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Abstract

Cerebral edema constitutes an important contributor to secondary injury in acute brain injury. The 

quantification of cerebral edema in neuroimaging, a well-established biomarker of secondary brain 

injury, represents a useful intermediate phenotype to study edema formation. Population genetics 

provides powerful tools to identify novel susceptibility genes, biological pathways and therapeutic 

targets related to brain edema formation. Here, we provide an overview of the pathogenesis of 

cerebral edema, introduce relevant genetic methods to study this process, and discuss the ongoing 

research on the genetic underpinnings of edema formation in acute brain injury. The epsilon 2 and 

4 variants within the Apolipoprotein E (APOE) gene are associated with worse outcome after 

traumatic brain injury and intracerebral hemorrhage, and recent studies link these polymorphisms 

to inflammatory processes that lead to blood-brain barrier disruption and vasogenic edema. For the 

Haptoglobin gene (HP), the Hp 2–2 genotype associates with worse outcome after acute brain 

injury, whereas the haptoglobin Hp 1–1 genotype correlates with increased edema in the early 

phases of intracerebral hemorrhage. Another important protein in cerebral edema is aquaporin 4, 

coded by the AQP4 gene. AQP4 mutations contribute to the formation of cytotoxic edema, and 

further genetic research is necessary to help elucidate the mediating mechanism. Findings 

supporting the target genes outlined above require replication in larger samples and evaluation in 

non-white populations. These next steps will be significantly facilitated by the rapid changes 

observed in the field of population genetics, including large international collaborations, open 

access to genetic data, and significant reductions in the cost of genotyping technologies.
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Introduction

Diseases involving acute brain injury, including intracerebral hemorrhage (ICH), ischemic 

stroke, and traumatic brain injury (TBI), are associated with elevated mortality and 

morbidity [1]. Stroke is a leading cause of death and adult disability worldwide, while TBI is 

a contributing factor to a third of all injury-related deaths in the United States [1–4]. For a 

given patient, the total burden of brain injury corresponds to the sum of the primary and 

secondary injury components. The primary brain injury is directly related to the mechanisms 

of the underlying disease and occurs immediately after its onset. The term secondary injury 

encompasses several biological processes that occur hours to days after the primary insult, 

either as a direct consequence of the anatomical changes produced by this insult 

(hydrocephalus and compressive injury) or related to the pathophysiological responses to it 

(inflammation ad circulatory changes) [5].

The delayed and longer time window of secondary injury provides an appealing opportunity 

to deploy treatments aimed to reduce the final disability burden related to acute brain injury. 

One promising final pathway of secondary injury is cerebral edema, a biological process that 

leads to an increase in brain volume and intracranial pressure, sometimes followed by 

decreased cerebral perfusion, herniation, and death [1, 5, 6]. Observational studies indicate 

that cerebral edema is an independent predictor of mortality in TBI and ICH [7] [8]. 

Understanding the pathophysiology of cerebral edema is key to identifying therapeutic 

targets of secondary brain injury. Population genetics provides powerful tools to identify 

novel susceptibility genes, biological pathways and therapeutic targets involved in acute 

brain injury and edema formation. Thus far, the application of genomic analyses to 

neuroimaging phenotypes of acute brain injury has been limited by limited sample sizes and 

incomplete harmonization across the existing data. However, with the creation of large 

research consortia capable of assembling extremely large sample sizes and the 

implementation of accurate automated imaging pipelines, the ability to apply genomic 

analyses to neuroimaging markers has become a reality [3]. In this review, we provide a 

brief overview of relevant concepts related to population genetics and genomic medicine, 

review the pathogenesis of cerebral edema, and discuss relevant studies on the genetic 

underpinnings of edema formation post-acute brain injury.

Population Genetics and Genomic analyses

Population genetics offers tools that help to overcome the limitations of observational 

studies [9][9]. Examination of inherited genetic variability may shed light on the relationship 

between genes, different phenotypes, and pathophysiological pathways. Since mutations are 

randomly distributed during meiosis, the associations between mutation and disease are not 

influenced by postnatal factors. This model allows for the identification of the genetic and 

cellular pathways involved in specific conditions. The use of genetic analysis to identify new 

targets and mechanisms could be a promising strategy for neurocritical care conditions, as 

most conditions provoke brain edema and are influenced by underlying genetic factors [10–

12]. Given that genotyping techniques now capture information from the entire genome, it is 

possible to exhaustively investigate the cellular processes and pathways involved in brain 

edema formation [13].
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Genetic analyses boost the turnout of the translational research cycle

Completing all stages of the translational research cycle (Figure 1), which includes 

identification of a pathophysiological mechanism, demonstration of its involvement in 

pathophysiology, and testing agents that act on this pathway, is a demanding task. Moreover, 

a substantial number of interventions that seemed promising in pre-clinical studies failed to 

show benefit in expensive and time-consuming clinical trials. Not only can population 

genetics identify casual relationships between mutations and phenotypes of interest, but it 

can also help to reduce the proportion of new treatments that do not succeed in clinical trials. 

A comparative study that aimed to compare clinical interventions with and without genetic 

support used the Informa Pharmaprojects database along with GWASdb and OMIM, two 

open-access resources that contain information on genetic risk factors for complex and 

Mendelian conditions. The authors demonstrated that selection of genetically-supported 

targets doubles the success of the translational research cycle [14]. New statistical methods, 

such as Mendelian Randomization, offer even more powerful tools to support these findings 

[15].

Definition of Cerebral Edema

Edema is defined as an increase in brain tissue water that occurs in both the cells and 

interstitial space [6]. Cerebral edema is mainly characterized as cytotoxic or vasogenic 

edema [16, 17]. Cytotoxic edema results from failure of homeostatic pumps, leading to an 

imbalanced ionic gradient. This intracellular osmotic shift causes water to move into the 

cells, leading to cerebral edema. Vasogenic edema involves inflammatory markers and 

results from blood brain barrier (BBB) disruption causing an influx of protein rich fluid into 

the brain [5, 18–21]. Cytotoxic and vasogenic edema closely interact with each other and 

mutually contribute to edema formation after acute brain injury [22]. The cascade of edema 

formation is shown in Figure 2.

Edema formation after intracerebral hemorrhage

The accumulation of brain edema starts a few hours after the onset of an intraparenchymal 

hemorrhage and peaks between 7–11 days [23, 24]. Edema formation occurs in multiple 

phases within this time frame. In the first few hours after ICH, clot retraction causes serum 

proteins to be released, creating an osmotic gradient that pulls water into the interstitial 

space [22, 24]. In the first few days following the initial ionic edema, neutrophils and 

macrophages induce inflammatory cytokines to be upregulated. Inflammatory cytokines, 

such as IL-Iβ, IL-6, and TNF-α, contribute to the BBB breakdown and upregulate matrix 

metalloproteinases (MMPs), neuropeptide substance P and bradykinins [4, 21, 22, 24, 25]. 

MMPs, specifically MMP-9, breakdown collagen and other basal lamina proteins integral to 

the BBB [26, 27]. Substance P has been shown to increase vascular permeability and edema 

after brain injury [28–30]. Bradykinins are linked to increased edema, vascular permeability, 

and BBB after ischemia and other forms of brain injury [31, 32]. Additionally, leakage of 

red blood cells activates a coagulation cascade that produces thrombin, which is a 

proinflammatory agent at high concentrations [20]. Thrombin further breaks down the BBB 

and works alongside complement cascade proteins that enter the parenchyma, causing 
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microglia activation, erythrocyte lysis, and release of hemoglobin and iron into brain matter 

[21, 22, 33, 34]. Toxic products of iron and hemoglobin degradation, such as free radicals, 

further contribute to secondary injury [4, 5, 22, 24].

Edema formation in traumatic brain injury

Cytotoxic edema is present as early as 2–4 hours after TBI [21]. Impaired oxygen and 

glucose due to ischemia and hypoxia reduces ATP stores, disrupting the Na+/K+ ATPase 

function. Sodium cations flow down the electrochemical gradient, accumulating inside the 

cells, and drawing water into the cellular space. Aquaporins, a class of water-channel 

proteins located in the basolateral membranes of ependymal cells and astrocytes, colocalize 

with inward rectifying potassium channels. When injury occurs, water flows through the 

aquaporin channels and into the cell as a result of the ionic imbalance [1, 4, 6, 21]. 

Furthermore, the imbalanced ionic and electrochemical gradients cause the release of the 

excitatory neurotransmitter glutamate. Glutamate triggers pre and post synaptic neurons and 

leads to water influx in neighboring cells [17]. Calcium regulation is additionally impaired 

due to the increased cell volume. When calcium is upregulated, inflammatory pathways are 

triggered, contributing to the further breakdown of the BBB [17]. Vasogenic edema is also 

facilitated by the mechanical and vascular damage after traumatic injury. Proteins and red 

blood cells leaked into the parenchyma cause activation of the coagulation cascade. 

Thrombin acts to break down the BBB and activates microglia, cell lysis, and the release of 

hemoglobin, as discussed above.

APOE

Genetic variants within APOE may play a role in edema formation in acute brain injury. The 

apolipoprotein E (APOE) gene codes for the apolipoprotein E protein, which plays a key 

role in lipid transport and metabolism [35]. The epsilon variants (ε) are the most studied 

polymorphisms within APOE. The ε variants represent haplotypes built with genotype 

information from the SNPs rs429358 and rs7412. Using information from these two SNPs, 

APOE-ε variants are labeled as APOE-ε2, APOE-ε3, and APOE- ε4, with APOE-ε3 being 

the most common allele found in the most population [36]. APOE is secreted by astrocytes 

in the central nervous system and has been shown to have BBB stabilization properties [37]. 

The APOE ε4 is associated with increased risk of cognitive decline, dementia, and 

Alzheimer’s disease [38, 39]. Current research indicates that the APOE polymorphisms are 

also involved in many other disease processes, such as arteriosclerosis, traumatic brain 

injury, and intracerebral hemorrhage [35, 38, 40].

Animal studies of APOE

Animal models of acute brain injury have pointed to APOE as an important gene in acute 

brain injury and outcome. In an animal model of subarachnoid hemorrhage (SAH), APOE-

deficient mice showed larger edema and greater BBB disruption after SAH than the wild-

type mice. Additionally, there was a significant upregulation of inflammatory cytokines, 

such as Cyclophilin A, IL-Iβ, IL-I6, p-p65, and TNF-α, in the APOE-deficient mice after 

SAH, as well as increased MMP-9 activity. These results point to APOE as being directly 

involved in the inflammatory response that disrupts the BBB and contributes to vasogenic 
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edema after acute brain injury [41]. Researchers argue that APOE reduces the inflammatory 

response in an isoform-specific fashion, with APOE-4 being the least effect of the three 

isoforms [41–43]. The use of an apolipoprotein peptide mimetic following head injury 

provides compelling evidence that APOE is involved in inflammation and edema formation 

after acute brain injury. In one study, researchers used an intravenous injection of a small 

peptide derived from the APOE receptor binding region in mice following TBI. This peptide 

has been previously shown to retain all functions of the intact protein [44]. Treatment of 

mice after TBI with the APOE peptide was associated with better short-term and long-term 

functional outcome, decreased number of injured hippocampal neurons, and reduction in 

TNF-α RNA [44]. In a similar study, researchers injected APOE mimetic peptide COG1410 

in a subset of mice that underwent a controlled cortical impact injury to model TBI. 

Treatment with the peptide significantly decreased MMP-9 activity, reduced BBB 

disruption, reduced volume of the TBI lesion and vasogenic edema, and improved functional 

outcome [45].

Human studies of APOE

Genetic studies in humans have yielded associations between APOE polymorphisms and 

multiple diseases and traits. Genetic studies have shown that APOE-ε4 is a predictor of poor 

functional outcome after head trauma [7, 40, 46–49]. Additionally, several related studies 

found that the APOE-ε2 allele is associated with larger baseline hematoma volume, 

increased risk of hematoma expansion, and poor outcome and mortality in hemorrhages 

located in lobar regions of the brain [50] [51]. In addition, one study reported that the ε4 

allele was significantly associated with midline shift and functional outcome in ICH patients 

[52]. This finding led to the hypothesis that the mechanism linking the APOE phenotype 

with midline shift and poor outcome was perihematomal edema [52]. Supporting this 

hypothesis, recent studies found an association between APOE polymorphisms and a 

number of inflammatory processes involved in the formation of cerebral edema. When the 

ε4 version of APOE is expressed in neurons, it is susceptible to proteolysis. APOE-ε4 is the 

least stable isoform and has the greatest neurotoxic effects. Cellular pathways impaired by 

APO-ε4 include mitochondrial dysfunction, amyloid B production, neurite outgrowth, 

neuronal apoptosis, and BBB integrity [53]. Taken in consideration with the animal research 

linking APOE-ε4 to inflammatory cytokines discussed above, it is highly probable that 

APOE-ε4 facilitates inflammatory processes that contribute to BBB and vasogenic edema 

after acute brain injury. Further research is needed to establish the genetic relationship 

between APOE and cerebral edema and the influence of APOE-ε4 at different time points 

post-acute brain injury.

Haptoglobin

Haptoglobin (Hp) is an acute-phase response protein that plays an antioxidant role by 

binding and neutralizing hemoglobin (Hb) in the blood [54, 55]. The bound Hp-Hb complex 

is cleared by CD163 scavenger receptors on macrophages, reducing cytotoxicity, edema, and 

neuronal damage caused by free Hb [56]. In the human genome, the HP gene at 

chromosome 16q22 is polymorphic and is represented as Hp-1 and Hp-2. Individuals can 

either by homozygous for the Hp-1 allele (Hp-1–1), heterozygous (Hp-1–2), or homozygous 
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for the Hp-2 allele (Hp-2–2) [57]. Previous research from both animal and human studies 

has established that the haptoglobin polymorphism influences Hb clearance, oxidative stress, 

and is a risk factor for cardiovascular events [55, 58–60].

Animal studies of Haptoglobin

In one rodent study of ICH, rats with reduced blood Hp levels had significantly higher levels 

of oxidative brain damage and edema 24 hours after ICH induction. Additionally, rats with 

the Hp gene knocked out had severe neurological outcomes compared to wild types rodents, 

while rats with Hp2 overexpression had less severe neurological deficits [54]. Additional 

studies support the finding that Hp overexpression in ICH rodent model decreases oxidative 

stress, reduces lesion volume, and improves neurological status [59, 61].

Human studies of Haptoglobin

Compared to Hp2–2, Hp1–1 is a superior antioxidant, binds better to hemoglobin, and is 

removed faster by CD163 [57]. Furthermore, a greater number of cytokines, particularly 

IL-6 and IL-10, are secreted when the Hp1-Hb complex is bound to CD163 as compared to 

Hp2-Hb [55]. While hemoglobin cytotoxicity is a deleterious process that contributes to 

secondary injury after intracerebral hemorrhage, the release of inflammatory cytokines also 

contributes to the breakdown of BBB and vasogenic edema. One genetic study that 

characterized patients with ICH by their Hp genotype reported a nonsignificant trend 

towards increased mortality when comparing persons with Hp-2–1 and Hp-2–2 versus those 

with Hp1–1. Additionally, participants with the Hp2 allele had significantly worse functional 

outcomes measured by the modified Rankin scale [62]. Interestingly, a different genetic 

study found that the Hp1–1 phenotype was associated with increased perihematomal edema 

(PHE) in the early stages after ICH [56]. The findings that Hp-1–1 acts as a better 

antioxidant and is associated with improved functional outcome and lower mortality after 

ICH, while simultaneously being associated with greater PHE, appear to be contradictory to 

the biological model proposed that PHE is a marker of poor functional outcome after brain 

injury. In order to explain this contradiction, it is hypothesized that early PHE has protective 

properties while Hp-Hb binding reduces prolonged inflammation, edema, and subsequently 

poor outcome [56]. Further genetic studies of haptoglobin and edema formation at different 

time points following an ICH is necessary. Moreover, it would be beneficial to study the 

haptoglobin phenotype in the context of TBI to gain a better understanding of its role in 

secondary injury.

Aquaporins

Aquaporins (AQPs) are a class of water-channel proteins, and AQP4, AQP1, and AQP9 are 

specifically present in the brain. AQP4, the main water channel found in the brain, is located 

in end-feet membranes of astrocytes adjacent to capillaries, glial limiting membranes, 

subependymal astrocytes and ependymal cells. AQP1 is located in the choroid plexus and 

plays an important role in cerebral spinal fluid production and regulation. AQP9 is located in 

some astrocytes and ependymal cells and functions to transfer solutes, such as glycerol and 

urea [63, 64].
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Animal studies of Aquaporins

Several animal model studies suggest that AQPs are involved in cytotoxic edema after acute 

brain injury. In a mouse model of ICH, AQP4 expression was upregulated following the 

ICH, while AQP4 deficient mice showed worse neurological deficits, and greater edema, 

BBB disruption, micro-vessel damage, and neuronal death [65]. AQP4 is anchored by the α-

syntrophin protein, and deletion of the α-syntrophin protein disturbs the polarization of 

AQP4 [64, 66]. A-syntrophin-deficient mice resulted in downregulated AQP4 expression in 

astrocyte perivascular membranes, as well as delayed edema formation [67]. A-syntrophin 

deletion also resulted in reduced astrocyte swelling after severe hypoosmotic stress and 

oxygen/glucose deprivation [68]. Additionally, rodent studies that used ethanol treatment 

after TBI and curcumin treatment after ICH showed reduced AQP4 mRNA and gene 

expression along with decreased cerebral edema [63, 69]. These findings support the 

conclusion that AQPs play an important role in cytotoxic edema formation post brain injury. 

Aquaporins are also implicated in vasogenic edema, as astrocytic end-feet are integral to the 

BBB, and AQP4 assists in the reabsorption of fluid into extracellular fluid spaces [64, 70].

Human studies of Aquaporins

While there is a growing literature of animal studies supporting AQP4 involvement in 

cerebral edema, the number of human studies remains limited. One genetic study looked at 

variations within exome 4 of the AQP4 gene and reported no significant variation among 

102 patients with TBI [71]. However, this study was limited to only exon 4 of the AQP-4 

gene and did not take into considerations variants that could be present on exons 1–3. 

Another genetic study of AQP4 that evaluated clinical, neuroimaging, and genetic data from 

363 TBI patients identified 7 tag SNPs along the AQP4 gene region and found that two of 

them, rs3763043 and rs3875089, were associated with clinical outcome as evaluated 6 

months after the traumatic event [71].

Sur1 Gene

Sur1, a sulfonylurea receptor and transmembrane protein, is coded by the ABCC8 gene. 

Sur1 associates with two ion-channels: Kir6.2 and transient receptor potential melastatin 4 

(Trpm4). The Sur1-Trpm4 complex is an ATP-sensitive cation channel that is not usually 

found in the brain, but is upregulated after trauma, ischemia, and hypoxia [72]. Previous 

work has shown that Sur1-Trpm4 assembles with AQP4 to help modulate astrocyte swelling, 

a key factor in cytotoxic edema [73]. One study found that Sur1 was overexpressed in many 

cell types, particularly neurons and endothelial cells, following traumatic brain lesions [74]. 

Furthermore, Sur1-Trpm4 activity is associated with MMP-9 secretion, a proteinase involved 

in BBB breakdown and vasogenic edema [26, 27, 72]. To date, there has only been one 

genetic study of ABCC8 in relation to edema formation. This study used a candidate gene 

approach to investigate if polymorphisms within this gene region influence edema after TBI. 

The investigators identified three SNPs, rs2283261, rs3819521, and rs2283258, that were 

significantly associated with cerebral edema, measured by CT imaging, and increased 

intracranial pressure. Because all three SNPs are located in non-coding regions of ABCC8, 
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the authors speculate that these SNPs may play a role in the regulation and expression of 

Sur1 [75].

Hastened pace of discovery in population genetics—The rapid advancements in 

population genetics research observed in recent years will bring substantial benefits to 

understanding the genetic factors described above. This transformation is due to many 

factors, including an evolving research culture that encourages collaboration and public 

sharing of available data; the creation of large international consortia designed to share 

ideas, harmonize data, and achieve large sample sizes; and novel analytical methods 

designed to obtain maximal benefit from Big Data. [76, 77].

Genetic studies are complex, time-consuming and costly. Making genetic data publicly 

accessible increases the overall impact of these studies by maximizing scientific yield of 

each dataset. Open access resources can be divided into 4 main categories: repositories that 

store already generated genetic data; large population studies with attached biobanks; 

disease-specific studies with genomic data available for public access; and scientific 

platforms that grant access to data in closed computational environments, allowing 

investigators to work with data without downloading them to their personal computers and 

local servers. Table 1 describes some of the numerous open access data resources currently 

available in population genetics research.

The Database of Genotypes and Phenotypes (dbGaP) sponsored by the NIH [78], the 

Cerebrovascular Disease Knowledge Portal (CDKP) [79] in the United States, and the 

European Genome-phenome Archive (EGA) [80] in Europe are three publicly available, 

large open access repositories. The UK Biobank [81] and the China Kadoorie Biobank [82] 

are successful examples of large, population-based, prospective studies that include more 

than 500,000 participants and provide a variety of data, ranging from genetic information to 

physical measurements. Regarding disease-oriented open access studies, the Ethnic/Racial 

Variations of Intracerebral Hemorrhage (ERICH) study [83] is a dominant resource in Stroke 

research and has led to numerous sub-analyses already [84–89]. The ERICH study includes 

6,000 ICH cases and matched controls, including individuals of different ethnic background. 

The American Heart Association Precision Medicine Platform is a scientific platform that 

offers public access to numerous datasets with genetic and non-genetic information. It’s 

closed, computational environment uses Jupyter Notebooks to script, as well as Amazon 

Web Service to offer computational support to researchers [86]. Lastly, the All of Us 
Research Program, which is planned to start winter of 2020, will enroll at least 1 million 

participants in the United States from different ethnic backgrounds, providing even greater 

amounts of data to be used in genetic analyses [80].

Future directions—The impact of genetics on Neurocritical Care will continue to grow in 

coming years. Advancements in Neurocritical Care relies on many factors, with 

collaboration between clinicians, investigators, and research institutions being crucial. An 

important objective for these collaborations is to integrate genetic analyses with clinical 

data, such as laboratory results, neuroimaging, and vital signs, provided by Neuroscience 

Intensive Care Units. While public access to these data will accelerate the pace of discovery 
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in the field, it will inevitably raise challenges related to adequately protecting patients’ 

privacy. [90].

Conclusions

Brain edema constitutes an important component of secondary brain injury via increased 

intracranial pressure and dislocation of neuroanatomical structures, sometimes with 

associated herniation. Given the significant association between cerebral edema with patient 

outcome after acute brain injury and the extended time frame of edema formation, brain 

edema represents an appealing target for novel therapies. In this review, we discussed a 

number of possible genetic loci involved in this process. APOE-ε2 and APOE-ε4 have been 

shown to be associated with outcome after TBI and ICH, and there is evidence linking these 

polymorphisms to inflammatory processes that lead to BBB disruption and vasogenic 

edema. Through its ability to bind and remove hemoglobin, haptoglobin is an important 

protein with antioxidant properties. The Hp-2 allele has been associated with worse outcome 

after acute brain injury, while the Hp-1–1 phenotype was associated with increased edema in 

the early phase after ICH. Future research should be focused on studying the Hp alleles 

within different time points of edema formation after brain injury. Another important protein 

in cerebral edema is AQP4, which contributes to the formation of cytotoxic edema. More 

research is necessary to help elucidate its mechanistic properties. A summary of the genes 

involved in the pathogenesis of brain edema is shown in Table 2. Ascertaining novel loci 

related to edema formation and understanding the pathophysiology of the discussed genetic 

loci is crucial for the identification novel drug targets.
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Highlights

• Brain edema is a component of secondary brain injury.

• Mechanisms involved include inflammation, vasogenic and cytotoxic edema.

• Genes involved brain edema: Apolipoprotein E, Haptoglobin, AQP4, and 

ABCC8 (Sur1).

• Publicly accessible genetic data will help elucidate the genetic factors of 

edema.

Kirsh et al. Page 15

Neurosci Lett. Author manuscript; available in PMC 2021 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The cycle of translational research.
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Figure 2. 
Pathophysiological cascade leading to brain edema formation.

ICH – Intracerebral Hemorrhage, SAH – subarachnoid hemorrhage, TBI – traumatic brain 

injury

Kirsh et al. Page 17

Neurosci Lett. Author manuscript; available in PMC 2021 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kirsh et al. Page 18

Table 1.

Open access data resources

Ref. Name Website Resource type Sample size Access type

[81] UK Biobank https://www.ukbiobank.ac.uk/ Observational study 500,000 Open

[79] Million Veteran Program https://www.research.va.gov/mvp/ Observational study 1 million Restricted

[80] All of Us https://allofus.nih.gov/ Observational study 1 million Open

[82] China Kadoorie Biobank https://www.ckbiobank.org/ Observational study 500,000 Restricted

[78] dbGAP https://www.ncbi.nlm.nih.gov/gap/ Repository - Open

[83] EGA https://ega-archive.org/ Repository - Open

[84] MIMIC-III https://mimic.physionet.org/ Database 61,532 Open

[85] eICU-CRD https://eicu-crd.mit.edu/ Database 200,000 Open

Acronyms: UK = United Kingdom, dbGAP = Database of Genotypes and Phenotypes, EGA = European Genome-phenome Archive, MIMIC-III = 
Medical Information Mart for Intensive Care-III, eICU-CRD = eICU Collaborative Research Database.

Neurosci Lett. Author manuscript; available in PMC 2021 June 21.

https://www.ukbiobank.ac.uk/
https://www.research.va.gov/mvp/
https://allofus.nih.gov/
https://www.ckbiobank.org/
https://www.ncbi.nlm.nih.gov/gap/
https://ega-archive.org/
https://mimic.physionet.org/
https://eicu-crd.mit.edu/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kirsh et al. Page 19

Table 2.

Genes involved in the pathophysiology of brain edema.

Gene Principal role Other diseases related Potential mechanism of edema formation

APOE lipid transport and metabolism [46]

cognitive decline, dementia, and 
Alzheimer’s disease [87, 91], 

arteriosclerosis, traumatic brain injury, and 
intracerebral hemorrhage [82, 86, 88]

inflammatory response that disrupts the BBB 
and contributes to vasogenic edema after acute 

brain injury [92]

Hp

acute-phase response and 
antioxidant role by binding and 
neutralizing hemoglobin in the 

blood [72, 93]

cardiovascular events [58, 60]
oxidative stress [54], the release of 

inflammatory cytokines, the breakdown of 
BBB [55]

AQP
the main water channel found in the 

brain, cerebral spinal fluid 
production and regulation

Epilepsy [94], neurological autoimmune 
diseases[95], diabetes, 

artherosclerosis[96], cancer [97], 
peripheral nerves system damage[98]

cytotoxic and vasogenic edema, BBB 
disruption, micro-vessel damage, and neuronal 

death[65]

Sur1 upregulation after trauma, ischemia, 
and hypoxia [99]

diabetes[99], hypoglycemia[100], 
autoimmune diseases[101]

modulation of astrocyte swelling, a key factor 
in cytotoxic edema, BBB breakdown and 

vasogenic edema[73]

APOE – the apolipoprotein gene, Hp- haptoglobin gene, BBB – blood-brain barrier, AQP- aquaporin gene, Sur1- a sulfonylurea receptor and 
transmembrane protein gene
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