
Yan Guo is an associate professor in the Department of Internal Medicine, University of New Mexico. He is also the Director of Bioinformatics Shared
Resources for University of New Mexico Comprehensive Cancer Center.
Submitted: 4 April 2019; Received (in revised form): 3 June 2019

© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

1479

Briefings in Bioinformatics, 21(4), 2020, 1479–1486

doi: 10.1093/bib/bbz084
Advance Access Publication Date: 7 October 2019
Case Study

MutEx: a multifaceted gateway for exploring
integrative pan-cancer genomic data
Jie Ping, Olufunmilola Oyebamiji, Hui Yu, Scott Ness, Jeremy Chien, Fei Ye,
Huining Kang, David Samuels, Sergey Ivanov, Danqian Chen,
Ying-yong Zhao and Yan Guo

Corresponding author: Yan Guo, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87109, USA. Tel: 505-925-0099;
Fax: 505-925-4459; E-mail: yanguo1978@gmail.com; Ying-yong Zhao, Key Laboratory of Resource Biology and Biotechnology in Western China, School of
Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China. Tel: 029-8830-5273; Fax: 29-8830-3572; E-mail: zyy@nwu.edu.cn

Abstract

Somatic mutation and gene expression dysregulation are considered two major tumorigenesis factors. While independent
investigations of either factor pervade, studies of associations between somatic mutations and gene expression changes
have been sporadic and nonsystematic. Utilizing genomic data collected from 11 315 subjects of 33 distinct cancer types, we
constructed MutEx, a pan-cancer integrative genomic database. This database records the relationships among gene
expression, somatic mutation and survival data for cancer patients. MutEx can be used to swiftly explore the relationship
between these genomic/clinic features within and across cancer types and, more importantly, search for corroborating
evidence for hypothesis inception. Our database also incorporated Gene Ontology and several pathway databases to
enhance functional annotation, and elastic net and a gene expression composite score to aid in survival analysis. To
demonstrate the usability of MutEx, we provide several application examples, including top somatic mutations associated
with the most extensive expression dysregulation in breast cancer, differential mutational burden downstream of DNA
mismatch repair gene mutations and composite gene expression score-based survival difference in breast cancer. MutEx
can be accessed at http://www.innovebioinfo.com/Databases/Mutationdb_About.php.
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Introduction
Cancer is a complex and highly heterogeneous disease [1]. Most
common cancer types have been categorized into distinct sub-
types based on either phenotype or genomic characteristic. To
fully understand the complete landscape of cancer, often mul-
tiple types of genomic data were collected for large cancer con-
sortium studies, with The Cancer Genome Atlas (TCGA) being a
typical example. There are several resources utilizing large can-
cer consortium data resource for comprehensive cancer analy-
sis, such as Human Protein Atlas [2], Broad Institute’s Firehose,
Oncomine, etc. These resources offer the abilities to browse gene
expression profile of multiple cancers and provide basic differ-

ential and survival analysis based on gene expression. How-
ever, these resources have some severe limitations. For example,
Human Protein Atlas’s search function is limited to one gene
only. Firehose stores correlational analysis results, but it is with-
out any functional interpretation and visualization. Oncomine
contains the largest collection of cancer data sets. However,
many of its premium functions are not free. Inspired by these
previously constructed resources, we aim to develop a free novel
pan-cancer resource, which provides unique analysis functions
not presented in the previous resources.

Clever integrative analyses among these data often reveal
additional functional and regulatory aspects of cancers. A com-
mon example of integrative analysis between germline variants
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and gene expression is expression quantitative loci (eQTLs),
in which the relationship between single-nucleotide polymor-
phism and gene expression is being modeled with linear regres-
sion. These eQTLs were often found to be regulating specific
functions through the regulation of gene expression [3, 4]. Using
a similar concept, we can also measure the association between
somatic mutation and gene expression by dividing cancer
subjects into mutant and wild-type groups based on a gene
set’s mutation status. Using this strategy, we developed MutEx, a
gateway to varied integrations of the curated data on mutation-
associated gene expression dysregulation in cancer. With a
gene-centric perspective and a scope of 33 cancer types,
MutEx provides sophisticated query of somatic mutations and
their associations with gene expression dysregulation, thereby
providing additional insights into tumorigenesis mechanisms
of cancers. With concrete examples, we demonstrate the
effectiveness and unique features of MutEx.

Method
Based on TCGA genomic and clinical data, we developed MutEx,
a tool for assessing somatic mutations and gene expression
associated with cancer outcomes. MutEx is built upon the large
pool of genomic data of 11 315 patients from 33 cancer types.
Data retrieval was via Genomic Data Commons Data Portal with
R package TCGAbiolinks (version 2.8.4). More than 10 billion
computations were completed to integrate the diverse types of
cancer data into a format permissible for exploring hypotheses
surrounding mutations and dysregulations. The overall concept
of MutEx is depicted in Figure 1.

A critical step in MutEx calculations is to divide cancer
patients based on the mutation status of certain genes. To this
end, the TCGA-annotated mutation terms were simplified into
12 categories and then further categorized into synonymous and
nonsynonymous mutations. Unless explicitly stated, the results

described below were based on nonsynonymous mutations
only. For MutEx users, however, both options (all mutations
and nonsynonymous mutations) are offered to divide cancer
samples.

RNA-Seq data (HTSeq-counts) [5] were used for differen-
tial expression analyses through edgeR (version 3.22.3) [6],
which involved tumor samples with both mutation and gene
expression data available. Within each cancer, gene differential
expression was examined between mutant and wild-type tumor
samples. A mutated gene is considered if it is mutated in at
least three patients or accounts for 5% or more of all tumor
samples. Genes with a median counts per million of 0 across
all samples were not interrogated for differential expression.
Differential expression detected with a <0.05 false discovery
rate-adjusted P-value was considered significant. All statistical
analyses were performed in R 3.5.1. The original differential
expression results consisted of more than 50 GB of data. To
conserve space and improve performance, we only incorporated
statistically significant results into the MutEx output.

For survival analyses where patients can be partitioned by
the expression status of multiple genes, we implemented three
strategies: (1) Single-gene approach: where univariable Kaplan–
Meier analysis is performed to compare the survival of two
groups of patients dichotomized by a single gene’s expression
according to the user-defined cutoff (such as median). (2) Multi-
gene approach: where MutEx fits survival data with a multivari-
able Cox regression model with all input genes and then uses
the inferred coefficient of each gene as the individual weight in
the following formula to compute a composite gene expression
score (CGES):

CGES =
k∑

i=1

βixi,

where β i indicates the coefficients of genes, xi refers to the rel-
ative expression of the corresponding gene and k is the number

Figure 1. The six functionalities of MutEx. The infrastructure of each functionality consists of partitioning cancer patients by a certain genomic feature and then

investigating into other genomic features.
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of input genes used in calculating CGES. This composite score is
then used to conduct the Kaplan–Meier survival curves. To avoid
overfitting, we suggest limiting the number of input variables
(genes) up to approximately one-tenth of the total number of
survival events. This method is based on the concept that genes
can form network and pathway; instead of assuming one gene
can exert survival effect, we assume additive survival effect of a
set of genes. (3) Dimensionality reduction approach (lasso [7] or
elastic net) with Cox regression to select a subset of genes: this
method allows the user to input a large gene set up to the entire
transcriptome and find the optimal subset of genes that are
associated with survival. Postselection inference is performed
using the R package selectiveInference (version 1.2.4), which
computes P-values and selection intervals that properly account
for the inherent selection carried out by the procedure.

Whenever applicable, we offer hierarchical clustering
through the R package heatmap3 [8]. Gene Ontology enrichment
analyses, with respect to biological process, cellular component
and molecular function aspects, are enabled by the R packages
RDAVIDWebService and WebGestaltR. Pathway analyses with
respect to KEGG and Wikipathway are mediated by WebGestaltR.

Results
Interface

The interface of MutEx was developed in a combination of PHP,
HTML and Javascript. The backbone database was MySQL with
custom R scripts. A detailed tutorial page is available on the
MutEx webpage.

Functionalities

MutEx allows users to tap into the vast resources of available
cancer patient genomic and survival data and provides
different levels of analyses for mutation-associated expression
dysregulation. MutEx stores the precomputed associations
between somatic mutation and gene expression dysregulation
and exploits the data through six major functionalities: (I)
Identify differentially expressed genes between opposite
mutation status (mutant vs. wild type) for a specified set of
genes. (II) Conversely, identify potential causative genes whose
mutations are associated with differential expression in the set
of interested genes. (III) Explore the mutation profiles of cancer
patients by comparing mutational burdens or examining co-
mutational patterns. (IV) Search for mutated genes by genomic
location or mutation type. (V) Perform survival analysis of cancer
patients based on the collective expression of a set of genes with
feature selection options and post feature selection inference
evaluation. (VI) Examine expression difference or mutational
burden difference between subjects with good and poor survival.
The results are displayed in an HTML page through dynamic
searchable tables and companion analytic graphs if applicable.
All tables and high-resolution figures are available for download.

Functionality I of MutEx affords the ability to query our mas-
sive analysis results of somatic mutation-associated differential
expression. The goal is to identify the differentially expressed
genes contingent upon the mutation status of the input gene
or genes. These genes could be from a specific pathway or of a
particular interest. A single gene’s mutation might only disrupt
the function of a pathway slightly, while mutations in all genes
in the pathway might produce a more detrimental effect on the
pathway collectively. For convenient references, MutEx provides
379 pathway gene lists retrieved from Pathway Commons V10.

Table 1. Top 10 genes that cause the most gene expression dysregu-
lation in breast cancer

Gene Differentially
expressed genes

Mutated
samples

Mutation
rate

TP53 13104 333 30.33%
CDH1 9692 133 12.11%
PIK3CA 8612 311 28.32%
GATA3 7949 131 11.93%
MAP3K1 5408 79 7.19%
USH2A 2688 63 5.74%
SPTA1 2656 54 4.92%
TTN 2248 189 17.21%
DMD 1377 53 4.83%
KMT2C 1177 90 8.20%

In addition, two existing clinical gene sets, Foundation One
(336 genes) and ThermoFisher’s Ion AmpliSeq Comprehensive
Cancer Panel (409 genes), were also preloaded for the user to
select. The user may also upload his or her own list of genes of
interest for analysis.

Under Functionality I, MutEx offers a way to sort all mutated
genes by the number of their affected differentially expressed
genes and highlights user-specified input genes in the ranked
list. This utility provides an empirical measure of the rela-
tive mutation caused gene dysregulation exerted by the query
genes. Somatic mutations with greater importance may cause
a higher number of differentially expressed genes. To test this,
we examined the top 10 genes whose somatic mutations led to
the most extensive expression dysregulation in breast invasive
carcinoma (BRCA) (Table 1; Figure 2A). A majority of these genes
are well-known cancer genes, such as TP53, PIK3CA, MAP3K1,
etc. USH2A (6th), SPTA1 (7th) and KMT2C (10th) are relatively
understudied compared to other common cancer genes. USH2A
has been suggested as a tumor suppressor in hepatocellular
carcinoma [9], yet lacking a direct link to breast cancer so far.
Similarly, few studies focused on SPTA1’s and KMT2C’s roles in
cancers. Only very recently, a study found that KMT2C mediates
the estrogen dependence of breast cancer through regulation of
estrogen receptor (ER) alpha enhancer function [10]. TTN and
DMD were ranked in the 8th and 9th places, respectively. How-
ever, the enormous gene length must have contributed partly
to the extent of TTN’s and DMD’s mutation impact on expres-
sion dysregulation, because a longer gene body tends to harbor
more instances of mutations and mutation frequency was found
positively correlated with the number of genes differentially
expressed between the wild-type and mutant groups. A higher
mutation frequency improves the sample size balance between
wild type and mutation and increases the power to detect differ-
ential expression. To account for mutation rate, a scatter plot of
mutation frequency versus number of differentially expressed
genes is delineated for each cancer, in which user-specified
input genes are highlighted (Figure 2B). Given the expected and
observed correlation between mutation frequency and extent of
exerted differential expression, researchers are advised to pay
special attention to the bottom-right region of the scatterplot,
which is populated with less popular cancer genes with low to
moderate mutation frequency yet produce a significant effect on
expression dysregulation.

Additional optional analyses offered at the query interface
include survival analysis (mutant versus wild type), pathway/-
Gene Ontology enrichment, hierarchical clustering and cross-
cancer comparison. The survival analysis is another intuitive
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Figure 2. Example outputs of MutEx’s Functionality I. (A) Histogram that shows

the number of genes differentially expressed in both directions by the top

10 genes in breast cancer. Known cancer genes such as TP53 and CDH1 are

associated with the most gene expression dysregulation. (B) Scatter plot of the

number of differentially expressed genes versus mutation rate. Because the

number of differentially expressed genes is also dependent on the mutation

rate, this scatter plot helps to visualize both measurements together. (C) Kaplan–

Meier survival curve for KMT2C in breast cancer that shows significant survival

difference in favor of wild-type KMT2C over mutants. KMT2C ranks number 10 in

terms of the most expression dysregulation in breast cancer, and it is a relatively

less studied gene in breast cancer. (D) Example clustering and heatmap using

data from breast cancer. The columns are the top 10 breast cancer genes whose

somatic mutations are associated with the most extensive gene expression

dysregulation. The rows are the genes that are commonly dysregulated by these

top 10 genes’ mutation status (fold change ≥ 2 and false discovery rate ≤ 0.05).

The color in each cell denotes the scale of gene expression fold change between

mutant versus wild type. (E) Venn diagram of downregulated genes based on

TP53’s mutation status for five cancer types. (F) Venn diagram of upregulated

genes based on TP53’s mutation status for five cancer types. The detailed gene

list of each section of the Venn diagrams can be downloaded from the MutEx

website.

approach to evaluating mutation impact: Kaplan–Meier survival
curves are constructed, and log-rank test is performed to com-
pare the survival pattern between two groups of patients sepa-
rated by the mutation status in one gene or a gene set. When a
set of genes is used, the mutant status of a patient is determined
by mutations in any of the genes in the set. KMT2C, a less well-
known cancer gene, which is ranked in the 10th place in BRCA
in terms of extent of consequential dysregulation, manifested

Table 2. Effects of BAP1 mutations on RNF43 expression

Gene P Fold change

KIRC 1.00e−05 −4.54
MESO 3.50e−02 −3.15
UVM 1.00e−05 −6.04
LIHC 6.50e−03 −2.6

a significant survival difference favoring the wild-type group
(P = 0.03; Figure 2C). Enrichment of pathways and Gene Ontology
terms are sought among the differentially expressed genes
contingent upon each user-specified mutated gene. A hierar-
chical clustering heatmap is produced based on the expression
fold changes of the common set of differentially expressed
genes associated with the input genes (Figure 2D). All analyses
above are conducted within individual cancer types. The last
analysis, cross-cancer comparison, returns the intersection sce-
nario of the upregulated/downregulated genes across multiple
(≤5) cancer types, which is conducted for each mutated genes
individually. This utility helps to investigate whether a gene’s
somatic mutations exert ubiquitous effect across different can-
cer types. We tested TP53 on five cancer types adrenocortical car-
cinoma (ACC), BRCA, colon adenocarcinoma (COAD), lung
adenocarcinoma (LUAD), ovarian serous cystadenocarcinoma
(OV) to demonstrate this feature (Figure 2E, F). Remarkably,
despite the nearly universal involvement of TP53 in cancer
progression, only two genes, EDA2R and SPATA18, were found
to be downregulated in all five cancer types tested. EDA2R was
shown to be a p53 target [11], and SPATA18 encodes a p53-
inducible protein. Thus, these results hint at important tissue-
specific mechanisms that result in different changes in gene
expression in different cancer types harboring TP53 mutations.

To further explore the heuristic potential of Functionality
I, we asked if MutEx could provide more insight into the
role of the BRCA1-associated protein 1 (BAP1) in cancer. BAP1
is a pleiotropic tumor suppressor, which may mediate its
effects through chromatin regulation, transcription modulation,
ubiquitin–proteasome system and the DNA damage response
pathway [12]. Somatic mutations in BAP1 were identified in
various cancers, but signal transduction pathways with its
involvement remain to be fully characterized. Using Functional-
ity I, we found nonsynonymous BAP1 mutations in CHOL (15%),
KIRC (6%), LIHC (4.7%), MESO (25%), UCEC (5.3%) and UVM (27.5%).
Sorting through genes affected by BAP1 mutations, we found
that RNF43, a RING-type E3 ligase involved in downregulation of
canonical Wnt/β-catenin signaling [13], is ∼2.6- to 6-fold down-
regulated in the KIRC, MESO and UVM specimens, with BAP1
mutations suggesting that BAP1 inactivation has suppressive
effects on RNF43 expression in at least four unrelated cancers
(Table 2). Indeed, as inactivating RNF43 mutations were reported
in various cancers, suggesting that RNF43 may function as a
tumor suppressor [14–16], our analysis using MutEx provides
the first suggestion of the stimulatory effect of BAP1 on Wnt/β-
catenin signaling, which needs experimental validation.

Functionality II of MutEx is conceptually the reverse of Func-
tionality I, whereby the user can identify genes whose muta-
tion status may account for the differential expression of input
genes. This provides an inverse perspective on the relationship
between somatic mutations and gene expression. For example,
given CDKN1A in ovarian cancer, MutEx detects TP53 muta-
tion status as the major determinant of CDKN1A expression
dysregulation. The regulatory effect between TP53 mutations
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Figure 3. (A) Boxplot of the 13 cancers that showed significant (t-test P < 0.05) mutational burden difference between DNA mismatch repair gene mutant and wild

types. (B) Example of Functionality V. Using all genes as input, elastic net Cox regression identified 17 genes that are associated with breast cancer survival. The 17

genes were further evaluated using selective inference package from R. A CGES was computed from these 17 genes, and significant associations between this score and

survival time were found at different gene expression cutoff thresholds. (C) Example analysis results between good and poor survival groups (bottom 25% versus top

25%) in BRCA. Top: boxplot of top genes that are differentially expressed between good and poor survival groups. Middle: barplot that shows the top 10 genes ranked by

Fisher’s exact test P values computed from the number of subjects with nonsynonymous somatic mutations between good and poor survival groups. Bottom: barplot

that shows the top 10 genes ranked by raw nonsynonymous mutation count difference between good and poor survival groups.
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and expression of CDKN1A was previously reported [17]. All
the directed links among mutated genes and the differentially
expressed genes can be modeled into a network representation.
Furthermore, Functionality II can also be used to identify genes
whose mutation status does not cause gene expression dysreg-
ulation. For example, in skin cutaneous melanoma (SKCM), gene
RGPD3’s mutation rate is 14.7%. However, only one gene was
differentially expressed between RGPD3 mutants and wild types.

Functionality III of MutEx focuses on the exploration of
mutation burden in pan-cancer TCGA data set. Mutational
burden is quantified by the number of nonsynonymous
mutations observed in each mutated gene and allows for
comparisons of mutation burdens between two groups of
patients separated by the mutation status of specified input
genes. The mutational burden of a subject is defined as the
number of nonsynonymous mutations in all genes excluding
the gene set used to define mutant and wild type. The purpose
is to assess whether mutations in the set of genes can affect
overall mutational burden and survival (survival analysis
can be performed in parallel to mutational burden analysis).
To demonstrate this, we hypothesized that nonsynonymous
mutations in DNA mismatch repair genes will result in higher
mutational burden in other genes. Based on prior knowledge, we
used MutEx to analyze mutation burden attributed to eight DNA
mismatch repair genes (MLH1, MLH3, MSH3, MSH6, PMS1, PMS2
and PMS2L3) in all cancer types. Twenty-six of the 33 cancer types
were eligible for this analysis with sufficient mutated samples
(mutant ≥ 3) regarding those DNA mismatch repair genes. All 26
cancers showed higher mutational burden in the patients with
mutant DNA mismatch repair genes compared to patients with
wild-type genes, with 13 showing statistical significance (t-test
P < 0.05) (Figure 3A). Besides mutational burden analysis, a co-
mutation analysis is also provided, which performs hierarchical
clustering on the mutational statuses of the input genes and
allows users to examine whether the mutation status of the
particular gene set can form distinct clusters among all patients.

Functionality IV allows for quick and flexible searches of
mutations by gene in one or multiple cancers. We implemented
a query function for finding mutations based on a combination
of patient characteristics, including cancer type, gene symbols,
genomic position and mutation type. The results are displayed
in a searchable and downloadable dynamic table.

Functionality V offers gene expression-based survival
analysis. Existing TCGA data-based resource websites offer
expression survival analysis by dividing patients into high- and
low-expression groups based on one gene’s expression using
the median. MutEx offers the option for using a user-defined
cutoff to divide patients into two groups. Additionally, when a
set of genes are specified as input genes, the user can choose
to process them as a group. In such a scenario, a CGES is
created and used to group the patients. The last MutEx option
included in the Functionality V is the ability to perform feature
selection using lasso or elastic net regularization. When this
option is selected, MutEx will perform dimension reduction and
select a subset of the input genes that together are associated
with patient survival. The selected genes are then evaluated
for postselection inference. Using BRCA as an example, the
lasso method selected 17 potentially correlated genes that are
altogether most associated with survival (Table 3). The CGES
from these 17 genes showed a strong association with survival
under multiple thresholds (Figure 3B).

Functionality VI is designed to detect differentially expressed
genes or genes with differential mutational burden between
subjects of good and poor survival. Subjects are dichotomized
into good and poor survival based on the real survival

Table 3. Elastic net selected genes whose collective expressions are
mostly associated with breast cancer survival

Gene Coefficient P 95% Confidence
interval

ENPP4 1.07 <0.0001 [1.04–1.09]
STPG1 1.07 <0.0001 [1.05–1.10]
GCLC 0.93 0.0002 [1.04–1.11]
CFTR 0.94 0.0002 [1.04–1.09]
SCYL3 0.94 0.0004 [1.04–1.10]
FGR 0.94 0.0007 [1.03–1.10]
SEMA3F 0.95 0.0018 [1.02–1.08]
CFH 0.96 0.0141 [1.01–1.08]
DPM1 1.03 0.017 [1.01–1.05]
C1orf112 1.04 0.0263 [1.01–1.07]
FUCA2 1.03 0.0358 [1.00–1.06]
LAS1L 0.96 0.0455 [1.00–1.08]
TSPAN6 1.03 0.0702 [1.00–1.06]
NIPAL3 0.97 0.0846 [0.99–1.06]
TNMD 0.97 0.0899 [0.99–1.05]
NFYA 0.97 0.101 [0.99–1.05]
ANKIB1 1.02 0.243 [0.97–1.05]

Results generated from selectiveInference R package.

information provided by TCGA. Users are free to choose the
survival dichotomizing percentage threshold. Using BRCA data
as an example, we conducted a comparative analysis between
the bottom and top 25% of patients and identified 1917 genes
that were significantly differentially expressed between good
and poor survival groups (Supplementary Table S1; Figure 3C,
top). The most differentially expressed gene is RF00100, a
noncoding RNA. Pathway analysis revealed multiple cancer-
related pathways from the differentially expressed genes,
such as TNF signaling pathway and NF-kappa B signaling
pathway (Supplementary Table S2). Gene-based mutational
burden analyses are carried out at both the sample and mutation
count levels between the good and poor survival groups. At the
sample level, mutational burden is computed as the number of
samples with nonsynonymous mutations at each gene, whereas
at the mutation count level, the mutational burden is computed
as the total number of nonsynonymous mutations in each
gene, where a gene could have multiple mutations. Analysis in
BRCA identified 60 genes in which the poor survival group had
significantly (Fisher’s exact test P < 0.05) more mutations than
the good survival group (Supplementary Table S3; Figure 3C,
middle). For example, mutations in the less-known cancer genes
TMC2, TTC21A and ZNF638 were found to be more prevalent in
poor survival groups, which may prompt additional follow-up
studies. By mutation count, the poor survival group tends to
have more mutations than the good survival group in most
genes. This is probably caused by damage in DNA repair genes,
which caused a larger genome-wide mutational burden. Large
genes such as TTN and DMD may act as a sample region of
the entire protein-coding regions; thus, they show the biggest
difference for mutation count between good and poor survival
groups (Figure 3C, bottom).

Discussion
It is interesting to note that our expression-based mutation
effect analysis indicates TP53 mutations produced the greatest
change in gene expression. This may be due to the fact that
TP53 is a tumor suppressor gene that functions as a transcription

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz084#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz084#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz084#supplementary-data
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factor, and it is the most frequently mutated gene in human
cancers. Another interesting observation is that CDH1 mutations
produce the 2nd largest effect on gene expression. CDH1 encodes
cadherin 1 cell–cell adhesion protein, and the loss of function
mutations in this gene contributes to cancer progression. It is
not known why CDH1 mutations would produce stronger effects
on gene expression dysregulation than mutations in a master
signal transducer PIK3CA, which was more frequently mutated
than CDH1. GATA3 is a transcription factor, and mutations in
GATA3 produce the 4th largest effect on expression dysregula-
tion. Mutations in KMT2C top out the 10th largest effects on
expression dysregulation. Interestingly, mutations in KMT2C are
observed in approximately 10% of breast cancer cases, and these
mutations are associated with poor outcome. It is not known
if these mutations could serve as an independent prognostic
factor. Additional multivariate analysis is needed to discern if
mutations in KMT2C could serve as an independent prognostic
factor. Finally, the heatmap produced by mutation–expression
clustering analysis of top 10 mutations with the greatest effect
on expression dysregulation indicates PHKG1 is upregulated in
cancer with TP53 mutations. PHKG1 encodes for the serine/
threonine protein kinase catalytic subunit of a kinase complex
that regulates glycogenolysis and metabolism. It was previously
shown to be upregulated in HCT-116 p53−/− cells compared to
HCT-116 p53+/+ cells [18]. PHKG1 is amplified in several cancer
types [19]. However, our study is the first systematic analysis of
TP53 mutations in tumor samples that show a potential effect
on PHKG1 expression in tumor samples. Glycogenolysis is an
important alternative energy source for cancer cells, and disrup-
tion of this pathway contributes to oxidative stress, induction
of senescence and suppression of tumor growth in vivo [20].
Therefore, our observation that TP53 mutations are associated
with the upregulation of PHKG1 provides biological insights into
a potential role of TP53 mutations in the PHKG1 dysregulation
and cancer cell metabolism.

While significant effort and considerations have been put
into the development and implementation of MutEx, there are
several notable limitations of MutEx. Because MutEx is based on
empirical data, novel somatic mutations that are not included
in the existing data sets cannot be analyzed in MutEx. However,
novel somatic mutations not covered by existing data sets in
cancer are likely to be rare. Furthermore, TCGA subjects were
primarily Caucasian; thus, minority races are underrepresented.
These limitations can be mitigated by incorporating additional
data sets into MutEx in the future. MutEx presents the anal-
ysis results from a gene-centric point of view by aggregating
individual loci to the gene level by searching for occurrence
of at least one mutation within the gene body. An alternative
strategy would be to partition the subjects into mutant and wild
type for each mutation. However, this would result in very few
patients in the mutant group for the majority of the cases, thus
tremendously lowering the statistical power of the differential
expression analysis. For this reason, we opted to use gene-level
mutation status instead of individual mutation status. Our gene-
level mutation classification approach has limitations in some
cases. For example, mutations in TP53 can be classified into loss-
of-function mutations and gain-of-function mutations, because
particular mutations in TP53 result not only in loss of function
but also in gain of oncogenic functions. Currently, all mutations
in TP53 are considered as one property without distinguishing
the gain-of-function or loss-of-function mutants. This limitation
can be addressed in the future as the classification of gain-
of-function TP53 mutations becomes more robust. Lastly, we
suspect that mutated allele frequency (expressed in percentage

of mutated sequence reads) may be associated with expression
as well. However, such analyses will also be subject to small
sample size issues. We will seek additional opportunities to
investigate this hypothesis in future studies.

While the current iteration of development is complete, we
plan to add several additional features to MutEx in the near
future, including miRNA expression and methylation informa-
tion. miRNA and other long noncoding RNAs (lncRNA) have
been the focus of much functional research recently [21, 22].
Many studies have constructed disease prediction models using
miRNA [23, 24] and lncRNA [25]. The algorithms used in these
models can be applied to cancer setting to predict survival and
treatment response.

Using several proof of concept examples, we demonstrated
that MutEx is a valuable tool for evaluating gene-based cancer
hypothesis. It is capable of finding novel cancer genes and
estimating cancer mutation and gene expression association
with survival outcomes. MutEx is constructed with component
design, which simplifies the development of additional func-
tionalities and the incorporation of additional data sets. Many
of the existing features of MutEx were inspired by our collab-
orations with oncologists, and we plan for MutEx to undergo
constant improvement to incorporate feedbacks from MutEx
real-time users.

Key Points
• MutEx is a multifaceted cancer genomic feature

database.
• MutEx provides the evaluation of somatic mutation

effect on gene expression dysregulation.
• MutEx provides several additional functionalities such

as mutational burden analysis and gene expression
composite score-based survival analysis.
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