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SUMMARY

The medial prefrontal cortex (mPFC) modulates a range of behaviors, including responses to 

noxious stimuli. While various pain modalities alter mPFC function, our understanding of changes 

to specific cell types underlying pain-induced mPFC dysfunction remains incomplete. Proper 

activity of cortical GABAergic interneurons is essential for normal circuit function. We find that 

nerve injury increases excitability of layer 5 parvalbumin-expressing neurons in the prelimbic (PL) 

region of the mPFC from male, but not female, mice. Conversely, nerve injury dampens 

excitability in somatostatin-expressing neurons in layer 2/3 of the PL region; however, effects are 

differential between males and females. Nerve injury slightly increases the frequency of 

spontaneous excitatory post-synaptic currents (sEPSCs) in layer 5 parvalbumin-expressing 

neurons in males but reduces frequency of sEPSCs in layer 2/3 somatostatin-expressing neurons in 

females. Our findings provide key insight into how nerve injury drives maladaptive and sex-

specific alterations to GABAergic circuits in cortical regions implicated in chronic pain.
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In Brief

Jones and Sheets show that a nerve injury model of chronic pain produces distinct changes to 

separate, but major, subclasses of GABAergic neurons in the prelimbic cortex. These changes are 

different between male and female mice and provide insight into how chronic pain alters brain 

circuits in a sex-specific manner.

INTRODUCTION

Inhibitory interneurons are essential for normal activity of cortical microcircuits. Given their 

sparse expression in the cortex (~20%–30%), minor alterations to their function are believed 

to drive significant changes to circuit activity. Numerous pain studies report structural and 

functional alterations to the medial prefrontal cortex (mPFC), a region implicated in 

affective and cognitive disturbances associated with chronic pain (Cardoso-Cruz et al., 2013; 

Cheriyan and Sheets, 2018; Huang et al., 2019; Ji et al., 2010; Kelly et al., 2016; Lee et al., 

2015; Metz et al., 2009; Millecamps et al., 2007; Mitrić et al., 2019; Shiers et al., 2018; 

Zhang et al., 2015). Aspects of cellular and circuit mechanisms underlying these 

disturbances have emerged. For instance, cognitive deficits elicited by arthritic pain are 

associated with increased polysynaptic inhibition of layer 5 (L5) pyramidal neurons in the 

prelimbic (PL) region of the mPFC (Ji et al., 2010; Sun and Neugebauer, 2011). A 

subsequent study corroborated this finding by showing that nerve injury increases excitatory 

input to parvalbumin-positive inhibitory neurons (PVINs) in the PL cortex, consequentially 
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decreasing the excitability of L5 pyramidal neurons (Zhang et al., 2015). This implies that 

chronic pain evokes an imbalance in inhibition/excitation in the PL cortex. Indeed, our lab 

has shown that the chronic constriction injury model of neuropathic pain enhances the 

inhibitory-excitatory balance of local inputs onto PL pyramidal neurons that project to the 

periaqueductal gray (PAG), a key structure in the descending analgesic system (Cheriyan 

and Sheets, 2018). A recent study demonstrated that glutamatergic basolateral amygdala 

(BLA) inputs onto PL PVINs are enhanced after chronic nerve injury (Huang et al., 2019). 

Collectively, these results provide compelling evidence for a pain circuit in which nerve 

injury increases the excitation of PL PVINs, which subsequently attenuate normal output of 

neighboring pyramidal neurons targeting subcortical structures involved in pain modulation 

(i.e., PAG). However, important questions remain regarding the impact of nerve injury 

between subclasses of inhibitory neurons across different lamina in distinct regions of the 

mPFC.

In the mPFC, PVINs are active throughout working memory (WM) trials on a delayed non-

match-to-place task, except for the reward period when they are strongly suppressed (Kim et 

al., 2016). Disruption of GABAergic signaling in the mPFC drives deficits in WM and 

cognitive flexibility (Abbas et al., 2018; Bañuelos et al., 2014; Enomoto et al., 2011; Murray 

et al., 2015; Yu et al., 2019), which are deficits commonly comorbid with chronic pain (Dick 

and Rashiq, 2007; Povedano et al., 2007; Ryan et al., 1993; Schiltenwolf et al., 2014). 

Conversely, another class of cortical inhibitory neurons, somatostatin-expressing (SOM) 

interneurons, exhibit phasic activity during the delay period of the same task with no change 

from baseline during the reward period (Kim et al., 2016). Therefore, changes to the 

excitability of PVINs or SOM neurons in the mPFC are poised to be a critical factor in 

cognitive deficits associated with chronic pain. To date, electrophysiological analyses of 

mPFC PVINs or SOM neurons in a model of chronic pain have not been performed.

Traditionally, pain research has focused primarily on males, but it is clear that sex 

differences in pain exist (Mogil, 2012; Mogil and Bailey, 2010). It remains unknown 

whether pain-induced alterations to mPFC circuits are sexually dimorphic. Both women and 

female rodents demonstrate greater sensitivity to painful stimuli than males (Fillingim et al., 

2009; Vacca et al., 2014). Additionally, chronic pain drives sexually dimorphic cognitive 

dysfunction, with male mice showing more significant deficits in set-shifting tasks post-

injury than female mice (Shiers et al., 2018). However, functional alterations to defined 

mPFC GABAergic neurons in male and female mice in neuropathic pain models remain 

unclear. Here, we used transgenic breeding strategies to identify either PVINs or SOM 

neurons in both male and female mice. Our goal was to measure changes to the excitability 

of PVINs and SOM neurons in PL and infralimbic (IL) regions of the mPFC in the spared 

nerve injury (SNI) model of neuropathic pain.

RESULTS

SNI Sensitizes PL PVINs Only in L5 of Male Mice

We observed significant mechanical allodynia in both male and female PVIN-tdTomato 

transgenic mice at post-operative day (POD) 7 following SNI compared to that in sham mice 

(Figure 1A). Mechanical allodynia between male and female mice did not significantly 
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differ (Figure 1A). Following behavioral assessments, we measured the firing properties of 

fluorescently labeled PVINs in the PL cortex of sham and SNI animals using whole-cell 

electrophysiology in acute brain slices (Figures 1B and 1C). Recordings revealed that sham 

female PVINs have significantly higher firing frequency compared to that of sham male 

PVINs, which manifested as greater action potential (AP) firing in response to depolarizing 

step currents (Figures 1D and 1E; Table S1). Because PVINs are expressed diffusely 

throughout the lamina of the mPFC (Figure 1B), we examined changes to PVINs as a 

function of the precise position of the soma along the radial axis of the PL region. Analysis 

of all sham PVINs recorded revealed that female PVINs had a significantly greater input 

resistance than male PVINs (Figure 1F; Table S1). However, this disparity was driven by the 

significant difference in input resistance between L5 PVINs (Figure 1F; Table S1). Our 

recording data revealed that SNI enhanced excitability of PVINs in the PL cortex of male 

mice (Figures 1G and 1H; Table S2). Laminar analysis showed that SNI significantly 

increased input resistance only in L5 PVINs (Figure 1I; Table S3). We did not detect any 

significant differences in the excitability of PVINs between sham and SNI female mice 

(Figures 1J–1L; Table S2). Together, these data indicate that 7–8 days following SNI, PVINs 

in a specific lamina of PL cortex are sensitized in male, but not female, mice.

SNI Increases Frequency of Synaptic Input to L5 PL PVINs Only in Male Mice

We next recorded spontaneous excitatory post-synaptic currents (sEPSCs) from L5 PVINs in 

the PL cortex from male and female mice. We found that frequency, but not amplitude, of 

sEPSCs was significantly greater in female PL PVINs (Figures 2A–2D; Table S4). To assess 

potential changes to synaptic activity driven by nerve injury, we next recorded sEPSCs from 

PVINs in the PL cortex from male sham and SNI mice (Figure 2E; Table S4). We found that 

SNI increased sEPSC frequency recorded in L5 PVINs of male mice but did not change 

sEPSC amplitude (Figure 2F; Table S4). While the increase in sEPSC frequency was not 

significant (t(22) = 1.58, p = 0.06, Student’s unpaired t test), it is consistent with findings of 

a previous study in male mice showing significantly increased sEPSC frequency in PL 

PVINs recorded 10 days after SNI (Zhang et al., 2015). Plots of mean cumulative 

distribution curves revealed an enhanced probability for shorter inter-EPSC intervals in L5 

PVINs from male SNI mice (Figure 2G; Table S4). Mean cumulative distribution curves for 

sEPSC amplitude showed no noticeable differences (Figure 2H; Table S4). We observed no 

significant differences in the frequency or amplitude of sEPSCs recorded in L5 PVINs from 

female sham and SNI mice (Figures 2I–2L; Table S4).

SNI Reduces Input Resistance of PL-SOM Neurons Only in Layer 2/3 of Female Mice

Both male and female SOM-tdTomato transgenic mice at POD7 following SNI displayed 

significant mechanical allodynia compared to sham mice (Figure 3A; Table S3). As in 

PVIN-tdTomato mice, mechanical allodynia measures between male and female mice did 

not significantly differ (Figure 3A; Table S3). In contrast to PVINs, recordings from 

fluorescently labeled SOM neurons in the PL cortex (Figures 3B and 3C; Table S3) revealed 

no significant differences in AP firing or input resistance between female and male mice 

(Figures 3D–3F; Table S3). Recordings showed no significant differences in the excitability 

of SOM neurons from SNI male mice (Figures 3G and 3H; Table S3). However, we found 

that input resistance was not statistically different between male sham and SNI SOM 
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neurons (Figure 3I; Table S3). We found that AP firing in SOM neurons from female sham 

and SNI mice did not differ, but we observed a decreased input resistance in layer 2/3 (L2/3) 

SOM neurons from SNI mice (Figures 3J–3L; Table S3).

SNI Significantly Reduces Frequency of sEPSCs in L2/3 PL-SOM Neurons of Female Mice

To assess SNI-induced changes in synaptic activity, we recorded sEPSCs from layer 2/3 of 

the PL cortex in SOM male and female mice. We found that neither the frequency nor the 

amplitude of sEPSCs from SOM neurons differed between male and female mice (Figures 

4A–4D; Table S4). We also found that SNI did not alter amplitude or frequency of sEPSCs 

in male mice (Figures 4E–4G; Table S4). Mean cumulative distribution curves for amplitude 

and inter-EPSC intervals were also similar (Figure 4H; Table S4). Contrary to those in 

males, L2/3 SOM neurons from female SNI mice demonstrated significantly reduced sEPSC 

frequency and noticeable differences in the mean cumulative distribution curves for inter-

EPSC intervals compared to sham mice (Figures 4I–4L; Table S4). However, no differences 

in amplitude of sEPSCs from L2/3 SOM neurons were detected between female SNI and 

sham mice (Figures 4I–4L; Table S4).

SNI Does Not Alter Excitability of Either PVINs or SOM Neurons in IL Cortex

Our previous work shows that sciatic nerve injury decreases the excitability of L5 pyramidal 

neurons in the PL, but not the IL, region of the mPFC (Cheriyan and Sheets, 2018). 

Therefore, we tested whether SNI altered the firing frequencies of PVINs and SOM neurons 

in the IL cortex again using whole-cell electrophysiology in acute brain slices. We found that 

L2/3 IL-SOM neurons fired fewer APs in female sham mice compared to sham males (U = 

13.5, n1 = 7, n2 = 10, p = 0.03) and that SNI reduced the AP height of L2/3 IL-SOM neurons 

in female SNI mice compared to sham (t(13) = 2.51, p = 0.03; data not shown). Therefore, 

SNI does not significantly alter the intrinsic profile of either PVINs or SOM+ neurons in the 

IL cortex at POD7–POD8.

DISCUSSION

Our data indicate that SNI leading to neuropathic pain behavior evokes changes to mPFC 

inhibitory neurons not only in a sub-type-specific manner (PVINs versus SOM neurons) but 

also in a regional, laminar-specific, and sex-specific manner. Disparities in SNI-induced 

changes between PVINs and SOM neurons have implications for distinct changes to mPFC 

inhibition based on the local targeting of these two major subtypes of inhibitory neurons. In 

other cortical regions, PVINs target soma and basal dendrites of intralaminar cortical 

pyramidal neurons, thereby altering AP output (Markram et al., 2004; Marlin and Carter, 

2014). Therefore, our data indicate that SNI-evoked hyperexcitability of L5 PVINs in male 

mice dampens L5 pyramidal neuron output, consistent with previous findings (Zhang et al., 

2015). Indeed, we have found that chronic constriction of the sciatic nerve enhances 

excitation of L5, but not L2/3, PVINs stimulated with uncaged glutamate (Cheriyan and 

Sheets, 2018). Explanations for why the sensitization of PVINs is specific to L5 following 

nerve injury have yet to emerge. Previous findings indicate that nerve injury elicits 

hyperactivity of ascending BLA inputs, which drives increased feed-forward inhibition of L5 

pyramidal neurons in the PL cortex (Ji et al., 2010; Zhang et al., 2015). Additionally, one 
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study showed that targeting of BLA is strongest to PVINs compared to SOM and pyramidal 

neurons in the mPFC (McGarry and Carter, 2016). This suggests that SNI sensitization of 

BLA-mPFC inputs has the greatest impact on PVIN activity, but preferential targeting of 

BLA to L5 versus L2/3 PVINs remains unknown.

Local inputs from SOM neurons, also known as Martinotti cells (Kawaguchi and Kubota, 

1996, 1997; Wang et al., 2004), target both basal and apical dendrites of cortical pyramidal 

neurons (Fino and Yuste, 2011; Gupta et al., 2000; Kawaguchi and Kubota, 1997; Marlin 

and Carter, 2014). Inhibition targeted to dendrites regulates the probability and wider timing 

window for dendritic events (Kim et al., 1995), including Ca2+ influx, Ca2+ APs, and 

NMDA spikes (Doron et al., 2017; Hayama et al., 2013; Larkum et al., 2001; Marlin and 

Carter, 2014). Inhibition of L2/3 SOM neurons increases both dendritic excitability and burst 

firing of excitatory pyramidal neurons in somatosensory cortex (Gentet et al., 2012). Here, 

we show that SNI reduced synaptic excitability and input resistance of L2/3 SOM neurons in 

female mice. This suggests that neuropathic pain may enhance the excitability of PL 

pyramidal neurons in female mice via reduced L2/3 SOM activity. Why attenuated sEPSC 

frequency and input resistance are observed only in the L2/3 neurons of female, but not 

male, SNI mice remains unresolved. Why SNI drives the hypoexcitability of SOM neurons 

and hyperexcitability of PVINs in the PL cortex is also unclear. PVINs target SOM neurons 

in the somatosensory cortex (Walker et al., 2016), which suggests that the hypoexcitability 

of the PL-SOM neurons from SNI mice may be driven, at least in part, by enhanced local 

inhibitory inputs from hyperexcitable PVINs.

Previous work shows that the local input strength of PVINs and SOM neurons onto cortical 

pyramidal neurons differs based on projection target (Lee et al., 2014; McGarry and Carter, 

2016; Rock and Apicella, 2015). In the mPFC, PVINs preferentially target subcortically 

projecting pyramidal neurons defined by thick-tufted apical dendrites and robust expression 

of h-current (Lee et al., 2014). We have shown that PL neurons with subcortical projections 

to the PAG are hypoexcitable following chronic constriction injury (CCI) of the sciatic nerve 

in male mice (Cheriyan and Sheets, 2018). Based on our present data, this suggests that SNI 

sensitizes PVINs in male mice, which are preferentially targeting PAG-projecting PL 

neurons and dampening their excitability. In fact, a recent study showed that nerve injury 

augments feed-forward inhibition of mPFC output to the PAG (Huang et al., 2019). Because 

SNI had no effect on PL PVIN excitability in female mice, it is likely that SNI also does not 

dampen PL output to the PAG in female mice. Recent work supports this notion by showing 

that nerve injury does not alter AP firing in L5 pyramidal neurons in the mPFC of female 

mice (Gadotti et al., 2019).

The effects of SNI on PVINs in mPFC may underlie specific aspects of cognitive 

dysfunction associated with chronic pain. The activity of PVINs drives cortical gamma 

frequency in the cortex (Lewis et al., 2012; Sohal et al., 2009), which is associated with WM 

in humans (Howard et al., 2003). Reduced function of PVINs is implicated in impaired 

cognition driven by attenuated gamma oscillations in cortical activity (Lewis et al., 2012). 

Although our data indicate an enhanced function of PVINs after SNI, increased excitability 

of PVINs indicates a shift in excitation-inhibition balance, which likely alters the prevalence 

of cortical gamma frequency associated with cognitive control. Indeed, gamma oscillations 
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in the PFC are positively associated with both chronicity and severity of pain in back pain 

patients (May et al., 2019). Cognitive control, or executive control, is defined as flexible 

adaptation of mental resources in order to achieve a particular goal and includes behaviors 

such as attention, decision making, and memory (Mackie et al., 2013). These cognitive 

behaviors are impaired in rodent models of chronic pain (Leite-Almeida et al., 2009; Low et 

al., 2012; Shiers et al., 2018). A recent report showed impaired set-shifting, a test of 

cognitive flexibility, in male, but not female, injured mice (Shiers et al., 2018). While 

cellular mechanisms underlying sexually dimorphic cognitive deficits associated with 

chronic pain remain unresolved, our present data showing increased AP firing in PL PVINs 

from male, but not female, SNI mice provide new insight into sex-specific changes within 

cortical circuits implicated in executive control.

Our results showing that SNI does not alter the excitability of PVINs or SOM neurons in the 

IL region of the mPFC are consistent with studies showing that IL pyramidal neurons are 

unchanged in chronic pain models (Cheriyan and Sheets, 2018; Mitrić et al., 2019). 

However, this result is also intriguing given previous findings in other pain models. In a 

model of arthritic pain, inhibition of IL pyramidal neurons is enhanced due to a reduction in 

retrograde endocannabinoid depression of presynaptic inhibitory inputs (Kiritoshi et al., 

2016). However, there is evidence that cannabinoid receptors 1 (CB1s) are not expressed in 

PVINs (Speed et al., 2015; Wedzony and Chocyk, 2009) but are detected in SOM neurons 

within the somatosensory cortex (Hill et al., 2007). Expression of CB1s in SOM neurons 

within mPFC has yet to be delineated. Therefore, our reported lack of SNI-induced changes 

to IL PVINs and IL-SOM neurons may reflect an absence of CB1 expression in these 

neurons. Studies report CB1 expression on cholecystokinin (CCK)-expressing interneurons 

in hippocampus and somatosensory cortex (Bodor et al., 2005; Tsou et al., 1999); however, 

functional studies of mPFC-CCK+ neurons have not been explored in any pain model. 

Reduced PV expression and shorter axon initial segments are observed in L5/6 IL neurons of 

male mice 3 weeks following SNI (Shiers et al., 2018), which suggests that our recordings 

7–8 days after SNI may be too early to detect significant changes to IL PVINs and IL-SOM 

neurons. Nonetheless, consistent with our present findings in the PL region, this same study 

shows that SNI-induced alterations to IL neurons were specific to male mice (Shiers et al., 

2018).

Overall, our data show complex and differential changes to mPFC inhibitory neurons of 

male and female mice in the SNI model of neuropathic pain. We hope that this research will 

update our knowledge of brain permutations associated with chronic pain so as to lead to 

more targeted pharmacotherapeutic strategies for cognitive deficits between male and female 

pain patients. Next steps will involve optogenetic or chemogenetic stimulation of SOM 

neurons and PVINs in the PL region of male and female SNI mice during measurements of 

cognitive flexibility and anxiety behaviors. These experiments will provide key insight into 

the role of specific inhibitory neuron subclasses in various disorders comorbid with chronic 

pain.
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STAR⋆METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to, and will be fulfilled by, the Lead Contact, Patrick L. Sheets (plsheets@iu.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The datasets supporting the current study have not been 

deposited in a public repository because all data collected are included in the study. Data are 

available from the Lead Contact upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were approved by the Indiana University School of Medicine Animal Care 

and Use Committee (protocol number 11234) and adhered to the animal welfare guidelines 

of the National Institutes of Health. Transgenic mice expressing the red fluorescent protein 

TdTomato in cortical neurons expressing somatostatin or parvalbumin were obtained by 

mating female SST-IRES-Cre (SST < tm2.1(cre)Zjh > /J; stock #013044; Jackson Labs; 

(Taniguchi et al., 2011) or PV-IRES-Cre (B6;129P2-Pvalbtm1(cre)Arbr/J;stock #008069; 

Jackson Labs; (Hippenmeyer et al., 2005) mice with male Ai14 (B6.Cg-

Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J; stock #007914;Jackson Labs; (Madisen et al., 2010) 

mice. Using immunohistochemistry, an overlap rate of PVIN with SOM+, and vice versa, of 

2%–6% was identified; however, electrophysiological signatures for each cell type have 

been identified (Hu et al., 2013; Nassar et al., 2015). Further inclusion/exclusion criteria is 

detailed in the electrophysiology subsection of the methods. Female and male SOM (n = 65; 

33 males and 32 females) and PVIN mice (n = 61; 30 males and 31 females) aged 36–60 

days and weighing 15–22 g were kept on a 24-hour light/dark cycle (lights on 7AM and off 

7PM) and fed ad libitum for the duration of the experiments. All behavioral experiments and 

surgeries were conducted during the light phase (typically 7 am- 10am). Mice were group 

housed until after the SNI surgery, after which time they were single-housed to prevent 

possible development of empathic responses to pain in sham animals and to reduce the 

incidence of wound reopening.

METHOD DETAILS

Spared Nerve Injury (SNI) Model—Mice were typically tested in groups of 2. For each 

group, the experimenter was blinded to the baseline von Frey results and randomly selected 

one mouse to be SNI and one to be sham. Mice were weighed and briefly anesthetized in an 

anesthesia box with 1.5%–2.5% isoflurane in 100% O2 at a flow rate of 0.8–1.0 L/min 

(SurgiVet Isotech 4, Smith). The snout of the mouse was then placed into a flexible nose 

cone (Vetamac, Rossville, IN) connected to the isoflurane vaporizer allowing for continued 

anesthesia. Body temperature was maintained at 37°C using a feedback-controlled heating 

pad (FHC; Bowdoin, ME).The lateral surface of the left hind leg was shaved and disinfected 

using betadine and isopropyl alcohol. An approximately 4 mm incision through the skin was 

made and the underlying muscle layers were separated by blunt dissection using saline 

moistened sterile wooden dowels. The trifurcation of the left sciatic nerve was visualized. 
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For SNI mice, an approximately 2 mm section of the tibial and common peroneal nerves 

distal to the trifurcation was removed, leaving the sural nerve intact. For sham mice, the 

trifurcation was exposed and visualized but not manipulated. The muscle layers of both SNI 

and sham mice were replaced and the outer skin layers were glued together using Vetbond 

(3M, MN). Approximately half of the mice were given a subcutaneous injection of 

meloxicam (1mg/kg) immediately after closing the incision. We found that meloxicam did 

not affect the development of allodynia. All mice recovered in a clean home cage with ad 
libitum water and wet feed on a heat pad for at least 30 min prior to being returned to the 

vivarium. Mice were monitored 4 days post-operation for signs of excessive pain such as 

reduced eating, drinking, activity or grooming.

Pain Assessment—Following surgery, the experimenter was blinded to SNI and sham 

groups. These animals were randomly assigned a number one or two and the animal 

assigned number one was always tested first by the blinded experimenter. The behavior 

testing apparatus was an elevated wire-mesh platform that held 4-inch wide, 4.5 inch long 

and 4.5-inch tall glass cubicles. On testing days, mice acclimated to the apparatus for 30–60 

min prior to testing. Assessment of mechanical allodynia via paw-withdrawal threshold 

(PWT) was performed using von Frey filaments (Touch Test Sensory Evaluator, North Coast 

Medical Inc., Morgan Hills, CA) in combination with the up-down method to quantify the 

responses at 50% gram force (Bonin et al., 2014; Chaplan et al., 1994). PWTs were 

measured at baseline (prior to SNI or sham surgery), and at postoperative day 7 (POD7). The 

experimenter was blinded to the surgical group of the mice throughout the duration of the 

experiment. Mice that were outliers as determined by the ROUT method with Q = 1 were 

excluded from further analysis. This included 2 SNI and 1 sham from the PV-tdTomato mice 

and 2 SNI and 2 sham from the SOM-tdTomato mice.

Slice Preparation—Mice were euthanized on either POD7 or POD8 for subsequent 

recordings. For both sham and SNI groups, mice were briefly (~15–20s) anesthetized with 

isoflurane and decapitated Brains were rapidly dissected and placed in ice-cold carbogenated 

choline (in mM-25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 0.5 CaCl2, 7 MgCl2, 25 D-glucose, 

110 C5H14ClNO, 11.60 C6H7NaO6, 3.09 C3H3NaO3) for sectioning. Three hundred 

micrometer thick coronal slices containing mPFC were prepared using a VT1200s Leica 

Vibratome and transferred to artificial cerebrospinal fluid (ACSF) solution (in mM- 127 

NaCl, 25 NaHCO3, 1,25 NaH2PO4, 2.5 KCl, 25 D-glucose, 2 CaCl, 1 MgCl) for 30 min at 

37°C then at room temperature until recording.

Electrophysiology—Recordings in the mPFC contralateral to injury took place on POD7 

or POD8.Borosilicate glass pipettes were fabricated using a horizontal puller (P-97 Sutter) to 

have series resistances between 2 and 5 MΩ and pipette capacitance was compensated. A 

cesium-based internal was used for sEPSC in SOM mice (in mM- cesium methanesulfonate, 

10 HEPES, 10 sodium phosphocreatine, 4 magnesium chloride, 4 sodium ATP, 0.4 sodium 

GTP, 3 ascorbic acid, 1 EGTA, 0.5 QX-314) while a potassium-based internal solution was 

used for all other recordings including sEPSC in PVINs (in mM- 128 K-gluconate, 10 

HEPES, 10 sodium phosphocreatine, 4 magnesium chloride, 4 sodium ATP, 0.4 sodium 

GTP, 3 ascorbic acid, 1 EGTA, and ~4mg/ml biocytin). We found that K-internal solution 
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allowed for more stable recordings in PVINs. Recordings targeted labeled neurons 50–80 

μm deep within in the slice. Series resistance for each neuron was recorded in voltage clamp 

mode. It was not compensated but was required to be < 35 MU for inclusion in the analysis. 

Neuronal properties were recorded in current-clamp mode at resting membrane potential 

except for voltage sag. Voltage sag was measured from a membrane potential of −70 ± 3 mV 

by presenting multiple one second hyperpolarizing current steps (−200 pA, −150 pA, −100 

pA, −50 pA). Percentage voltage sag was calculated using the peak voltage (Vpeak) and 

steady-state voltage (Vss) using the Equation 100 × (Vpeak–Vss)/Vpeak. Input resistance was 

measured from the steady-state responses to a series of hyperpolarizing and subthreshold 

depolarizing current steps (duration 1.0 s, amplitude −200 to 100 pA, 50 pA steps), as the 

slope of a linear least-squares fit to the resulting voltage–current relationship. Current 

threshold for action potentials (APs) was defined as the magnitude of current step that 

produced at least one AP. Voltage threshold (in mV) for APs was defined as the point when 

dV/dt exceeded 10% of its maximum value, relative to a dV/dt baseline measured 2 ms 

before the AP peak, which was measured as the maximum membrane potential reached after 

threshold. All sEPSC recordings were filtered at 2 kHZ and digitized at 10 kHZ while all 

other recordings were filtered at 4 kHZ and digitized at 10 kHZ. For sEPSC recordings, 

Gabazine (Tocris, Bristol, UK; 10 or 25 μM) was added to the ACSF but blockers were not 

added to the ACSF for other recordings. Cells were allowed to equilibrate for 3–5 min prior 

to the onset of recordings for sEPSC. Resting membrane potential, series resistance, and 

input resistance were collected prior to the onset of sEPSC recordings. Means for amplitude 

and frequency were collected and analyzed for sEPSC recordings using custom MATLAB 

(MathWorks, Natick, MA) analysis routines. Spontaneously firing SOM+ neurons have been 

previously identified in the presubicular cortex and amygdala (Nassar et al., 2015; Wilson et 

al., 2019). We detected spontaneously firing SOM+ neurons (total = 14), but excluded them 

from analysis due to variable waveforms, significant rundown at higher current injections 

and instability of leak currents. Thus, the fidelity of the recordings could not be guaranteed. 

To be confident that the cells we recorded were indeed PVIN and SOM+ neurons, we 

conducted principal component analysis (PCA). Similar to Hu et al. (2013), we used 4 

electrophysiological parameters (action potential half-width, slow afterhyperpolarization, 

fast afterhyperpolarization, and spike frequency adaptation). This generated 3 main clusters 

of cells (cluster 1 was predominately SOM+ neurons, cluster 2 was predominately PVINs 

and cluster 3 was a mix of both cell types), which is similar to Nassar et al. (2015). For each 

cluster identified we further grouped the individual cell types into sub-clusters and 

conducted t tests on various electrophysiological variables. These comparisons resulted in 

significant differences between PVIN and SOM+ neurons, the most consistent of which was 

a difference in input resistance. Therefore, we are confident that the cells we have identified 

as PVIN and SOM+ neurons are correct.

QUANTIFICATION AND STATISTICAL ANALYSES

Power was set at 0.80, alpha of 0.05. For EPSCs, a priori power analysis was based off of the 

work of Zhang et al. (Zhang et al., 2015). For all other data, power analysis was completed 

post hoc. Sex was not included as a variable for power analysis as we did not initially 

compare males and females. We conducted separate power analysis for behavioral and 

electrophysiological data but did not conduct power analysis for every neuronal property that 
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we report. All data were first analyzed for normality and outliers using the D’Agostino-

Pearson normality test and the ROUT method with Q set to 1% in Prism (GraphPad 

Software, San Diego, CA). Two-way repeated-measures ANOVA was used for behavioral 

and FI curve analysis. Unpaired t tests or Mann-Whitney U tests were used for excitability 

and sEPSC data. Sidak’s multiple comparisons test was used for all multiple comparisons. 

Cells that exhibited series resistance >35 mOhm were excluded from analysis. For sEPSC, 

cells that had greater than 15% change in series resistance from baseline to the end of 

recording were removed from further analysis. Power and sample size were calculated using 

GPower (Heinrich-Heine-Universität, Düsseldorf, Germany).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Nerve injury enhances excitability of prelimbic PV+ neurons in male mice

• Nerve injury reduces EPSC frequency in prelimbic SOM+ neurons in female 

mice

• These changes to PV+ and SOM+ neurons are laminar specific

• Nerve injury does not affect PV+ or SOM+ neurons in infralimbic cortex
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Figure 1. SNI Increases PV Excitability in PL Cortex of Male, but Not Female, Mice
(A) Mechanical allodynia at baseline and post-operative day 7 (POD7) measured in male 

and female sham and SNI mice. Two-way repeated-measures ANOVA: interaction, F(1, 59) 

= 26.87, p < 0.0001; injury, F(1, 59) = 10.11, p = 0.0024; time, F(1, 59) = 60.31, p < 0.0001. 

Sidak post hoc tests revealed no significant differences between males and females at 

baseline and POD7. *p < 0.05; **p < 0.0001.

(B) Fluorescent confocal 10× image displaying distribution of PV-tdTomato neurons 

(PVINs) in the PL cortex (D, dorsal; V, ventral; M, medial; L, lateral).

(C) Representative images of a PVIN recording in PL cortex at 4× (left) and 60× (right).

(D and E) Example traces of action potential (AP) firing (D) and mean (±SEM) number of 

APs elicited in response to increasing step current from male and female sham mice (E) 

(two-way ANOVA: interaction, F(12, 408) = 5.00, p < 0.0001; sex, F(1, 34) = 1.34, p = 0.01; 

current, F(12, 408) = 108.9, p < 0.0001; *p < 0.05, Sidak post hoc test).

(F) Raw data and boxplot representation for input resistance versus normalized soma 

location for total (left: Mann-Whitney U = 90, n1 = 20, n2 = 16, p = 0.03), L2/3 (middle: 

t(12) = 0.27, p = 0.79), and L5 (right: t(20) = 2.35, p = 0.03) PVINs from sham males (total, 

n = 20 neurons; 9 mice) and females (total, n = 16 neurons; 6 mice). *p < 0.05.

(G and H) Example traces of AP firing (G) and mean (±SEM) number of APs elicited from 

male sham and SNI mice (H) (two-way ANOVA: interaction, F(12, 432) = 5.03, p < 0.0001; 
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injury, F(1, 36) = 4.49, p = 0.04; current, F(12, 432) = 143.5, p < 0.0001; *p < 0.05, Sidak 

post hoc test).

(I) Input resistance versus normalized soma location for total (left: Mann-Whitney U = 123, 

n1 = 18, n2 = 20, p = 0.10), L2/3 (middle: t(11) = 0.15, p = 0.89), and L5 (right: t(23) = 2.10, 

p = 0.05) PVINs from male sham (total, n = 20 neurons; 9 mice) and SNI (total, n = 18 

neurons; 6 mice). *p = 0.05.

(J and K) Example traces of AP firing (J) and mean (±SEM) number of APs elicited from 

female sham and SNI mice (K) (two-way ANOVA: interaction, F(12, 444) = 0.13, p = 0.99; 

injury, F(1, 37) = 0.04, p = 0.87; current, F(12, 444) = 128.1, p < 0.0001).

(L) Input resistance versus normalized soma location for total (t(37) = 0.31, p = 0.76), L2/3 

(t(16) = 0.71, p = 0.49), and L5 (Mann-Whitney U = 39, n1 = 13, n2 = 8, p = 0.37) PVINs 

from female sham (total, n = 16 neurons; 6 mice) and SNI (total, n = 22 neurons; 7 mice). 

Plus symbol indicates outlier in MATLAB.

Data represent mean ± SEM.
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Figure 2. SNI Reduces sEPSCs in L5 PL PVINs from Male Mice Only
(A–D) Sample sEPSC traces (A); sEPSC amplitude (B), t(20) = 1.19, p = 0.23; sESPC 

frequency (C), t(20) = 4.73, **p = 0.0001; and mean cumulative distribution curves (D) (top, 

amplitude; bottom, inter-EPSC interval) for male (n = 12 neurons; 5 mice) and female (n = 

13 neurons; 5 mice) sham mice.

(E–H) Sample sEPSC traces (E); sEPSC amplitude (F), t(21) = 1.17, p = 0.26; sESPC 

frequency (G), t(22) = 1.58, p = 0.06); and mean cumulative distribution curves

(H) for male sham (n = 12 neurons; 5 mice) and SNI (n = 12 neurons; 5 mice).

(I–L) Sample sEPSC traces (I); sEPSC amplitude (J), t(22) = 0.98, p = 0.34; sESPC 

frequency (K), t(22) = 0.83, p = 0.41; and mean cumulative distribution curves (L) for 

female sham (n = 13 neurons; 5 mice) and SNI (n = 11 neurons; 4 mice). Data represent 

mean ± SEM.

Jones and Sheets Page 18

Cell Rep. Author manuscript; available in PMC 2020 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. SNI Decreases Excitability of SOM Neurons in PL Cortex
(A) Mechanical allodynia at baseline and post-operative day 7 (POD7) measured in male 

and female sham and SNI mice. Two-way repeated-measures ANOVA: interaction, F(1, 63) 

= 20.39, p < 0.0001; treatment, F(1, 63) = 14.25, p = 0.0004; time, F(1, 63) = 60.29, p < 

0.0001. Sidak post hoc tests revealed no significant differences between males and females 

at baseline and POD7. *p < 0.05; **p < 0.0001.

(B) Example fluorescent confocal 10× image of a brain slice displaying distribution of 

SOM-tdTomato (SOM) neurons in the PL cortex.

(C) Representative images of a SOM neuron recording in PL cortex at 4× (left) and 60× 

(right).

(D and E) Example traces of action potential (AP) firing (D) and mean (±SEM) number of 

APs elicited in response to increasing step current from sham male and female mice (E) 

(two-way ANOVA: interaction, F(12, 420) = 0.52, p = 0.90; sex, F(1, 35) = 1.76, p = 0.19; 

current, F(12, 420) = 92.62, p < 0.0001).

(F) Raw data and boxplots representation for input resistance versus normalized soma 

location for total (Mann-Whitney U = 144, n1 = 19, n2 = 17, p = 0.59), L2/3 (t(15) = 0.11, p 

= 0.91), and L5 t(15) = 0.62, p = 0.54) SOM neurons from sham females (total, n = 17 

neurons; 8 mice) and males (total, n = 18 neurons; 7 mice).
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(G and H) Example traces of AP firing (G) and mean (±SEM) number of APs elicited from 

male sham and SNI mice (H) (two-way ANOVA: interaction, F(12, 408) = 1.03, p = 0.42; 

injury, F(1, 34) = 2.46, p = 0.13; current injection, F(12, 408) = 78.76, p < 0.0001).

(I) Input resistance versus normalized soma location for total (t(34) = 1.83, p = 0.08), L2/3 

(t(15) = 1.64, p = 0.12), and L5 (Mann-Whitney U = 31, n1 = 8, n2 = 9, p = 0.67) SOM 

neurons from male sham (total, n = 20 neurons; 7 mice) and SNI (total, n = 18 neurons; 8 

mice).

(J and K) Example traces of AP firing (J) and mean (±SEM) number of APs elicited from 

female sham and SNI mice (K) (two-way ANOVA: interaction, F(12, 384) = 0.67, p = 0.78; 

injury, F(1, 32) = 0.16, p = 0.69; current, F(12, 384) = 95.05, p < 0.0001).

(L) Input resistance versus normalized soma location for total (Mann-Whitney U = 90, n1 = 

16, n2 = 17, p = 0.10), L2/3 (t(16) = 2.39, p = 0.03), and L5 (Mann-Whitney U = 27, n1 = 7, 

n2 = 8, p = 0.96) SOM neurons from female sham (total, n = 17 neurons; 8 mice) and SNI 

(total, n = 16 neurons; 7 mice). Plus symbol indicates outlier in MATLAB. *p < 0.05.

Data represent mean ± SEM.
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Figure 4. SNI Significantly Reduces Frequency of sEPSCs in L2/3 SOM Neurons of Female Mice
(A–D) Sample sEPSC traces (A), sEPSC amplitude (B) (t(13) = 1.20, p = 0.25), (C) sESPC 

frequency (t(12) = 0.87, p = 0.40), and mean cumulative distribution curves

(D) (top, amplitude; bottom, inter-EPSC interval) for L2/3 SOM neurons from sham males 

(n = 7 neurons; 3 mice) and females (n = 7 neurons; 4 mice).

(E–H) Sample sEPSC traces (E), sEPSC amplitude (F) (t(12) = 1.16, p = 0.27), sEPSC 

frequency (G) (t(13) = 0.81, p = 0.43), and mean cumulative distribution curves

(H) for L2/3 SOM neurons from male sham (n = 7 neurons; 3 mice) and SNI (n = 8 neurons; 

3 mice).

(I–L) Sample sEPSC traces (I), sEPSC amplitude (J) (t(14) = 0.28, p = 0.78), sEPSC 

frequency (K) (t(12) = 2.59, p = 0.02), and mean cumulative distribution curves (L) for L2/3 

SOM neurons from female sham (n = 7 neurons; 4 mice) and SNI (7 neurons; 5 mice). *p < 

0.05.

Data represent mean ± SEM.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Streptavidin Alexa Fluor 488 conjugate Invitrogen Ref# S32354; RRID: AB_2315383

Chemicals, Peptides, and Recombinant Proteins

SR95531 hydrobromide: Gabazine Tocris Cat # 1262; PubChem CID: 107896

Biocytin Tocris Cat # 3349; PubChem CID: 83814

QX314 chloride Tocris Cat # 2313; PubChem CID: 21462

HEPES Sigma-Aldrich Cat# H4034; PubChem CID: 23831

Potassium Gluconate Sigma-Aldrich Cat# P1847; PubChem CID: 16760467

Phosphocreatine disodium salt hydrate Sigma-Aldrich Cat# P7936; PubChem CID: 43835030

Magnesium Chloride Solution Sigma-Aldrich Cat# M1028; PubChem CID: 24584

Adenosine 5’-triphosphate disodium salt hydrate Sigma-Aldrich Cat# A6419; PubChem CID: 16218877

Guanosine 5’-triphosphate sodium salt hydrate Sigma-Aldrich Cat# G8877; PubChem CID: 13544577

Ascorbic Acid Sigma-Aldrich Cat# 5960; PubChem CID: 54670067

Cesium Methanesulfonate Sigma-Aldrich Cat# C1426; PubChem CID: 5148066

Ethylene glycol-bis(2-amino-ethylether)-N,N,N’,N’- 
tetraacetic acid (EGTA)

Sigma-Alrdich Cat# E3889; PubChem CID: 6207

Sodium Chloride Sigma-Aldrich Cat# S7653; PubChem CID: 5234

Sodium Bicarbonate Sigma-Aldrich Cat# S6014; PubChem CID: 24192197

Sodium Phosphate Monohydrate Monobasic Sigma-Aldrich Cat# S9638; PubChem CID: 516949

Potassium Chloride Solution Sigma-Aldrich Cat# 60137; PubChem SID: 24881800

D-glucose Sigma-Aldrich Cat# G8270; PubChem CID: 79025

Calcium Chloride Sigma-Aldrich Cat# 793639; PubChem CID: 24854

Choline Chloride Sigma-Aldrich Cat# C1879; PubChem CID: 19844489

Sodium Pyruvate Sigma-Aldrich Cat# P8574; PubChem CID: 10154024

Isoflurane USP Patterson Veterinary Cat # 07-893-2374; NDC: 14043-704-05

Normal Saline McKesson MFR# 37-6240

Experimental Models: Organisms/Strains

Mouse: SOM+: SST < tm2.1(cre)Zjh > /J Jackson Laboratories Stock # 013044; RRID: IMSR_JAX:013044

Mouse: PV+: B6;129P2-Pvalbtm1(cre)Arbr/J Jackson Laboratories Stock # 008069; RRID: IMSR_JAX:008069

Mouse: Ai14: B6.Cg-Gt(ROSA) 26Sortm14(CAG-

tdTomato)Hze/J

Jackson Laboratories Stock # 007914; RRID: IMSR_JAX:007914

Software and Algorithms

Prism version 7.04 GraphPad Software RRID: SCR_002798

MATLAB version R2018b MathWorks RRID: SCR_001622

GPower Heinrich-Heine- Universität RRID: SCR_013726

Adobe Illustrator CC 2018 Adobe Inc. RRID: SCR_010279

BioRender BioRender https://biorender.com

Other

Touch Test Sensory Evaluator: von Frey Filaments North Coast Medical Inc. Item #s: NC12775- 01, 02, 04, 05, 06, 08, 10,12

Nikon Confocal Nikon A1R
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REAGENT or RESOURCE SOURCE IDENTIFIER

Vibratome Leica VT1200S

Axon CNS Multiclamp Amplifier Molecular Devices 700B

Cool LED Scientifica pE-4000

Upright Microscope Olympus U-CMDPTS

Microscope Objectives Olympus 4X and 60X

Inline Heater and Monitor Warner Instruments Cat# 64–0102 and TC-324B

Anesthesia System Vetamac VAD Compact II

Feedback Rodent Warmer Stoelting X2

Micropipette Puller Sutter Instruments Flaming/Brown P-97

Borosilicate Glass Capillaries with Filaments Warner G150-F
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