). Then, gene 
expression differences were tested using two-way ANOVA 
models with HLA genotype (0, 1, 2) and tumor type as 
variables plus the interaction between the two. For each 
test, at least 15 samples carrying the allele are required. 
The test was repeated for every HLA-A, B, and C allele with 
gene expression in tumor or normal samples, followed by 
Benjamini and Hochberg-False Discovery Rate (BH-FDR) 
correction for multiple comparisons. Same analysis was 
repeated with age, gender, and race as covariates in the 
model.

Analysis of immune gene expression signatures
Five immune responsive and suppressive signatures 
(interferon-stimulated genes (ISG), T cell-inflamed 
(Tinfl), myeloid, angiogenesis (angio), and transforming 
growth factor-β (TGF-β)) (online supplementary table 8) 
were correlated with ACE2 and TMPRSS2 gene expres-
sion in tumor and normal tissues. The expression level 
of a signature was computed as the average expression 
of all genes in this signature after centering and scaling 
using R function scale with parameters scale=TRUE and 
center=TRUE. Spearman’s correlation was calculated 
between each signature and ACE2 or TMPRSS2. The full 
correlation metrics are provided in online supplementary 
table 9.

Analysis of immune and stromal cell subset correlates
FPKM estimates of RNAseq gene expression was used for 
quantifying enrichment of 64 tumor and stroma cell types 
using xCell (version 1.1.0). xCell converts gene expres-
sion into rank-based metrics within each sample; hence, 
normalization and batch correction were not required. 
To make data comparable across samples, xCell was run 
once using all samples (n=10,732). Spearman’s correla-
tion was computed between the enrichment score of each 
cell population and ACE2 or TMPRSS2 expression. The 
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full correlation metrics are provided in online supple-
mentary table 10.

Analysis of viral-associated tumors
The human papillomavirus (HPV), Epstein-Barr virus 
(EBV), and hepatitis B virus (HBV) were selected for 
this study as those are the three most prevalent cancer-
associated viruses in the cohort. Other viruses detected 
were excluded. Samples were set to HPV positive/nega-
tive by at least 10 normalized reads per million (NRPM) 
mapped to the HPV genomes, EBV positive/negative 
by at least 5 NRPM mapped to the EBV genomes, and 
HBV positive/negative by at least 5 NRPM mapped to the 
HBV genomes given previously recommended thresh-
olds.36 Stomach adenocarcinoma (STAD), esophageal 
carcinoma (ESCA), acute myeloid leukemia (LAML), 
and ovarian serous cystadenocarcinoma (OV) were reset 
to “negative” for HPV, EBV, and HBV after a manual 
inspection, which revealed no strong clinical support for 
viral presence in those tumor types. Within each tumor 
type, ACE2 and TMPRSS2 gene expression was compared 
between viral positive and negative tumors using Welch 
Two Sample t-test. Across all tumor types, two-way ANOVA 
was used to compare gene expression between viral posi-
tive and negative tumors with tumor type and viral group 
as variables plus the interaction between the two.

Analysis of microbial correlates
The abundance of 1,093 genus-level microbial taxa was 
quantified from tissue RNAseq data after rigorous quality 
control, batch correction, and contamination filtering, 
and normalized to 1 million reads to make data compa-
rable across samples.35 Seven hundred and six normal 
tissues and 9,801 tumor samples were included in the 
analysis where data were available. Taxa were filtered 
to keep bacteria in analysis; viruses and archaea were 
excluded. Nine hundred and fifty taxa present in at least 
20% of samples were kept for statistical testing. Within 
each tumor type, Spearman’s correlation was computed 
between each bacteria taxon and ACE2 or TMPRSS2 gene 
expression in tumor and normal tissues. For each test, at 
least 15 samples with taxon abundance ≥1 were required. 
Seventy-five taxa passed FDR-adjusted p<0.05 and Spear-
man’s ρ>0.5 or <−0.5 in at least one pairwise correlation 
(online supplementary table 11).

LASSO regression modeling and variable importance
Least Absolute Shrinkage and Selection Operator 
(LASSO) regression models of ACE2 or TMPRSS2 gene 
expression were built in tumor (n=10,024) and normal 
(n=708) samples separately using 90 features consisting 
of tissue type as well as clinical (age, gender, race), 
immune signatures (ISG, T cell-inflamed, myeloid, angio-
genesis, TGF-β), immune cell subsets (macrophage M1, 
macrophage M2, CD8 T cell, CD4 T cell), stroma cell 
subset (epithelial cell), and 75 microbiota features from 
microbiota correlation analysis (online supplementary 
figure 2). Macrophage M1/M2 and T cells were included 

in the model based on emerging evidence suggesting 
an important role of macrophage and proinflammatory 
phenotype39 in COVID-19 disease. Thirty-four tumor 
types were collapsed into 15 tissue types based on cate-
gorizations from The Human Protein Atlas to reduce 
complexity. Categorical variables were converted to 
dummy variables using R function dummyVars with param-
eter fullRank set to TRUE. Data were preprocessed 
to remove features that have near-zero variance, high 
correlation (Spearman’s ρ>0.75), or high collinearity. 
Each feature was scaled and centered. Given the purpose 
of this analysis was to evaluate the relative importance of 
features rather than training and validating a predictive 
model, we did not split samples into training and test sets. 
Instead, we used all samples with 10-fold cross-validation. 
Variable importance was reported as raw values and as 
scaled values to 0–100 (online supplementary table 12). R 
package caret (version 6.0–84) was used for analysis.

Statistical analysis
In all analyses, a minimal sample size of 15 per group was 
required for statistical testing. For group-wise compar-
isons, two-way ANOVA was used with tumor type and 
group of interest as variables plus the interaction. When 
more than two groups are present, Tukey’s HSD test was 
used for pairwise comparisons. Within each tumor type, 
two-sided Welch Two Sample t-test was used to compare 
log2-transformed gene expression between groups; for 
paired samples, two-sided paired t-test was used. Spear-
man’s correlation was used to determine the relationship 
between two continuous variables. For multiple compar-
isons, p values were corrected using BH-FDR method. 
LASSO regression models were used to evaluate variable 
importance with 10-fold cross-validation. Those analyses 
were performed using R (version 3.6.1) and Biocon-
ductor (release 3.10). FDR-adjusted p values less than 
0.05 were considered statistically significant.

RESULTS
ACE2 and TMPRSS2 are highly expressed in digestive organs 
and tumors, however, lower in tumor compared to matched 
normal
Given the association between COVID-19 disease and 
various organ-specific symptoms, we investigated the 
distribution of ACE2 and TMPRSS2 expression in tumor 
and normal tissues across 34 tumor types consisting of 15 
tissue types (online supplementary tables 1–3). None of 
the LAML samples express TMPRSS2; hence, 33 tumor 
types were used for the analysis of TMPRSS2.

When ranked by expression percentile in each tumor 
type, cholangiocarcinoma (CHOL), colon adenocarci-
noma (COAD), PAAD, rectum adenocarcinoma (READ), 
and STAD are among the top 25% percentile for both 
genes, all of which are digestive organs (figure  1A). 
We acknowledge that TMPRSS2 is highly expressed in 
prostate adenocarcinoma (PRAD) likely due to known 
TMPRSS2:ERG gene fusion overexpression.40 ACE2 and 
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Figure 1  Distribution of ACE2 and TMPRSS2 gene expression in tumor and normal tissues across 34 tumor types. (A) Tumor 
types ranked by expression percentile in each gene. Five tumor types that show >25% expression percentile within each 
analysis set in both genes are bolded. Four analysis sets are shown: (left panel) ACE2 in normal (n=14 tumor types), TMPRSS2 
in normal (n=14 tumor types); (right panel) ACE2 in tumor (n=34 tumor types), TMPRSS2 in tumor (n=33 tumor types; LAML not 
shown due to lack of TMPRSS2 expression in this tumor type). (B) Correlation between ACE2 and TMPRSS2 gene expression 
in normal (n=708 samples) and tumor (n=10,024 samples). (C,D) ACE2 and TMPRSS2 gene expression are higher in normal 
relative to tumor samples in (C) all tumor types pooled and in (D) individual tumor types. Line connects tumor and matched 
normal samples from the same patient (n=692 patients). Spearman’s correlation was used in (B). Two-sided paired t-test was 
used in (C) and (D). P values shown are after FDR correction for multiple comparisons. ****p<0.0001, ***p<0.001, **p<0.01, 
*p<0.05. For comparisons that do not reach significance level of 0.05, exact p values are shown. A full description of each 
cancer ID is provided in online supplementary table 1. LAML, acute myeloid leukemia.
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TMPRSS2 expression showed weak positive correlation in 
normal (Spearman’s ρ=0.28, FDR-adjusted p<0.0001) and 
in tumor (ρ=0.30, FDR-adjusted p<0.0001) (figure  1B). 
Correlation within each tumor type showed a consistent 
pattern and can be further explored in external data files 
available on GitHub (https://​github.​com/​riyuebao/​
ACE2_​TMPRSS2_​multicorrelates).

In 14 tumor types where 15 or more matched normal 
tissues are available (online supplementary table 1), we 
compared gene expression between tumor and matched 
normal from the same patients. The expression of ACE2 
and TMPRSS2 was significantly higher in normal tissues 
relative to tumors (figure 1C). Within individual tumor 
types, this pattern was significant for ACE2 in breast inva-
sive carcinoma (BRCA), COAD, chromophobe kidney 
cancer (KICH), liver hepatocellular carcinoma (LIHC), 
PRAD, thyroid cancer (THCA), and for TMPRSS2 in eight 
tumor types (FDR-adjusted p<0.05 and higher in normal). 
Three tumor types showed elevated levels for both genes 
in normal tissues compared with tumors (BRCA, COAD, 
and LIHC) (figure 1D).

Clinical factors and HLA genotypes do not strongly associate 
with ACE2 and TMPRSS2 gene expression in tumor or normal 
tissues
Several clinical observations on COVID-19 indicated 
clinical factors such as BMI might be associated with 
severity.5 28 We sought to investigate the association 
between clinical variables (age, gender, race, tumor stage, 
tumor grade, menopause, BMI, smoking history) and 
ACE2 or TMPRSS2 gene expression in tumor or normal 
tissues from 10,038 patients. For each clinical factor, data 
were fitted into a two-way ANOVA model with tumor 
type and clinical factor as variables plus the interaction 
between the two. Overall, we did not observe significant 
differences in expression for either gene when comparing 
designated clinical groups within tumor or normal tissues 
(figure  2A–F) (online supplementary tables 4 and 5). 
We observed sporadic clinical groups within individual 
tumor types that do show significance (eg, age in ESCA 
for TMPRSS2) (figure 2G) though are of unclear clinical 
relevance at this time (online supplementary tables 6 and 
7). The results suggested those clinical variables are not 
strongly associated with ACE2 or TMPRSS2 expression. 
In addition, we investigated the association between the 
presence of diabetes and gene expression in PAAD, where 
data were available. Similarly, no significant differences in 
gene expression were detected in tumor or normal tissues 
from patients with or without diabetes.

Two HLA genotypes (B*46:01, B*54:01) have been 
reported to be associated with severe clinical outcomes 
by other groups.41 We investigated the prevalence of the 
two alleles and identified low prevalence across all tumor 
types (0.6% and 0.2%, respectively, out of 19,118 HLA-B 
alleles from 9,559 patients). When looking into indi-
vidual tumor types, both alleles were found to be signifi-
cantly enriched in LIHC (FDR-adjusted p<0.0001), which 
was likely due to the enrichment of Asian populations 

in this cohort (43%). Comparison of ACE2 or TMPRSS2 
gene expression from tumor or normal samples between 
HLA genotypes showed no significant differences after 
adjusting for tumor-type specific gene expression, and 
can be further explored in external data files available 
on GitHub.

ACE2 correlates with distinct immune gene expression 
signatures and cell subsets while TMPRSS2 correlates with 
epithelial cell populations in tumor and normal tissues
To understand potential associations of ACE2 and 
TMPRSS2 in tissues relevant to patients being treated 
with cancer immunotherapy, we investigated the correla-
tion between ACE2 or TMPRSS2 and immune gene 
expression signatures known to be relevant in immuno-
oncology (online supplementary tables 8 and 9). ACE2 
was positively correlated with ISG signature in tumor 
samples from 24/34 tumor types (71%, 14 reached FDR-
adjusted p<0.05) and normal tissues from 10/14 tumor 
types (71%, 4 reached FDR-adjusted p<0.05) and nega-
tively correlated with angiogenesis and TGF-β signatures 
(figure 3A). TMPRSS2 showed a mixed pattern of correla-
tions with those immune responsive or suppressive signa-
tures (figure 3B).

We did not find a consistent pattern of ACE2 with 
cell subsets across all tumor types with the exception 
of a high positive correlation with macrophage M2 in 
normal tissues from kidney cancers (kidney renal clear 
cell carcinoma (KIRC), KICH, kidney renal papillary cell 
carcinoma (KIRP)) (Spearman’s ρ=0.84, 0.82, 0.79, FDR-
adjusted p<0.0001) and STAD (ρ=0.67, FDR-adjusted 
p<0.001) (figure  3C) (online supplementary table 10). 
TMPRSS2 was positively correlated with epithelial cell 
abundance in tumor samples from 29/33 tumor types 
(88%, 17 reached FDR-adjusted p<0.05) and normal 
tissues from 14/14 tumor types (100%, 9 reached FDR-
adjusted p<0.05) (figure 3D).

With the observation of correlation with specific 
immune signatures, we sought to investigate whether 
ACE2 or TMPRSS2 were expressed directly by immune 
cells or other specific cell types in nine independent 
single-cell RNAseq studies. This includes tumor and 
immune cells from patients with cancer diagnosed with 
glioblastoma or melanoma (Single Cell Portal, Broad 
Institute), or head and neck cancer.42 In the cohorts of 
patients with cancer, less than 1% of the malignant cells 
express ACE2 and/or TMPRSS2, while few to none of the 
immune cells express either gene. An exploration of three 
studies focusing on immune cells from healthy donors 
(13,316 peripheral blood mononuclear cells (Immune 
Cell Atlas), 39,563 ileum lamina propria immunocytes 
(Immune Cell Atlas), 594,857 immune cells (Census of 
Immune Cells, EBI)) further confirmed the lack of ACE2 
and TMPRSS2 expression in immune cell populations. 
Realizing that other studies had reported the genes as 
highly expressed in lung, heart, brain, and colon, we 
investigated published large-scale profiling of 702,968 
single cells from patients with non-cancer or healthy 

https://github.com/riyuebao/ACE2_TMPRSS2_multicorrelates
https://github.com/riyuebao/ACE2_TMPRSS2_multicorrelates
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
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Figure 2  Clinical correlates of ACE2 and TMPRSS2 expression do not show consistent patterns across individual tumor 
types. (A)–(F) Gene expression by age (<65 years, ≥65 years), gender (female, male), race (African American, Asian, White), 
menopause (non-post, post), BMI (levels 1–4), smoking history (never, light, heavy), and by sample type (tumor, normal) when 
applicable. The criteria for each group definition are described in Methods section. The number of samples in each group is 
provided in online supplementary tables 4 and 5. In (E), only p values between levels 1 and 4 are shown; the rest is provided in 
online supplementary table 5. (G) log2 fold change of ACE2 and TMPRSS2 expression between designated clinical groups in 
each tumor type. Comparisons are shown on the row in the format of “group 1–group 2”, with red and blue circles representing 
upregulation and downregulation of gene expression in group 1 relative to group 2, respectively. Size of a circle is scaled by 
the absolute value of log2(fold change). White dot in the center of a circle represents significant comparisons at FDR-adjusted 
p<0.05 (online supplementary tables 6 and 7). At least 15 samples per group were required for statistical testing; otherwise 
excluded, hence no circles shown. Two-way ANOVA was used in (A)–(F), with tumor type and clinical group as the variables 
plus interaction between the two. For clinical factors that have more than two groups (C,E,F), Tukey’s HSD was used with 
the fitted ANOVA model for pairwise comparisons while controlling for Type I errors. Two-way ANOVA p values after BH-FDR 
correction are shown in (A), (B), and (D), and Tukey’s HSD p values are shown in (C), (E), and (F). *p<0.05. For comparisons that 
do not reach significance level of 0.05, exact p values are shown. In (G), Tukey's HSD was used with one-way ANOVA models 
when more than two groups are present (race, BMI, smoking); otherwise Welch Two Sample t-test was used (age, gender, 
menopause). ANOVA, analysis of variance; BH, Benjamini and Hochberg; BMI, body mass index; HSD, honest significance test.

https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
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Figure 3  ACE2 and TMPRSS2 expressions are correlated with distinct immune signatures or cell populations. (A,B) Correlation 
of five immune gene expression signatures, ISG, Tinfl, myeloid, angio, and TGF-β with (A) ACE2 and (B) TMPRSS2 gene 
expression. (C,D) Correlation of 64 immune, stroma, and other cell subsets with (C) ACE2 and (D) TMPRSS2 gene expression. 
n=14 tumor types shown for both genes in normal tissues. n=34 tumor types shown for ACE2 in tumor, and n=33 tumor types 
shown for TMPRSS2 in tumor. The full correlation statistics are provided as online supplementary tables 8 and 9. Spearman’s 
correlation was used in (A) to (D). ISG, interferon-stimulated genes; TGF-β, transforming growth factor-β; Tinfl, T cell-inflamed; 
angio, angiogenesis.

https://dx.doi.org/10.1136/jitc-2020-001020
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donors (Human Cell Landscape).43 We found TMPRSS2 
was expressed in stomach, colon, kidney, prostate, intes-
tine, jejunum, pancreatic, esophagus, and bladder tissues, 
while ACE2 was only expressed in jejunum and fetal intes-
tine. Last, we examined a public scRNAseq cohort from 
patients with COVID-19 infection (https://​doi.​org/​10.​
5281/​zenodo.​3747336) and confirmed that ACE2 was not 
expressed in immune cells, and TMPRSS2 was present in 
6 out of 140,956 cells total by one read count. Therefore, 
we concluded that ACE2 or TMPRSS2 is not expressed in 
immune cell populations, at least in the cohorts investi-
gated. The expression of both genes in bulk RNAseq data 
was likely to be derived from non-immune cells, such as 
epithelial cells in the tissues.

ACE2 and TMPRSS2 gene expression associates with 
microbiota in normal tissues particularly from colon and 
stomach adenocarcinoma
Given associations between strong antitumor immune 
responses due to the presence of tumor-related virus and 
particular commensal microbiota, we sought to inves-
tigate associations between ACE2 and TMPRSS2 gene 
expression with the presence of virus or tissue micro-
biota. Across known viral positive and negative tumor 
types, we found an inconsistent pattern relative to viral 
associated versus non-viral associated tumors (HPV, EBV, 
HBV). We then correlated 1,093 commensal microbiota 
identified in tumor and normal tissue RNAseq data, as 
published in Ref. 35 with gene expression. We identi-
fied 75 taxa that showed significant and strong positive 
or negative correlation (Spearman’s ρ>0.5 or <−0.5) with 
either gene in at least one pairwise correlation (FDR-
adjusted p<0.05) (figure 4A and B) (online supplemen-
tary table 11). COAD and STAD were the two tumor types 
demonstrating the strongest and most prevalent positive 
correlation of ACE2 and TMPRSS2 gene expression with 
abundance of specific bacteria taxa, respectively. Kidney 
cancers, including KIRP, KICH, and KIRC, also showed 
positive correlations between ACE2 and microbiota if not 
as prevalent as colon or stomach cancers. If ranked by 
Spearman’s correlation coefficient, Chlamydia was the 
top microbiota positively correlated with ACE2 in COAD 
(ρ=0.81, FDR-adjusted p<0.0001) (online supplemen-
tary table 11). For both genes, those patterns were less 
prominent in tumor samples, which could be due to high 
heterogeneity in tumors. Overall, we observed approxi-
mately a 2.6:1 ratio of commensal microbiota for gram-
negative to positive groups in the 75 taxa (50 negatives, 19 
positives, others undetermined) (online supplementary 
table 11).

Integration of multidimensional correlates revealed specific 
contributors shaping ACE2 and TMPRSS2 expression in tumor 
and normal tissues
To integrate all correlates and evaluate their relative 
importance in determining the gene expression of ACE2 
and TMPRSS2, we built LASSO regression models in tumor 
and normal tissues separately using features from the 

clinical, immune, and microbial domains (online supple-
mentary figure 2). Clinical features included were age, 
gender, and race, while menopause, BMI, and smoking 
history were excluded because >50% of the samples were 
missing information. HLA genotype was not included 
because of many categories and/or levels, which may 
lead to overfitting. Immune gene expression signatures 
included ISG, T cell-inflamed, myeloid, angiogenesis, and 
TGF-β. Immune cell type features included macrophage 
M1/M2, CD8, and CD4 T cells, and non-immune cell 
type features included epithelial cells. Microbe features 
included the 75 bacteria taxa from the analysis above. In 
addition, we collapsed 34 tumor types into 15 tissue types 
and included these in the model to account for tissue-
specific gene expression variations.

We calculated the importance of each feature in the 
models with 10-fold cross-validation (online supple-
mentary table 12). After quality control and filtering, 
among the features kept in each model, immune and 
epithelial cells were the top-ranked features that predict 
ACE2 expression in normal tissues and tumors. Micro-
biota were observed to be important features for ACE2 
in normal tissues but not in tumors (figure 5A and B). 
For TMPRSS2 expression, epithelial cell abundance 
is the most important predictor in both normal and 
tumor samples (figure 5C and D). Taken together, these 
results suggested that immune signatures, epithelial cells, 
and commensal microbiota were important predictors 
for ACE2 expression, while TMPRSS2 expression was 
primarily determined by epithelial cells.

DISCUSSION
We performed a pan-cancer analysis of the receptor 
that facilitates SARS-CoV-2 infection (ACE2) and the 
protease that mediates spike protein activation and viral 
entry (TMPRSS2) by integrating data across six resources 
including clinical, genetic, transcriptomic and micro-
biome domains. We found that ACE2 and TMPRSS2 are 
generally expressed lower in tumors relative to matched 
normal and that digestive organs (both tumor and 
normal samples) have the highest expression. Neither 
clinical factors nor HLA genotypes were consistently asso-
ciated with gene expression levels. Multiple immune gene 
expression signatures such as ISG and the T cell-inflamed 
tumor microenvironment did correlate with ACE2, 
and inverse correlations were seen with angiogenesis 
and TGF-β. ACE2 expression correlated with increased 
macrophage abundance in some tumors, while TMPRSS2 
was strongly associated with epithelial cells. Regarding 
lymphocytes and macrophages, no ACE2 expression 
was observed in these cells across multiple single-cell 
sequencing studies. Microbiota contents are clearly asso-
ciated with ACE2 and TMPRSS2 gene expression levels, 
possibly suggesting a causal role and the potential to be a 
modifiable biomarker.

The mortality of COVID-19 disease has been substan-
tially greater than that seen with seasonal influenza and 

https://doi.org/10.5281/zenodo.3747336
https://doi.org/10.5281/zenodo.3747336
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020


10 Bao R, et al. J Immunother Cancer 2020;8:e001020. doi:10.1136/jitc-2020-001020

Open access�

Figure 4  ACE2 and TMPRSS2 expressions are correlated with distinct microbiota communities. (A,B) Correlation of 75 
bacteria taxa with (A) ACE2 and (B) TMPRSS2 gene expression. Within each plot, the left panel shows normal tissues, and the 
right panel shows tumor samples. Seventy-five taxa were selected by Spearman’s correlation coefficient ρ>0.5 or <−0.5 and 
FDR-adjusted p<0.05 in at least one pairwise correlation (online supplementary table 11). For both genes, n=14 and n=33 tumor 
types are shown in normal and tumor samples, respectively. LAML does not have data available for microbiota abundance, 
hence excluded from analysis for both genes. Spearman’s correlation was used in (A) and (B). LAML, acute myeloid leukemia.

https://dx.doi.org/10.1136/jitc-2020-001020
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led to the identification of or hypothesis that certain clin-
ical factors may be associated with outcomes. The factors 
of particular focus included advanced age, BMI, and 
possibly diabetes or other chronic health conditions such 
as cardiopulmonary syndromes and immunosuppres-
sion or cancer.19 28 29 In addition, certain races or ethnic-
ities have experienced greater morbidity and mortality 
due to pandemic.30 In our analysis of ACE2/TMPRSS2 
gene expression in tumors and matched normal tissues, 
we observe no consistent association for these factors. 
Further work would be required to investigate other vari-
ables associated with these disease states, such as chronic 
inflammatory conditions, immunosuppression, and 
other disparities that may be contributing factors,44 45 and 

cellular context is important to interpret the complexity 
of those associations.46

An initial hypothesis when considering the delete-
rious outcomes for patients with cancer and COVID-19 
disease was that cancer tissues themselves might have 
higher expression of viral entry related genes. We found 
that gene expression levels did not support this to be the 
case. Rather cancer tissues broadly have lower expres-
sion of ACE2 and TMPRSS2, though the cancers of the 
digestive tract do have the highest relative level among 
cancer tissues. This suppressed expression level is consis-
tent with that observed in immuno-oncology gene 
expression studies,47 in which the T cell-inflamed tumor 
microenvironment has been observed to be lower in 

Figure 5  Variable importance of multidimensional correlates in predicting ACE2 and TMPRSS2 expression. (A,B) Clinical, 
immune, and microbiota features in association with ACE2 gene expression in (A) normal and (B) tumor samples. (C,D) Clinical, 
immune, and microbiota features in association with TMPRSS2 gene expression in (C) normal and (D) tumor samples. For each 
gene, an analysis was performed in normal (n=708) and tumor samples (n=10,024) separately, with workflow illustrated in online 
supplementary figure 2. Variable importance scaled to 0–100 is shown on the x-axis. Vertical red dashed line labels score=20. 
Features are shown on the y-axis colored by clinical, immune, non-immune, microbiota, and tissue type. Top 20 features 
ranked by variable importance higher to lower are shown, and the full list is provided in online supplementary table 12. LASSO 
regression was used in (A) to (D) with 10-fold cross-validation.

https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020
https://dx.doi.org/10.1136/jitc-2020-001020


12 Bao R, et al. J Immunother Cancer 2020;8:e001020. doi:10.1136/jitc-2020-001020

Open access�

cancer compared with matched normal. ACE2 has been 
described as a type I interferon-inducible gene.15 Across 
our analysis, we see strong correlations of ACE2 with type 
I (ISG) and type II (T cell-inflamed) interferon signa-
tures consistent with this.

Observing higher ACE2 levels in T cell-inflamed tumors 
may be relevant to the administration of cancer immu-
notherapy during the COVID-19 pandemic, especially 
in patients with tumors of the aerodigestive tract such 
as head and neck, lung, and colorectal/anal tracts. T 
cell-inflamed gene expression is strongly correlated with 
treatment response to checkpoint immunotherapy48 and 
has not been associated with immune-related adverse 
events (irAE).49 However, if ACE2 and TMPRSS2 levels 
are high, making viral infection potentially more likely, 
concomitant treatment with checkpoint blockade may 
potentially change antiviral host response50 or possibly 
obscure rapidly delineation of symptoms such as fatigue, 
dyspnea, diarrhea,51 and complicate irAE management, 
especially given emerging evidence that corticosteroids 
may worsen COVID-19 disease.52 To date, it remains 
unclear whether immune-checkpoint blockade increases 
risk of SARS-CoV-2 infection or subsequent impact of 
COVID-19.25 26

Direct infection or dysregulation of immune cell popu-
lations is an additional area of concern in patients with 
cancer and more broadly in infected patients. COVID-19 
can manifest with lymphopenia with some autopsy series 
suggesting lymph node or splenic atrophy.53 Certainly, 
dysregulated macrophage activity, with the elaboration of 
IL-6 and other inflammatory cytokines, is a major compo-
nent of the disease. Studies have raised the possibility 
that SARS-CoV-2 infects lymphocytes17 or macrophages,53 
leading to COVID-19 associate findings. In our study, 
we investigated the expression of ACE2 and TMPRSS2 
across multiple single-cell sequencing databases encom-
passing nine independent studies. However, we found no 
evidence of expression in these cells. It must be noted 
that the possibility exists that type I interferon may 
induce ACE2 expression, which would not be captured 
in our analysis. We would note, however, that previous 
studies have not definitively determined that T cells or 
macrophages are infected by SARS-CoV-2, and direct viral 
culture from purified cell populations would be needed 
to confirm this. Additionally, multiple other known 
pathologies associated with sepsis and extreme illness 
could explain these lymph node and splenic findings, 
and few patients with COVID-19 have been documented 
to have an extreme viremia consistent with what would 
be required as a prerequisite to such histologic findings.

Immune responses to cancer and in other settings 
are increasingly being recognized as influenced by the 
commensal microbiota.54 We were, therefore, interested 
in investigating associations of tissue-based microbiota 
and ACE2 as a surrogate for the risk of SARS-CoV-2 
infection. In our analysis, we found strong correlations 
of specific bacterial flora and high expression of ACE2 
in COVID-19 related organs, including colorectal and 

kidney. Particularly in colorectal, where presentations 
with diarrhea have been widely described, we note a ratio 
of at least 2:1 of gram-negative bacteria in the bacteria 
populations significantly associated with elevated ACE2 
expression. A dominance of gram-negative bacteria in the 
fecal microbiota is assumed at baseline, and yet disequilib-
rium with an increase of these bacteria is associated with 
diminished immunological outcomes, especially in immu-
nosuppressed patients.55 In our study, we have analyzed 
a heterogeneously collected group of tumors and match 
normal tissues. However, this observation suggests that 
further investigation of the commensal microbiome in 
COVID-19 and possibly that bacterial antibiosis related to 
coronavirus infection might be of relevance in the future.

We note limitations to our report with the acknowl-
edgment that the use of pre-existing data does not fully 
capture the complexity of active infection by SARS-CoV-2. 
Rather we sought to investigate factors correlated with viral 
cell engagement via ACE2 and viral entry via TMPRSS2 as 
possible associative risk factors that might be entertained 
on a clinical or translational level when considering risk 
for patients with cancer and otherwise of COVID-19. 
Certainly, there may be virus infection-induced changes 
that are dynamic. However, we believe our analysis to be 
the most comprehensive catalog of ACE2 and TMPRSS2 
correlates to date (34 tumor types from 15 tissue types 
across 10 038 subjects including both tumor samples and 
matched normal tissues as well as scRNAseq databases 
consisting of patients with cancer and healthy donors). We 
also acknowledge that the microbiota we analyzed were 
identified from tissue RNAseq data, and the sample collec-
tion and preparation of tissue RNAseq was not designed 
originally to completely rule out potential contamination 
or confirm the vitality of identified microbes. However, 
these source data constitute the largest collection of 
microbiota communities identified from patients with 
cancer, have previously been used in this manner to build 
prediction algorithms, and the data were optimized via 
rigorous methodology to control for noise across the data 
set.35 We also note that we are unable in this analysis to 
comment on respiratory or fecal samples from patients 
infected with COVID-19 and very much look forward to 
better understanding the functional mechanisms associ-
ated with those commensal and pathogenic microbiota 
related to COVID-19. Last, our work does not determine 
a causal role of those correlates in driving response or 
severity of COVID-19 disease and would require further 
mechanistic studies as well as prospective clinical trials in 
patients to further develop or investigate interventional 
approaches.

CONCLUSION
We have performed a multiomic analysis of ACE2 and 
TMPRSS2 gene expression related to clinical, genetic, 
microbiome covariates associated with COVID-19 infec-
tion. We have identified novel commensal microbiome 
associations and further described interferon associated 
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gene expression patterns in normal and tumor tissues 
related relevant to SARS-CoV-2 infection. These data will 
hopefully inform sample collection, future analyses, and 
treatment of patients with cancer and others infected 
with COVID-19.
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