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Abstract: Automatic crack detection from images is an important task that is adopted to ensure
road safety and durability for Portland cement concrete (PCC) and asphalt concrete (AC) pavement.
Pavement failure depends on a number of causes including water intrusion, stress from heavy loads,
and all the climate effects. Generally, cracks are the first distress that arises on road surfaces and proper
monitoring and maintenance to prevent cracks from spreading or forming is important. Conventional
algorithms to identify cracks on road pavements are extremely time-consuming and high cost. Many
cracks show complicated topological structures, oil stains, poor continuity, and low contrast, which are
difficult for defining crack features. Therefore, the automated crack detection algorithm is a key tool
to improve the results. Inspired by the development of deep learning in computer vision and object
detection, the proposed algorithm considers an encoder-decoder architecture with hierarchical feature
learning and dilated convolution, named U-Hierarchical Dilated Network (U-HDN), to perform
crack detection in an end-to-end method. Crack characteristics with multiple context information
are automatically able to learn and perform end-to-end crack detection. Then, a multi-dilation
module embedded in an encoder-decoder architecture is proposed. The crack features of multiple
context sizes can be integrated into the multi-dilation module by dilation convolution with different
dilatation rates, which can obtain much more cracks information. Finally, the hierarchical feature
learning module is designed to obtain a multi-scale features from the high to low- level convolutional
layers, which are integrated to predict pixel-wise crack detection. Some experiments on public crack
databases using 118 images were performed and the results were compared with those obtained with
other methods on the same images. The results show that the proposed U-HDN method achieves
high performance because it can extract and fuse different context sizes and different levels of feature
maps than other algorithms.

Keywords: pavement cracking; automatic crack detection; encoder-decoder; deep learning; U-net;
hierarchical feature; dilated Convolution

1. Introduction

1.1. Motivation

Cracks are common distresses in both concrete and asphalt pavements. Different types of cracks
can be observed due to different causes: road surface aging, climate, and traffic load. The methods
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currently used for road and airport pavement management system (PMS) [1,2] generally used for the
classification of cracks provided by Shahin [3] and adopted by the international standard American
Society for Testing and Materials (ASTM) [4]. The classification is defined on crack characteristic and
causes as listed in Table 1 and Figure 1.

Table 1. Types of cracks in road pavements.

Flexible Pavements Rigid Pavements

Distress Cause Distress Cause

Alligator Cracking load Corner Break load
Block Cracking Slippage

Cracking traffic Shattered
Slab/Intersecting Cracks load

Longitudinal Cracking climate Durability (“D”)
Cracking climate

Transverse Cracking climate Longitudinal, Transverse,
and Diagonal Cracking load

Joint Reflection Cracking climate Shrinkage Cracks climate
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consequence of a decrease in the load-bearing capacity of the whole structure. In addition, this fact 
increases the unevenness of the road surface that and is potential threat to road safety [5–11]. 
Therefore, it is clear that to maintain the pavement in good condition, crack detection is a significant 
step for pavement management. That step can be performed by both visual inspection and automatic 
survey. Both methods present good results in terms of distresses analysis, but the automatic crack 
detection system is more efficient, quick, lower costing than traditional human vision detection. 
Therefore, automatic crack detection has attracted much attention of scientific and technical 
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distance from the objects, and crack detection system is employed to obtain pavement crack 
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Figure 1. Some different crack types. In the top row (from the left to right: alligator cracking, block
cracking, slippage cracking, longitudinal cracking, transverse cracking, and joint reflection cracking);
on the bottom row (from the left to right: corner break, shattered slab/intersecting cracks, durability
(“D”) cracking, longitudinal, transverse, and diagonal cracking, and shrinkage cracks).

The cracks can shorten the service life of roads; indeed, the water that can penetrate them
can reduce the compaction of the materials of the deeper layers of the pavement with the obvious
consequence of a decrease in the load-bearing capacity of the whole structure. In addition, this fact
increases the unevenness of the road surface that and is potential threat to road safety [5–11]. Therefore,
it is clear that to maintain the pavement in good condition, crack detection is a significant step for
pavement management. That step can be performed by both visual inspection and automatic survey.
Both methods present good results in terms of distresses analysis, but the automatic crack detection system
is more efficient, quick, lower costing than traditional human vision detection. Therefore, automatic crack
detection has attracted much attention of scientific and technical corporations in recent years.

1.2. Monitoring System

In the past few decades, many researchers have performed structure health monitoring [12–17].
Yu et al. in [18] proposed an integrated system based on the robot for crack detection, which includes
mobile manipulate and crack detection system. The mobile manipulate system is used to ensure
distance from the objects, and crack detection system is employed to obtain pavement crack information.
Oh et al. in [19] proposed bridge detection system, including a designed car, robot system, and machine
vision system. Lim et al. in [20] designed a crack inspection system, which consists of three parts:
mobile robot, vision system, and algorithm. The camera is mounted on the mobile robot to collect
crack images; Laplacian of Gaussian algorithm is applied to extract crack information.
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Li et al. in [21] used the laser-image techniques to construct the road surface 3D point clouds.
The collecting laser point cloud images are divided into small patches, which is used to identify as
containing cracks or not. The minimum spanning tree is employed to extract the cracks from the
image patches. Zou et al. in [22] proposed path voting techniques to perform crack detection based on
laser range images. Firstly, the local grouping is employed with path voting algorithm based on 3D
point cloud images. Then, crack seeds are used for graph representation to extract cracks information.
Fernandes et al. proposed a crack detection system by using a light field imaging sensor (Lytro Illum
camera), which is employed to disparity information to obtain cracks on the road [23].

1.3. Crack Detection Algorithms

Existing visual-based crack detection algorithms can be roughly divided into two branches:
traditional crack detection methods and artificial intelligence.

1.3.1. Traditional Crack Detection Methods

• Wavelet transform: Zhou et al. in [24] used a wavelet transform to perform crack detection.
Different frequency sub-bands are employed to distinguish crack from images, and high and
low amplitudes are defined as crack and noises, respectively. A 2-D wavelet transformation to
separate crack and no-crack regions was proposed by Subirats et al. in [25].

• Image thresholding: A threshold value is applied in some research [26–28] to segment crack regions,
followed by morphological technologies for refining the processed crack images. The method
in [26] needs to preprocess the images with morphological filter to reduce pixels intensity variance,
followed dynamic thresholding to detect the cracks. These methods have low efficiency. Oliveira
in [26,29] proposed the threshold-based segmentation method. In CrackIT [30], the threshold-based
segmentation is proposed to distinguish crack block from the image. After that, they updated
their works to CrackIT toolbox [29]. And the latest improvement in [31] used the connectivity
consideration as a post-processing step, which contains two steps: selection of prominent “crack
seeds” and binary pixels classification, which can improve segmentation results.

• Hand crafted feature and classification: The hand crafted features descriptors are applied to
extract crack information from images, followed by patch classifier. [32–34]. Quintana et al. in [34]
proposed a computer vision algorithm contains three parts: hard shoulder detection, proposal
regions, and crack classification. The Hough transform (HT) was used to detect the hard shoulder;
the Hough transform features (HTF) and local binary pattern (LBP) was employed in the proposal
regions step; finally, classification was used to detect the crack. It is clear that crack detection
operation has low efficiency, and it cannot perform automatic crack detection.

• Edge detection-based methods: Other authors applied the Canny [35] and Sobel [36] edge detector
to extract cracks information. Maode et al. in [37] used a modified median filter to remove cracks’
noises and the morphological filters were adopted to detect cracks.

• Minimal path-based methods: All these algorithms take brightness and connectivity into
consideration for crack detection. Kaul et al. in [38] used the minimal path selection (MPS)
method, which is based on fast-marching algorithm to find open and closed curves, and did not
employ prior knowledge for endpoints and topology. In addition, the proposed method is fairly
robust to the addition of noise. Baltazart et al. proposed three different ongoing improvement
with MPS, including selecting crack endpoints, path finding strategy and selection of minimum
path cost, and the proposed method can improve the MPS performance in both segmentation and
computation time [39]. Nguyen et al. in [40] took brightness and connectivity into consideration for
crack detection simultaneously with free-form anisotropy (FFA). In [41], Amhaz et al. introduced
the labelled MPS for minimal path selection, which relies on the localization of minimal path
based on Dijkstra’s algorithm or A* family, and the proposed method can provide robust and
precise results. By contrast, Kass et al. in [42] used the theory of actives contours (“snakes”),
which used L2 norm for constrained minimization.



Materials 2020, 13, 2960 4 of 18

1.3.2. Artificial Intelligence

Wang et al. in [43] proposed a multi-class classification method, which applied support vector
and machine (SVM) and data fusion to inspect aircraft skin crack. Shi et al. proposed a CrackForest
method to describe the crack feature with random structured forests, and the proposed the public CFD
database with road crack images was very popular for scholars and researchers [44]. However, these
methods are excessive relying on feature descriptors, which is difficult for human to detect different
types of crack images.

Recently, with the development of machine learning classified as deep learning inspired by
structure of the brain called artificial neural networks (ANN) [45], many algorithms have been
proposed to perform object detection and image classification tasks. ANN is employed to solve many
civil engineering problems [46–50]. Gao and Mosalam in [51] applied the transfer learning to detect
damage images with structural method, and this method can reduce the computational cost by using
the pre-trained neural network model. Meanwhile, the author needs to fine the neural network to
perform the crack detection. Local patch information was employed to inspect crack information by
convolutional neural networks (CNN) in [52]. In CrackNet [53], the algorithm improved pixel-perfect
accuracy based on CNN by discarding pooling layers. In CrackNet-R [54], a recurrent neural network
(RNN) is deployed to perform automatic crack detection on asphalt road. Cha et al. [55] adopted a
sliding windows based on CNN to scan and detect road crack. Fan et al. in [56] proposed a structured
prediction method to detect crack pixels with CNN. The small structured pixel images (27 × 27
pixels) was input into the neural network, which may generate overload for the computer memory.
Ensemble network is proposed to perform crack detection and measure pavement cracks generated
in road pavement [57]. Maeda et al. on [58] adopted object detection network architecture to detect
crack images, and the network architecture can be transferred to a smartphone to perform road crack
detection. Cha et al. used the Faster-RCNN to inspect road cracks [59]. Yang et al. in [60] adopted a fully
convolutional network (FCN) to inspect road pavement cracks at pixel level, which can perform crack
detection by end-to-end training. Li et al. in [61] employed the you-only-look-once v3 (YOLOv3)-Lite
method to inspect the aircraft structures, and the depth wise separable convolution and feature pyramid
were adopted to design the network architecture and joined the low- and high-resolution for crack
detection. Jenkins et al. presented an encoder-decoder architecture to perform road crack detection,
and the function of the encoder and decoder layers are used to reduce the size of input image to
generate lower level feature maps, and obtain the resolution of the input data with up-sampling,
respectively [62]. Tisuchiya et al. proposed a data augmentation method based on YOLOv3 to perform
crack detection, which can increase the accuracy effectively [63].

It is clear that the feature maps become more and more coarse after several convolution and
pooling operations in the CNN process. At the same time, the detailed and abstracted features are
presented in large-scale and small-scale layers. Liu et al. in [64] proposed an algorithm to fuse different
scale features to improve object detection performance. In the image segmentation process, U-net is
proposed in [65] to perform semantic image segmentation based on encoder-decoder architecture to
improve accuracy. The dilated convolution for multiple rates is proposed in [66–68] to increase context
and obtain more deeper features to improve network performance.

1.4. Contribution

Inspired by above observations, in this paper a new network called U-HDN, to fuse multi-scale
features in encoder-decoder network based on U-net for crack detection is proposed. The flowchart
and the proposed U-HDN architecture are shown in Figures 2 and 3, and the proposed method consists
of three components: U-net architecture, multi-dilation module (MDM), and hierarchical feature (HF)
learning module. Firstly, an U-net is divided into encoder and decoder networks, which have the same
scale at each stage. The encoder networks are applied to extracted features of cracks after convolutions
and pooling layers. The decoder networks are employed to restore the image size after a series of
up-sampling and convolution layers.
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Then, a multi-dilation module (MDM) is designed, which is embedded into an encoder-decoder
architecture to obtain cracks features of multiple context sizes. The crack features of multiple context
size can be integrated into multi-dilation module by dilation convolution with different dilation rates,
which can obtain much more cracks information. Next, hierarchical feature (HF) learning module is
designed to obtain multi-scale feature from the high- to low- level convolutional layers. The single-scale
features of each convolutional stage are used to predict pixel-wise crack detection at side output.

Finally, the single-scale feature at each side output is concatenated to produce a final fused feature
map. Both side outputs and fused results are supervised by deeply-supervised nets (DSN) [69].

The contributions of U-HDN are the following:

1. A new automatic road crack detection method, called U-HDN based on U-net is designed,
and encoder-decoder networks are introduced to perform end-to-end training for crack detection.
The hierarchical features of crack can be learning in multiple scales and scenes effectively.

2. U-net architecture is modified. Firstly, the pool4, conv9, conv10, and up-conv1 based on U-net
model are removed. Secondly, in order to implement end-to-end training, zero-padding during
each convolution and up-convolution process are performed.

3. The MDM is proposed to learn crack features of multiple context sizes. The crack features
of multiple context size can be integrated into MDM by dilation convolution with different
dilation rates.

4. HF learning module is designed to obtain multi-scale feature from the high convolutional layers
to low-level convolutional layers. The fusion of hierarchical convolutional features shows a better
performance for inferring cracks information.

The rest of this paper is organized as follows: the details of the proposed U-HDN is described
in the Section 2 (Methods). Some comprehensive experiments to show the performance for U-HDN
and make a comparison with state-of-art algorithms were conducted and the results are discussed in
the Section 3 (Experiments and Results). Finally, Section 4 reports the conclusions of the research and
some possible future improvements of the method are proposed.

2. Methods

In this section, the details of proposed method are introduced, which are the core component
of U-HDN. End-to-end classification approach based on encoder-encoder network is employed to
perform road crack detection.

The image features are auto-selection in the convolutional operation process, and the selection
image features are based on image pixels information from the point of deep learning. Meanwhile, the
feature maps tend to be considered and calculated in the convolutional operation process. Therefore,
the proposed method is designed and calculated the number of feature maps. In this paper, we employ
spatial domain to calculate the feature maps, and the number of the feature maps are shown in Figure 3
(shown on the green boxes).

Deep learning tends to learn image features based on convolutional operation without
pre-processing (such as, filter, reducing noises, and data augmentation et al.), according to ground
truth, regression function and other active functions. This operation can present wider generalization
ability in the database, which can accomplish automatic object detection or semantic segmentation
with end-to-end training. Meanwhile, the neural network will auto-learn and extract crack features by
convolutional operation, according to the parameters setting and ground truth.

2.1. U-Net Architecture

In this paper, the main backbone of the U-HDN is based on U-net architecture, which is divided
into two parts: contracting path (or encoder) and expansive path (or decoder) locating in the left and
right side, respectively [65].
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As is shown in Figure 3, the red dotted box presents the modified U-net. Contracting path
consists of two 3 × 3 convolution layers, each followed by the activation function rectified linear unit
(ReLU) [70], and a 2 × 2 max pooling layers for down-sampling.

The expansive path consists of a 2 × 2 up-convolution being up-sampled features, cropped features
from the contracting path, and two 3 × 3 convolution layers, each followed by the activation function
ReLU. In this U-net architecture, the components pool4, conv9, conv10, and upconv1 were removed.
Secondly, in order to implement end-to-end training, a transformation zero-padding during each
convolution and up-convolution process was performed. Meanwhile, in order to understand the
convolution neural network, we recommend readers to look up this article [71].

Convolution layer: k filters (or kernels) belong to the convolutional layer with the weight w. In the
convolution process, input image being convolving with filters and plus bias b that can obtain k feature
maps. In order to increase nonlinearity for output, ReLU is employed as activation function after
convolution process.

Max pooling layer: max pooling is applied to obtain maximum value for each subarray during
down-sampling process, and this operation can reduce computational complexity.

Activation Function: the activation function ReLU to increase nonlinearity for convolution layes’
output was used. At the same time, the sigmoid function to distinguish crack and non-crack pixels
for final output result was adopted [72]. Zero-padding: it is convenient to pad the input matrix with
zeros around the border, so that we can apply the filter to bordering elements of our input image
matrix. The function of zero padding can ensure the size of the output image that we desired during
the up-sampling process [65,73].

2.2. Multi-Dilation Module (MDM)

In encoder network of U-net, only one type of the convolutional filters is employed to obtain
receptive field for extracting crack features, which has a negative influence on detecting different cracks
types, such as, vertical, horizontal and topologies.

Therefore, a MDM based on encoder features to obtain multiple context sizes’ features was
designed [66–68], as is shown in Figure 4. The dilation convolution is able to expand the sizes of
the convolution filters, instead of using larger filter and down-sampling. The MDM has a better
performance for extracting and detecting cracks with multiple context sizes.
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In a 2-D signal, the dilation convolution is defined as the following equation [66]:

y[i] =
K∑

k=1

x[i + r · k]w[k] (1)

where x[i] and y[i] are input and output signal for each location i, respectively. w[k] is defined as the
filter of length K. Dilation rate r corresponds to stride for sampling input signal. It is necessary to
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insert a number of r− 1 zeros between two consecutive filter values along each spatial dimension in
the process of convolution operation. In the standard convolution operation, it can be assumed r = 1.

Assuming a convolution filter size equal to k, the dilation convolution filter size is kd [66].

kd = k + (k− 1) × (r− 1) (2)

As is shown in Figure 5, different dilation rates are designed for convolution filters. Although the
dilation convolution expands feature context size in the convolution, it does not increase amount of
calculation with inserting of r− 1 zeros.
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Due to complex road images, different topologies and width, standard convolution can only
obtain one context, which cannot effectively satisfy both thin, simple cracks and wide, complex cracks.

Therefore, a multi-dilation module (MDM) to address above problems was proposed. This module
uses the different context sizes for crack features and fuses them to get multiple context features. Firstly,
the four dilation rates are defined as 2, 4, 8, and 16, respectively. These four dilation convolution
operations are able to extract crack features with different context sizes. After that, the five different
crack features by a concatenation method were combined. Next, a 1 × 1 convolution to change the
number of features from 512 × 5 to 1024 was used. After this convolution operation, the multi-dilation
module was accomplished, to obtain output features that can have a better performance for various
crack types.

2.3. Hierarchical Feature (HF) and Loss Function

Since the high-level feature maps have more complex context information than low levels during
the deeper convolution operation. Therefore, the HF learning network was adopted (or side 1, 2, 3, 4,
5, and fused), which can perform crack detection individually. A real example is shown in Figure 6,
it shows the ground truth for input image and the fused feature maps ant different scales.Materials 2020, 13, x FOR PEER REVIEW 9 of 18 
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Each side outputs and fused output are supervised by DSN [69] with holistically-nested edge
detection (HED) [74] for edge detection. The HED for crack detection was introduced. A training
database is defined as S = (Xn, Yn), n = 1, . . . , N, where Xn and Yn are the raw input image and
ground truth crack map, respectively. In order to write convenience, the subscript n is dropped
in subsequent paragraphs. W and M are defined as the number of network parameters and side
networks, respectively.

Each side network is followed by a classifier and the weights for each side network is denoted as
w =

(
w(1), . . . , w(M)

)
. The following equation is the loss function for side networks [74].

Lside(W, w) =
M∑

m=1

αmlmside(W, wm) (3)

where lside is the image-level loss function for each side network. The parameter αm is a hyperparameter
for loss weight at each side-out layer. In this project, M = 5. During end-to-end training, the image
pixels are divided into crack and non-crack pixels with a classifier. Therefore, crack detection can be
denoted as a binary classification problem. An activation function sigmoid is applied to distinguish the
non-crack and crack pixels. Furthermore, the sigmoid cross entropy loss function to address imbalance
samples problem was modified. This sigmoid loss function [65] with weight is shown Equation (4):

lside =
1
N

N∑
i=1

{
β yi log ŷi + γ(1− yi) log(1− ŷi)

}
(4)

where β and γ are hyperparameters, N is defined as the pixels’ number for one image. yi and ŷi are the
ground truth and predicted output result locating ith pixel, respectively.

Each the side network can generate a prediction feature map, which consists of a single output
loss. The entitle outputs of side network are fused to generate final prediction result with concatenation
method, and the fused loss function is equal to lside:

l f use = lside (5)

Finally, the total loss function of the entitle network is defined as following equation:

Ltotal = Lside + l f use (6)

3. Experiments and Results

In this part, the implementation details for the proposed U-HDN are described. Then, evaluation
metric and compared methods are presented. Finally, the experimental results are analyzed.

3.1. Implementation Details

The proposed U-HDN is programmed by Pytorch library [75] as the deep learning framework for
training and testing under Google Colaboratory (free with time limitation) GPU Workstation with the
types of Tesla P100-PCIE-16 GB, memory 16280 MB.

The public databases CFD [44] and AigleRN [76] were used to train and test the proposed network,
which do not demonstrate the visual condition for image collection. The CFD database contains 118
color images (images of size 320 × 480 pixels), which was collected by iPhone 5 smartphone in Beijing,
China. In this project, a sample of 72 images were used to train the method and a sample of 46 images
were used to test the proposed U-HDN. The AigleRN database includes 38 gray images (with two
types of images’ size: 991 × 462 pixels and 311 × 462 pixels), which was obtained from a sample of
pavements located in France. At the same time, the 24 images and 14 images were employed to train
and test the U-HDN, respectively. In this paper, to extract the crack pixels, and distinguish the crack
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and non-crack pixels some procedures were performed. The images of both public databases have a
resolution equal to 600 ppi; this means that the images were acquired with each pixel corresponding to
approximately 1 mm2 of the real road pavement.

The visual condition for these two database was collected at vertical incidence [44]. The results in
this research would not have the goal to demonstrate the effect of visual condition, for this reason,
this information is not considered important and it was not reported.

At this moment, the proposed method is not able to detect the crack widths, but the calculus of this
important characteristic will be obtained in the next upgrade of the model. In this paper, we perform
to extract the crack pixels, and distinguish the crack and non-crack pixels.

The training time for CFD is about 5 h and 20 min. The training time for AigleRN is about 3 h.

3.1.1. Parameters Setting

The hyperparameters contain: bath size (4 images for CFD, 1 image for AigleRN), optimizer (adam),
learning rate (0.001), min-learning rate (0.000001), learning rate scheduler (plateau), patience (10),
factor (0.95) with two functions (torch.optim.lr_scheduler.ReduceLROnPlateau and torch.optim.Adam
based on Pytorch library [75]). These parameters are intrinsic parameter during training the neural
network, such as learning rate. When we train the CFD, 4 images are input the neural network
once time; When we train the AigleRN, 1 image is input the neural network once time. This setting
can enable crack detection to obtain global optimum in the segmentation performance. We fix the
parameters setting for these two databases during training neural network.

3.1.2. Evaluate Metrics

The models considered in this study were evaluated by three performance measures: the precision
(Pr), the recall (Re), and the F1 score (F1). The precision and recall [77] are calculated by Equations (7)
and (8) as below:

Pr =
TP

TP + FP
(7)

Re =
TP

TP + FN
(8)

where TP, FP, and FN are the number of the true positive, false positive and false negative, respectively.
F1 is employed to evaluate the overall performance for the crack detection and it is the harmonic
average of Precision and Recall [77] calculated by Equation (9).

F1 =
2× Pr×Re

Pr + Re
(9)

Specifically, two different metrics based on F1 are adopted in the evaluation: the best F1 on the
public database for a fixed threshold (ODS), and the aggregate F1 on the public database for the best
threshold in each image (OIS) [78].

The definitions of the ODS and OIS are reported in the Equations (10) and (11):

ODS = max
{2× Prt ×Ret

Prt + Ret
: t = 0.001, 0.002, . . . , 0.999

}
(10)

OIS =
1

Nimg

Nimg∑
i

max
2× Pri

t ×Rei
t

Pri
t + Rei

t

: t = 0.001, 0.002, . . . , 0.999 (11)

The values t, i, and Nimg are the threshold, index and the number of the images. The parameters
Prt, Ret, Pri

t and Rei
t are precision and recall based on threshold t and image ith, respectively.

For the proposed U-HDN, the transitional areas between non-crack and crack pixels were
considered before computing TP, FP, and FN. Considering the subjective manual labels for ground
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truth, the transitional areas (2 pixels distance) between crack and non-crack pixels are accepted in
these papers [41,56,57,79,80]. Therefore, 2 pixels of distance is accepted in this project. The decision
threshold is defined as 0.5 to obtain a binary output.

3.2. Discussion for Multi-Dilation Module (MDM)

The dilation rate presented in Equation (1) plays an important role in varying the context size
based on MDM for the U-HDN. A large dilation rate can obtain a large context size, as is shown in
Figures 2 and 3. Specifically, different dilation rates can get different context size, which can produce
different prediction results. In order to analyze the different effect of dilation rates, an experiment to
proof the setting of the hyperparameters in MDM was performed.

Three groups of {1, 2, 3, 4}, {1, 2, 4, 8}, {2, 4, 8, 16} are tested based on public database CFD
and AigleRN. As shown from the experimental results in Tables 2 and 3, group of {2, 4, 8, 16} can
obtain the highest accuracy on both databases. The reason is that a large dilation rate can get more
context information of the cracks for the relatively wide or thin crack structure, which can improve the
crack detection accuracy.

Table 2. Experimental results for different dilation rates on CFD database.

Dilatation Rates Precision Recall F1 Score

{1, 2, 3, 4} 0.943 0.933 0.935
{1, 2, 4, 8} 0.944 0.934 0.937
{2, 4, 8, 16} 0.945 0.936 0.939

Table 3. Experimental results for different dilation rates on AigleRN database.

Dilatation Rates Precision Recall F1 Score

{1, 2, 3, 4} 0.914 0.921 0.915
{1, 2, 4, 8} 0.919 0.923 0.921
{2, 4, 8, 16} 0.921 0.931 0.924

3.3. Experimental Results on CFD

The experimental results of some specimen detection are shown in Figure 7 and Table 4 based on
CFD. It is clear that Canny and local threshold are sensitive to the noises, which can lead to a negative
influence for crack detection.

Compared with ground truth, it is also observed that CrackForest algorithm can over-measure the
number of cracks and extract the wider cracks with a high recall 0.9514, as shown in Table 4. As is
shown in Figure 5, although structured prediction and U-net can get a better performance for crack
detection, these methods can detect several wrong non-crack pixels. Although ensemble network
(threshold = 0.6) can achieve high precision, recall and F1 score, this method can produce resource
redundancy and also occur missed detection in the images, as is shown in Figure 7. At the same time,
this method cannot perform end-to-end training. The values for two images in Figure 7 are: Pr: 0.978,
Re: 0.973, F1: 0.975 (top image) and Pr: 0.977, Re: 0.966, F1: 0.971 (bottom image).
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Table 4. Crack detection results on CFD.

Methods Tolerance Margin Pr Re F1

Canny [35] 2 0.4377 0.7307 0.457
Local thresholding [26] 2 0.7727 0.8274 0.7418

CrackForest [44] 2 0.7466 0.9514 0.8318
CrackForest [44] 5 0.8228 0.8944 0.8517

MFCD [81] 5 0.899 0.8947 0.8804
Method [79] 2 0.907 0.846 0.87

Structed prediction [56] 2 0.9119 0.9481 0.9244
Ensemble network

(threshold = 0.6) [57] 2 0.9552 0.9521 0.9533

Ensemble network
(threshold = 0.5) [57] 2 0.9256 0.9611 0.934

U-net [65] 2 0.9325 0.932 0.928
U-net + HF 2 0.933 0.933 0.931

U-net + MDM 2 0.9302 0.931 0.93
U-HDN 2 0.945 0.936 0.939

The proposed U-HDN can perform end-to-end training and also obtain a satisfactory accuracy
than other algorithms (Pr: 0.945, Re: 0.936, F1: 0.939). The main reason is that U-HDN can extract and
fuse different context sizes (based on MDM) and different levels (high-level, and low-level based on
HF) feature maps than other algorithms. In Table 5, it is clear that proposed U-HDN achieves superior
performance compared to other algorithms in terms of ODS and OIS.

Table 5. The ODS, and OIS of comparison methods on CFD.

Methods ODS OIS

HED [74] 0.593 0.626
RCF [64] 0.542 0.607
FCN [82] 0.585 0.609

CrackForest [44] 0.104 0.104
FPHBN [78] 0.683 0.705
U-net [65] 0.901 0.897
U-HDN 0.935 0.928

3.4. Experimental Results on AigleRN

The experimental results of some specimen detection are shown in Figure 8 and Table 6 based on
AigleRN database include 38 images. As shown in Figure 6, it is observed that two traditional methods
(Canny and local threshold) cannot extract the crack skeleton and detect the continuous cracks, which
are susceptible to the noises. It is clear that FFA and MPS are able to inspect local and small cracks
but also fail to extract crack skeleton and find continuous cracks. Although the structured predicted
method can extract rough skeleton and detect cracks, it can also occur missed detection in the images.
The ensemble network is able to obtain a better crack skeleton than structured predicted, but it cannot
find cracks that are more continuous. The values for two images in Figure 7 are: Pr: 0.915, Re: 0.961,
F1: 0.937 (top image) and Pr: 0.924, Re: 0.981, F1: 0.952 (bottom image).

Meanwhile, it is clear that FFA can detect thicker crack than our proposed, and cannot extract the
crack skeleton, which can cause the low precision rate, as is shown in Table 6. The method proposed
is able to extract the crack skeleton. Secondly, it is observed that the method can obtain much more
number of false positive than false negative, which lead to the higher recall rate than precision rate.
Then, the 2-pixel distance can also help to improve the precision rate. Finally, the average vales based
on test database can improve the global precision rate.

The proposed U-HDN method can achieve superior performance compared to other algorithms,
as is shown in Figure 6 and Table 6 (Pr: 0.921, Re: 0.931, F1: 0.924). The main reason is that U-HDN can
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extract and fuse different context sizes (based on MDM) and different levels (high-level, and low-level
based on HF) feature maps than other algorithms. Hence, U-HDN can get a high accuracy.
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ensemble network, and proposed U-HDN).

Table 6. Crack detection results on AigleRN.

Methods Tolerance Margin Pr Re F1

Canny [35] 2 0.1989 0.6753 0.2881
Local thresholding [26] 2 0.5329 0.9345 0.667

FFA [43] 12 2 0.7688 0.6812 0.6817
MPS [42] 2 0.8263 0.841 0.8195

CrackForest [44] 2 0.8424 0.801 0.8233
CrackForest [44] 5 0.9028 0.8658 0.8839

Structed prediction [40] 2 0.9178 0.8812 0.8954
Method [67] 2 0.869 0.9304 0.8986

Ensemble network
(threshold = 0.6) [57] 2 0.9302 0.9266 0.9238

Ensemble network
(threshold = 0.5) [57] 2 0.9334 0.8879 0.9211

U-net [65] 2 0.9127 0.9076 0.91
U-net + HF 2 0.911 0.922 0.913

U-net + MDM 2 0.9138 0.9245 0.914
U-HDN 2 0.921 0.931 0.924

3.5. AigleRN Dataset Generalization

As reported above, the AigleRN database include 38 images (two types of resolution: 991 × 462
and 311 × 462). ESAR database (resolution 768 × 512) is collected by a statistic system, which contains
15 images. LCMS database includes 5 images. Because of having small number of images for these
databases, they are combined to obtain a new database, named AEL with in total 38 + 15 + 5 = 58
images. In Table 7, it is clear that proposed U-HDN achieves high performance compared with other
algorithms in terms of ODS and OIS.

Table 7. The ODS, and OIS of comparison methods on AEL.

Methods ODS OIS

HED [74] 0.042 0.626
RCF [64] 0.462 0.607
FCN [82] 0.322 0.609

CrackForest [44] 0.231 0.104
FPHBN [78] 0.492 0.705
U-net [65] 0.752 0.897
U-HDN 0.783 0.928

U-HDN (only using AigleRN) 0.927 0.912
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4. Conclusions

The analysis and survey of pavement crack plays an important role in the road and airport
pavement management system. In this project, the proposed U-HDN method can achieve a high
precision and accuracy for pavement crack detection. An MDM and HF module based on U-net are
developed in this paper. The MDM is able to obtain and extract feature maps of different context sizes
by different dilation rates. The HF module can obtain multi-scale (high-level and low-level) feature
maps, which can be integrated to predict pixel-wise crack detection at side output. By combining two
MDM and HF in the U-net, U-HDN can achieve a satisfactory performance.

Although the proposed U-HDN can obtain a satisfactory performance than other methods,
the neural network is a complicated structure which contains redundant feature maps and cause
computational cost and low efficiency. These issues will be addressed in the future work.

• In order to remove the redundant features maps, the channel pruning and automatically designing
neural network will be explored to improve the computational efficiency and accuracy.

• Some methods tend to research crack detection for static images. Actually, video streaming
detection also has a significant function for road cracks. Therefore, we will study this direction in
the future work.

• We plan to propose a new method to address the cement concrete crack detection, evaluate the
global surface waterproofing and repair water-leakage cracks.

• Due to F1 sensitivity to the pixel margin, it is not appropriate for author to compare the performance
segmentation algorithms that do not give all the details on the metric. Therefore, we will try
contact some authors to obtain the source codes and analyze them, followed by exploring and
constructing an integrated crack detection system.
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