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Abstract

Human leukocyte antigen class I (HLA-I) molecules are encoded by major histocompatibility complex (MHC) class I loci in
humans. The binding and interaction between HLA-I molecules and intracellular peptides derived from a variety of
proteolytic mechanisms play a crucial role in subsequent T-cell recognition of target cells and the specificity of the immune
response. In this context, tools that predict the likelihood for a peptide to bind to specific HLA class I allotypes are important
for selecting the most promising antigenic targets for immunotherapy. In this article, we comprehensively review a variety
of currently available tools for predicting the binding of peptides to a selection of HLA-I allomorphs. Specifically, we
compare their calculation methods for the prediction score, employed algorithms, evaluation strategies and software
functionalities. In addition, we have evaluated the prediction performance of the reviewed tools based on an independent
validation data set, containing 21 101 experimentally verified ligands across 19 HLA-I allotypes. The benchmarking results
show that MixMHCpred 2.0.1 achieves the best performance for predicting peptides binding to most of the HLA-I allomorphs
studied, while NetMHCpan 4.0 and NetMHCcons 1.1 outperform the other machine learning-based and consensus-based
tools, respectively. Importantly, it should be noted that a peptide predicted with a higher binding score for a specific HLA
allotype does not necessarily imply it will be immunogenic. That said, peptide-binding predictors are still very useful in that
they can help to significantly reduce the large number of epitope candidates that need to be experimentally verified. Several
other factors, including susceptibility to proteasome cleavage, peptide transport into the endoplasmic reticulum and T-cell
receptor repertoire, also contribute to the immunogenicity of peptide antigens, and some of them can be considered by
some predictors. Therefore, integrating features derived from these additional factors together with HLA-binding properties
by using machine-learning algorithms may increase the prediction accuracy of immunogenic peptides. As such, we
anticipate that this review and benchmarking survey will assist researchers in selecting appropriate prediction tools that
best suit their purposes and provide useful guidelines for the development of improved antigen predictors in the future.

Key words: HLA; peptide binding; bioinformatics; machine learning; sequence analysis; web server; prediction model;
performance benchmarking

Introduction

The binding of peptides to specific human leukocyte antigen
(HLA) allomorphs and the subsequent recognition of peptide-
HLA complexes (pHLAs) by T cells establish the antigenicity
of the peptide, and this process forms the basis of immune
surveillance [1]. HLA molecules can be divided into two main
categories, namely HLA class I (HLA-I) and HLA class II (HLA-
II). The HLA-I molecules are encoded by three I loci (HLA-A, -B
and -C), and the encoded proteins are expressed on the surface
of all nucleated cells. In contrast, HLA-II molecules encoded by
HLA class II loci (HLA-DR, -DQ and -DP) can only be expressed
in professional antigen-presenting cells (APC) such as dendritic
cells, mononuclear phagocytes and B cells [1]. HLA-I molecules
mainly bind short peptides of 8–12 amino acids in length,
typically derived from proteasome-mediated degradation of
intracellular proteins. These pHLAs are then presented on the
cell surface for recognition by CD8+ T cells. HLA-II molecules
tend to bind longer peptides (12–20 amino acids in length)
liberated from extracellular proteins within the endosomal
compartments. These pHLAs are presented on the surface of
professional APC for recognition by CD4+ T cells [2]. The inter-
actions between HLA molecules and peptides and subsequent
recognition of these complexes by T cells control the magnitude
and effectiveness of the immune response. Thus, a major goal in
vaccinology and immunotherapy resides in the accurate predic-
tion of peptide-HLA binding and the ability of these complexes
to induce a desired immune response [3]. Understanding which

peptides are selected for display in the context of an individual’s
HLA type can aid the design of vaccines designed to induce
protective or therapeutic immunity towards various pathogens
[4, 5]. Equally, several studies have found that neo-antigens
generated as a result of non-synonymous mutations in cancer
cells play a significant role in the dynamics of the anti-tumour
immune response [6–9]. Indeed, vaccines based on such neo-
antigens have been shown to benefit clinical outcomes [10, 11].
Typically, identifying neo-antigens first requires characteriza-
tion of the non-synonymous mutations from primary tumours
using next-generation sequencing (NGS) platforms such as
RNAseq. In the second step, peptide sequences that contain
mutations are further assessed by predicting their individual
probability to bind to patient HLA allomorphs [12]. By filtering
out potential allomorph-specific HLA ligands, the number of
candidates can be substantially decreased, thereby accelerating
the final step of experimentally verifying neo-epitopes [13, 14].
These and other considerations have increased the interest
in predicting peptide binding to HLA molecules over the past
few years.

Over the last few decades, the availability of experimentally
verified HLA ligand sequences has increased, with sequences
often deposited in public peptide ligand databases. Up until
recently, most of these data have been generated using in
vitro binding assays [15, 16], but the use of mass spectrometry
(MS)-based identification of purified HLA-binding peptides has
now come into the forefront [17–19]. The Immune Epitope
Database (IEDB) is the largest public resource for HLA ligands
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and T-cell epitopes [20]. It contains detailed information on
curated peptides collected from published journal articles
with appended metadata including the experimental modality
used for data acquisition. Due to the increasing availability of
high-quality HLA allele-specific data sets, a number of new
computational tools have been developed for predicting peptide
binding to HLA molecules. However, the main focus has been
on the prediction of HLA-I ligands, since the more complex
nature (longer and more heterogeneous peptide sequences) of
HLA-II ligands makes their prediction more difficult [21]. Here
we classify these publically available tools into three major
categories based on the methodologies they used, namely (i)
methods based on sequence-scoring functions, including SYF-
PEITHI [22], RANKPEP [23], PickPocket 1.1 [24], stabilized matrix
method (SMM)—peptide:major histocompatibility complex
(MHC)-binding energy covariance (SMMPMBEC) [25], PSSMHCpan
1.0 [26] and MixMHCpred 2.0.1 [18, 27]; (ii) methods based
on machine learning algorithms, including NetMHC 4.0 [28],
NetMHCstabpan 1.0 [29], NetMHCPan 4.0 [30], MHCflurry 1.2.0
[31], MHCnuggets 2.0 [32], ConvMHC [33] and HLA-CNN [34];
and (iii) methods based on the integration of different peptide-
binding predictors, including NetMHCcons 1.1 [35] and IEDB-
analysis resource-consensus (IEDB-AR-Consensus) [25]. It should
be noted that structure-based methods can also contribute to
HLA-I peptide-binding prediction. These methods have achieved
accurate binding prediction performance by modelling the
docking between the HLA protein and peptide ligands [36–51].
However, structure-based approaches are not suitable for all
allotypes and rely on homologous structures. Therefore, the
present review has not included the structure-based peptide-
binding prediction methods.

Several attempts have been made to provide benchmark tests
of prediction tools; however, each study had certain limitations:
either they did not include a performance evaluation of all
reviewed tools, or several state-of-the-art prediction tools were
not considered and benchmarked or did not have a detailed
algorithm description for each of the reviewed tools [52–56]. For
example, a recent review comprehensively discussed currently
available peptide-binding prediction tools, but it lacked a
uniform validation approach to allow performance comparison
of the different predictors [2]. To overcome these issues, here
we provide a comprehensive performance benchmarking and
assessment of currently available, state-of-the-art tools for
predicting peptide binding to HLA-I molecules. In total, 15
prediction tools have been systematically benchmarked in terms
of their underlying algorithms, feature selection, performance
evaluation strategy and webserver and/or software functionality.
Most importantly, we also performed an independent test to
evaluate the performance of these tools by using a newly
generated peptide data set containing HLA molecule ligands
across 19 HLA-I allomorphs. Following our review, we give
some suggestions for the design and development of future
prediction tools. Lastly, we hope our review will assist and
inspire scientists with interest in this field to facilitate their
efforts in developing improved tools for the prediction of T-cell
epitopes.

Materials and methods

Construction of the positive validation data set

In order to evaluate the performance of currently available
peptide-binding prediction tools and provide an overall compar-
ison between them, we extracted the annotations of peptides

including peptide sequences, source proteins where peptides
were derived from, binding experimental results and the type
of HLA molecules that the peptides bound to, from the latest
versions of several widely used public databases including
IEDB [57], SYFPEITHI [22], MHCBN [58] and EPIMHC [59]. Of
note, SYFPEITHI, MHCBN and EPIMHC only store binary data
(i.e. positive or negative) to distinguish whether a peptide has
been experimentally verified to be a binder or not, while for
some peptides in the IEDB database, quantitative measurements
(e.g. binding affinity) have been recorded in addition to the
binary result. To construct the positive data set, we collected
all positive peptides from all the above four public databases,
regardless of any quantitative information provided in IEDB.
Next, we removed the sequence redundancy by adopting the
following procedures: (i) only selecting confirmed allotype-
specific peptides, (ii) removing duplicate peptides if they
were associated with the same HLA allotype according to the
databases, (iii) removing any peptides contained within the
training data sets of the reviewed prediction tools and (iv)
removing the peptides that had unnatural amino acids [26]. In
addition, since most peptides presented by the HLA-I complexes
are of 9–11 amino acids long [60], we only retained those peptides
with such lengths in the constructed validation data set. Overall,
we obtained an independent validation data set with a total of
21 101 non-redundant peptide ligands across 19 HLA allotypes.
A statistical summary of the final constructed validation data
set is provided in Table S1.

Construction of the negative validation data set

In order to generate a balanced data set with an equal number
of non-binding peptides to those positive peptides associated
with a certain HLA allotype, we used non-binding regions of the
source proteins of the peptides in the positive data set. This
strategy has been commonly used for previous performance
benchmarking studies [28, 30, 61, 62]. Specifically, we first ran-
domly selected the source proteins from the positive peptide
data set. Then we generated a set of peptide sequences by
splitting the sequences of the source proteins into 9, 10 or 11
amino acids-long peptides. Those peptides were further pooled
according to their lengths and randomly selected to form the
negative data set after filtering for those already contained in
our independent positive data set or in the training data sets of
the reviewed prediction tools. The random selection of negative
peptides was performed in a way such that the numbers of nega-
tive peptides were identical to the numbers of positive peptides
for each length (9, 10 and 11 mers) for each HLA-I allotype. It
should be noted that this strategy might falsely classify peptides
as non-binders since their binding potential was not formally
assessed. However, as binding to these HLA allotypes are very
specific and there would only exist a few allotype-specific HLA
binders originating from one source protein, the proportion of
misclassified peptides is likely very small [62, 63].

Existing peptide-binding prediction tools

Table 1 provides a summary of currently available tools for
HLA-peptide-binding prediction, which are grouped into three
major categories in terms of their availability, employed peptide
features (for machine learning-based predictors), algorithms and
performance evaluation strategies. Figure 1 provides an overall
workflow for the three tool categories as an illustration of their
underlying general methodologies for constructing peptide-

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
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binding predictors. Most tools constructed the prediction models
in a five-step manner [64], which involves data collection and
pre-processing as the 1st step, feature encoding and selection as
the 2nd step, followed by model construction and optimization,
performance evaluation and webserver/stand-alone software
construction [65–69].

Computational methods developed based on statistical scor-
ing functions score the candidate peptide sequences by cal-
culating certain features such as the sequence similarity and
amino acid frequencies. Other statistical scores depend on the
position-specific amino acid profiles of peptides. For instance,
the position-specific scoring matrix (PSSM) and BLOSUM 62
matrix [70] are two widely used scoring matrices for specifying
the evolutionary information of amino acids at different posi-
tions of a peptide sequence [71]. After the PSSM matrices are
generated, the score of a peptide can be calculated by multiply-
ing the frequencies of the corresponding amino acids at each
position.

Machine learning-based methods classify a peptide as
a binder or non-binder by generating a score using the
training model based on the extracted representative features.
Construction of a machine learning-based model for predicting a
peptide’s binding probability generally involves four major steps:
(i) construction of training data sets where the binding between
the HLA allotype and peptide ligands have been experimentally
verified, (ii) feature encoding based on the peptide and/or
HLA allotype sequences, (iii) selection of a best-performing
machine-learning algorithm and training of the corresponding
machine-learning model and (iv) optimization of the model and
its performance evaluation. As shown in Table 1, the neural
network (NN) is the dominant machine-learning algorithm
used by currently available peptide-binding prediction tools.
Therefore, we use NN as an example to illustrate the workflow
of how to construct machine learning-based tools in Figure 1.

As the 3rd major category of methods, consensus-based
methods integrate several peptide-binding predictors in a
weighted manner and generate the final prediction score
based on the results of all individual predictors. The rationale
of these methods is that combining the results of several
individual predictors might help improve the performance of
the final prediction compared to that of individual predictors
[72]. Such consensus-based tools can be implemented based on
a combination of similar binding prediction models, as is the
case for NetMHCcons 1.1 [35], which will be discussed later.

Scoring function-based tools

The major difference between different scoring function-based
tools is the statistical approach that they used to calculate
the binding score for a candidate peptide sequence. From this
perspective, SYFPEITHI [22] calculates the prediction score of a
peptide sequence by adding the corresponding value of each
amino acid at each position. For a given HLA allotype, amino
acids that frequently occur at anchor positions are given the
value of 10. The less frequent amino acids are assigned with
lower values. The final score of a sequence is the sum of values
at each position. As for the result, for a given HLA-I molecule
and peptide length, SYFPEITHI calculates the 10 highest-scoring
peptides among all possible amino acids with the same length
of a given sequence.

RANKPEP [23] predicts the MHC class I-binding peptides using
profile motifs by calculating the PSSM of ligands bound to a
given HLA allotype. Briefly, the ligands of each HLA allotype

http://www.syfpeithi.de/index.html/
http://imed.med.ucm.es/Tools/rankpep.html/
http://www.cbs.dtu.dk/services/PickPocket/
http://www.cbs.dtu.dk/services/PickPocket/
https://github.com/ykimbiology/smmpmbec/
https://github.com/BGI2016/PSSMHCpan/
https://github.com/GfellerLab/MixMHCpred/
http://www.cbs.dtu.dk/services/NetMHC/
http://www.cbs.dtu.dk/services/NetMHC/
http://www.cbs.dtu.dk/services/NetMHCstabpan/
http://www.cbs.dtu.dk/services/NetMHCpan/
https://github.com/KarchinLab/mhcnuggets-2.0/
http://jumong.kaist.ac.kr:8080/convmhc/
https://github.com/uci-cbcl/HLA-bind/
https://github.com/openvax/mhcflurry/
http://tools.iedb.org/mhci/
http://www.cbs.dtu.dk/services/NetMHCcons/
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Figure 1. Graphical illustrations of (A) scoring function-based methods; (B) machine learning-based methods and (C) consensus-based methods. For each type of

methods, the key steps are summarized and visualized. Scoring function-based methods predict peptide binding using a scoring function to generate the motifs of

specific HLA alleles. Machine learning-based methods perform the prediction using well-trained models based on the training data sets. Consensus-based methods

can predict peptide binding by integrating different peptide-binding prediction models.

are parsed by the length in five sets of 8, 9, 10, 11 and 12+
mers. The PSSM of each length set, as generated by using the
PROFILEWEIGHT protocol [73], defines the sequence-weighted
frequency of each amino acid observed at each position of the
peptide. These values are then normalized to the corresponding
expected background frequency of that amino acid in the pro-
teome. The prediction score is calculated by aligning the PSSM
with the peptides and adding up the scores that match the
residue type and position. The scoring starts at the beginning
of each sequence, and the PSSM is slid over the sequence one
residue at a time until the end of the sequence. A binding
threshold is set to a value. Thus, peptides with a score equal or
above the binding threshold are predicted as binders.

PickPocket 1.1 [24] is another scoring function-based tool for
predicting peptide binding. It uses the SMM algorithm to con-
struct the PSSM for each HLA allotype according to the peptide
ligands in the training data set. To extend the utility of this
algorithm for HLA allotypes with limited or no known ligand
data, peptide binding was deconvolved to pocket-specific bind-
ing events. These pockets, distributed along the antigen-binding
cleft of the HLA-I molecule, form specificity determining inter-
actions with amino acid side chains distributed along the length
of the ligand. Thus pocket residues library was constructed from
HLA allotypes for which a significant amount of peptide-binding
information was available to create a PSSM for less well-studied
HLA allomorphs. Then, the similarity between the HLA allotype
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with insufficient ligand data Hq and each HLA allotype with a
known PSSM in the training database Hi was calculated by using
the pocket residues of the two HLA molecules as follows:

Sim
(
sq, si

) = S
(
sq, si

)
√

S
(
sq, sq

) • S (si, si)

, (1)

where S(sq, si) denotes the BLOSUM62 [74] similarity score
between the two pocket residue sequences Sq and Si. As a result,
the PSSM was calculated as a weighted average based on pocket
similarities of all known HLA PSSMs in the training data set.

The SMM method employed in PickPocket has been used for
generating other models of the peptide binding to uncharacter-
ized HLA allotypes [75]. SMMPMBEC [25, 76] is a tool that uses a
PMBEC matrix as a prior to improve the prediction performance
when using the SMM method. Instead of using BLOSUM62, the
tool employed the PMBEC to calculate the similarity between any
two amino acids. For this purpose, a library of combinatorial 9-
mer peptide mixtures was used to measure the binding affinity
contribution of each residue in a 9-mer peptide to 24 MHC
allotypes [76]. All peptides in the library share the same residue
type at one position, while the remaining positions are allowed
to sample all residue types randomly. In total, 180 mixtures of
covering 20 residue types in all positions of a 9-mer peptide were
synthesized to test the binding affinity to 24 MHC molecules.
The measured binding affinity is defined as IC50 values, which
reflect the concentration of peptide yielding 50% inhibition of
the binding of a radiolabeled tracer peptide [76]. In order for the
final predictions to be represented with a normal distribution
and to fit the experimental data well [75], the IC50 value of an
amino acid aa at the residue position pos for a given MHC allotype
was log transformed to approximate the relative binding energy
contribution as follows:

�Eaa,pos,MHC = log
(
IC50aa,pos,MHC

) − 1
20

∑
aa′

log
(
IC50aa′,pos,MHC

)
, (2)

where 1
20

∑
aa′ log(IC50aa′,pos,MHC) represents the average log trans-

formed IC50 value of all other residues at the same position.
Next, in order to generate the PMBEC matrix, the similarity of

two amino acids aa and aa′ was defined as the covariance of their
relative binding energy contributions, denoted as �Eaa,pos,MHC and
�Eaa′,pos,MHC, respectively, and can be calculated as follows:

cov
(
aa, aa′)

= 1
24 ∗ 9

24∑
MHC=1

9∑
pos=1

(
�Eaa,pos,MHC − �Eaa

) (
�Eaa′,pos,MHC − �Eaa′

)
,

(3)

where �Eaa and �Eaa′ are the averages over all positions and
MHC molecules for amino acids aa and aa′, respectively. The
prediction outcome is the IC50 value of the peptide transformed
from the sum of contributions of residues at each position based
on the result of the SMM method that used the PMBEC matrix as
a prior.

PSSMHCpan 1.0 [26] is a recently published scoring function-
based tool that also uses the PSSM features to predict peptide
binding to HLA-I molecules. It can predict both characterized
HLA-I allotypes (with binders in the training data set) and
uncharacterized HLA-I allotypes (with no binders in the training

data set). The PSSM of each characterized HLA-I allotype is
defined as a matrix of M rows (M = 20, number of amino acid
types) and N columns (N = 8–25, peptide sequence length). Each
element pa,i in the matrix is calculated as pa,i = log Fa,i+ω

BGa
, where

Fa,i is the frequency of amino acid a at position i in a peptide
from the training data set; BGa is the background frequency of
amino acid a in the proteome; and ω is a random value ranging
from 0 to 1 [77]. Then, the tool defined the binding score of
a given peptide by summing the corresponding values of pa,i of
the amino acid at each position in the PSSM of the corresponding

characterized HLA allotype as follows: binding score =
∑N

i=1 pa,i
N ,

where N is the length of the peptide. Finally, PSSMHCpan 1.0
converts the binding score of each peptide to an IC50 value and
uses this value as the prediction result for each peptide.

Specifically, for a characterized HLA molecule, the binding_
score is defined as binding_score = (

∑N
i=1pa,i/N). Then the IC50

value is calculated as follows:

IC50 = 50000Max −binding_score
/ Max − Min, (4)

where Max and Min denote the maximum and minimum values
of the binding_score, respectively.

For uncharacterized HLA-I allotypes, PSSMHCpan 1.0 first
generated a library of HLAs that contained pairs of characterized
and uncharacterized HLA proteins with a weight value associ-
ated with each pair. Finally, a given peptide of an uncharacterized
HLA allotype could be qualitatively predicted with its IC50 value
as follows:

IC50un =
∑S

i=1 (wiIC50i)∑S
i=1 wi

, (5)

where S is the sum of characterized HLA allotypes that pair the
given uncharacterized HLA allele from the HLA similar weight
library and wi and IC50i denote the weight value and the predic-
tion result of the given peptide corresponding to the character-
ized HLA allele i, respectively.

MixMHCpred 2.0.1 [18, 27] is another recently published tool.
It calculates the PSSM of each allotype based on a large training
data set containing more than 115 000 non-redundant peptides
across 123 HLA-I molecules derived from MS. This represents
the largest training data set among all tools reviewed here.
The PSSM of each allotype is calculated by first pooling all
peptides assigned to the same allotype. Then single position
weight matrices for each allotype and each peptide length type
were built for the length L = 8 to L = 14, including pseudo-
counts based on BLOSUM correction and renormalization by the
expected background amino acid frequencies [18, 78]. The score
for predicting a peptide was calculated by summing the loga-
rithm of the corresponding PSSM at each position of the given
peptide defined as follows:

Sh (X) = log
(∏L

l=1
M(h,l)

Xl,l

)
/ log (L) , (6)

where h and L is the HLA allotype and the peptide length,
respectively. M(h,l)

Xl,l
is the value PSSM at the l position of the

peptide X based on the PSSM of the h allotype and L length. In the
latest version of MixMHCpred, the peptide length distribution
and multiple specificity are incorporated into the predictor and
lead to the improvement of prediction performance as described
in [27].
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Machine learning-based tools

The limitation of scoring function-based approaches is that their
methods for calculating the prediction scores are relatively sim-
plistic, since they only handle linear features such as sequence
similarity and pattern. In the last decade, machine learning-
based algorithms have been increasingly used for constructing
models to predict peptide binding to HLA allotypes. Such algo-
rithms are capable of identifying non-linear patterns underlying
the peptide-binding data [79], which cannot be easily captured
by scoring function-based methods. Among various machine
learning-based tools, the most commonly used algorithm
is NN.

As shown in Table 1, most machine learning-based tools
reviewed here utilized NN to construct the prediction models.
Generally, the NNs in HLA-peptide-binding prediction models
have a layered feed-forward architecture. Briefly, for a typical
multi-layer feed-forward NN, the layers are composed of the
input, hidden and output layers. Each layer can contain neurons
or units to represent the signal. Different units of the layer can
be connected to other units of the neighbouring layer through
weights and biases. The signal of a unit xican be transformed and
used as the input of its connecting unit yjthrough the function
yj = wijxi + θj, where wij is the weight value with respect to
the units xi and yj, and θj is the bias of unit yj. Then, the input
outcome of unit yj is transformed by an activation function like
the sigmoid function f(yj) = 1

1+e
−yj

. Then, f(yj) is the output of
unit yj and can be used by the next layer. For optimization of the
parameters, back propagation (BP) is a widely used algorithm to
optimize the wij and θj. The theory of the BP algorithm is based on
the error-correction-learning rule. Briefly, the NN parameters are
optimized by modifying the weights and biases via using error
function according to the difference between the network output
and the actual label [80].

In this section, we will discuss in detail the current strate-
gies of constructing the architecture of NN for peptide-binding
prediction.

NetMHC 4.0 [28] uses an ensemble method to generate the
NN and assigns the binding core of a given peptide based on
the majority vote of the networks in the ensemble. Briefly, the
top 10 networks with the highest test set Pearson correlation
coefficient within the 50 networks for each training/test set
configuration were selected as the final network ensemble. It
uses a BP algorithm to update the weights between units [81]. In
particular, it uses both BLOSUM62 and sparse encoding schemes
to encode the peptide sequences into nine amino acid-binding
cores. For peptides longer or shorter than nine amino acids,
deletion or insertion methods are applied to reconcile or extend
the original sequence to a core of nine amino acids [28]. In
addition, other complementary sequence-based features such
as the number of deletions/insertions, the length and compo-
sitions of the terminal regions flanking the predicted binding
core were also incorporated to enable the algorithm to learn
the complex binding patterns from the peptide-HLA-I molecule
pairs.

NetMHCstabpan 1.0 [29] is a prediction tool that predicts
the stability of peptide-HLA-I complexes based on an NN-based
algorithm. The stability of the peptide-HLA-I complex is defined
as the half-life of the pHLA complex, which is determined by
a scintillation proximity-based peptide-HLA-I dissociation assay
[82]. Then, the half-life values are transformed to a value ranging
between 0 and 1 as follows: s = 2−t0/th, where s is the transformed
value, th is the measured pHLA complex half-life and t0 is a
threshold value that is fitted to obtain a suitable distribution of

the data for training purposes, which was set as 1 after optimiza-
tion of the prediction performance. The tool uses BLOSUM50 or
the sparse encoding scheme to encode peptide sequences.

NetMHCpan 4.0 [30] is also an NN-based tool similar to
NetMHC 4.0. The major differences between the two tools
include two aspects: first, NetMHCpan 4.0 was trained using
peptides generated from both binding affinity assays and
naturally presented peptide ligands identified by MS; second,
the amino acids from the HLA heavy chain that contact the
peptide ligand are extracted. These sequences are called pseudo-
sequences and enable the tool to predict binding to HLA
allotypes with little available binding data. The assumption
is that similar HLA allotypes will bind similar peptides. In
NetMHCpan 4.0, the similarity between two HLA molecules is
defined as the pseudo-distance d = 1− s(A,B)√

s(A,A)×s(B,B)
, where s(A, B)

is the BLOSUM50 similarity score between pseudo-sequences A
and B. The algorithm takes the peptides and the chosen HLA
allotype in terms of a pseudo-sequence as inputs. All peptides
are represented as 9-mer binding cores by using the same
method described in NetMHC 4.0 [28].

MHCnuggets 2.0 [32] is a prediction tool developed based
on deep learning (DL) methods. It contains two DL models: (i)
long short-term memory networks [83] and (ii) gated recurrent
units [84]. The architecture of both networks is a fully connected
single layer of 64 hidden units. The network is regularized with
a dropout and recurrent dropout probability is 0.2, which means
during each time of optimization, the NN algorithm will ran-
domly choose to ignore 20% of units to avoid overfitting. The
input sequence is encoded as a 21-dimensional vector using
a sparse encoding scheme. Both models were trained using
the Adam optimizer [85] with a learning rate of 0.001. Instead
of using pseudo-sequences as in NetMHCpan 4.0, MHCnuggets
2.0 designed a transfer-learning protocol through an empirical,
bottom-up approach to regenerate weights between two similar
HLA allotypes. This protocol has shown to improve the predic-
tion performance for most alleles predicted by the tool.

ConvMHC [33] is a machine learning-based tool, which uses
a deep convolutional NN (DCNN) for pan-specific peptide-MHC
class I-binding prediction. The algorithm generates a ‘pixel’-like
matrix that encodes the residues of a peptide as the height
(H) and the sequence of the binding area of a corresponding
HLA molecule as the width (W). In this image-like array (ILA)
data, each contact area between a peptide and an HLA molecule
is defined as a ‘pixel’. In addition, a C channel vector that
contains the value of physicochemical properties of the amino
acid interaction pair in the ‘pixel’ is also included in this ILA data.
ConvMHC selects nine physicochemical properties and converts
them into scores assigned to corresponding amino acids. The
size of the C channel is 18 as each pair of ‘pixels’ has 2 amino
acids. ConvMHC uses 34 HLA-I contact residues provided by
NetMHCpan [86] and is trained on 9-mer peptides. Thus, the
size of ILA is 34 (W) × 9 (H) × 18 (channels). The algorithm of
ConvMHC is based on the DCNN architecture described in [87]
and uses the dropout [88] as the regularization method. The
network uses ReLU [89] as an activation function to transfer the
non-linear output of each layer and the Adam optimizer with a
learning rate of 0.001 for optimization.

HLA-CNN [34], similar to ConvMHC, also uses DCNN as the
machine-learning algorithm. The difference between the two is
that instead of encoding the input as a ‘pixel’, HLA-CNN uses
the skip-gram model [90], which is a useful technique used in
natural language processing, to embed a peptide sequence into a
15-dimensional vector space. The output of this embedding layer
is a two-dimensional matrix of size L × 15 (L is the length of a
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given peptide). The DCNN architecture of HLA-CNN consists of
two convolutional layers and a fully connected layer. The output
matrix of the embedding layer is transferred into the first one-
dimensional convolutional layer, which has 32 filters with the
length 7. This layer then returns the matrices of the size L × 32
to the next convolutional layer, which also has 32 filters with the
length of 7. The function of this one-dimensional convolutional
layer can be defined as follows:

G[i, k] = Fk ∗ H =
∑

u

M∑
v−0

Fk[u, v]H[i − u, M − v], (7)

where Fk is the kth filter, H is the input matrix, G is the output
matrix, M is the column size of H minus 1 and u ranges from

−
[

filter length
2

]
to

[
filter length

2

]
. Then the output of the 2nd convolu-

tional layer is reshaped into a single 288-dimensional vector that
is fully connected to the next layer. The sigmoid function is used
as the activation function. Finally, this layer is fully connected to
a logistic regression output unit. Like ConvMHC, the HLA-CNN
uses the dropout method for regularization of the convolutional
layers and the Adam optimizer with a learning rate of 0.004.
Different from ConvMHC, HLA-CNN uses LeakyReLU [91] as the
activation function.

MHCflurry 1.2.0 [31] is developed based on a feed-forward
network that consists of zero, one or two locally connected layers
and a fully connected layer. The sequence is first encoded into
a matrix of the size 15 × 21 using BLOSUM62 as the encoding
scheme. To maintain the position of the anchor residue after
the sequence encoding, a ‘no-residue’ character (‘X’) was intro-
duced to fill the missing residues to generate a 15-mer peptide
representation. The activation function of the hidden layers is
the hyperbolic tangent function, while the sigmoid function is
used in the output layer. For optimization, MHCflurry 1.2.0 uses
a modified mean squared error loss function L as the metric
to evaluate the training data with affinity measurements and
positive predictive value to evaluate MS peptidomics data. The
loss function L is defined as

L
(
ŷ, y

) = 1
n

n∑
i

I
(
ŷi, yi

)
, (8)

I
(
ŷi, yi

)

=

⎧⎪⎨
⎪⎩
(
max

(
ŷi−yi, 0

))2 for MS qualitative measurement and if yi < ŷi(
max

(
yi−ŷi, 0

))2 for MS qualitative measurement and if yi > ŷi,(
ŷi−yi

)2 for quantitative affinity measurement

(9)

where n denotes the number of measurements, and ŷi and yi

denote the predicted and measured values for the i−th measure-
ment, respectively. The MS identified ligands were assigned with
the value ‘<500 nM’. The negative data points for MS evaluation
were peptide ligands from different HLA allotypes.

Consensus methods

The idea of consensus methods is that prediction performance
can be further improved by integrating the outputs from several

individual tools based on a weighted scheme. Several bench-
marking studies have shown that an improved prediction per-
formance can be achieved by consensus methods that average
the prediction scores from multiple individual predictors [24, 54,
92]. IEDB-AR-Consensus [25] is such a method, whose results are
based on prediction outcomes from three sources: (i) NetMHC
4.0; (ii) SMM [75] and (iii) CombLib [93]. IEDB-AR-Consensus is
recommended by the IEDB peptide-binding prediction platform
[25]. The platform includes several prediction tools, for which the
query peptide and the HLA allotype exist in training data sets of
the consensus method.

NetMHCcons 1.1 [35] is another representative peptide-
binding prediction tool based on the consensus approach.
Specifically, two NN-based prediction tools and one PSSM-based
tool have been included in this consensus method, namely
(i) NetMHC 3.4 [94, 95], (ii) NetMHCpan 2.8 [86, 96] and (iii)
Pickpocket 1.1 [24]. NetMHCcons offers three options to predict
peptide binding to different HLA allotypes. Each of the included
tools was first benchmarked individually and performance
evaluated prior to the application of the consensus method.
Finally, the NetMHCcons method is defined as follows:

NetMHCcons =

⎧⎪⎨
⎪⎩

NetMHC + NetMHCpan for D = 0
NetMHCpan for 0 < D < 0.1

NetMHCpan + Pickpocket for D ≥ 0.1
,

(10)

where D refers to the distance between the query HLA allotype
and its nearest neighbour in the reference HLA allotype list.

Webserver/software functionality

All peptide-HLA-binding prediction tools reviewed here are
either accessible via an online web server and/or are available
for download as local stand-alone software. This enables
researchers to conduct the prediction in an easy and productive
manner. In this section, the general functionalities of the
currently available tools are discussed.

For prediction tools with accessible web servers, users
normally need to submit the peptide sequence(s) of interest and
specify the HLA allotype for which binding is to be predicted.
RANKPEP, Pickpocket 1.1, SMMPMBEC, NetMHC 4.0, NetMHCpan
4.0, ConvMHC, IEDB-AR-Consensus, NetMHCcons 1.1 and
NetMHCstabpan 1.0 allow users to upload a file with multiple
sequences in the FASTA format or submit sequences in the
FASTA/PEPTIDE format directly. However, SYFPEITHI can only
accept a single sequence at each run of prediction. Note that
for all tools that can predict multiple sequences at a time, the
maximum number of sequences is still limited (i.e. allowing
either ≤200 sequences or ≤10 MB of the uploaded file for
SMMPMBEC and IEDB-AR-Consensus, ≤5000 sequences and
≤20 000 amino acids of each sequence for other tools that have
mentioned the data size). In addition to being implemented as
a web server, Pickpocket 1.1, SMMPMBEC, NetMHC 4.0, NetMHC
4.0, IEDB-AR-Consensus, NetMHCcons 1.1 and NetMHCstabpan
1.0 have also been made available as stand-alone software for
download from their websites.

For a tool that has been implemented as an online web
server, a well-designed user-friendly interface can undoubtedly
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enhance the efficiency during operation and save unnecessary
time otherwise consumed in familiarizing with the tool. To
this point, detailed instructions of step-by-step operations have
been provided for all tools with webserver, with an exception
of SYFPEITHI and ConvMHC. In addition, interpretable outputs
can also be found in well-marked places at the web servers of
Pickpocket 1.1, SMMPMBEC, NetMHC 4.0, NetMHCpan 4.0, IEDB-
AR-Consensus, NetMHCcons 1.1 and NetMHCstabpan 1.0, which
has further improved the interpretation of the generated results
in terms of the detailed explanation of outcomes. Moreover,
tools like RANKPEP, Pickpocket 1.1, NetMHC 4.0, NetMHCpan 4.0,
NetMHCcons 1.1 and NetMHCstabpan 1.0 also allow for specific
parameters, including the prediction thresholds and weights,
to be user-defined or to be set to default values. Also, except
for RANKPEP, optional email notifications of accomplished pre-
dictions with job IDs can be selected in those tools mentioned
above as well as in SMMPEBMEC and IEDB-AR-Consensus, which
facilitates a future revisit of results. Moreover, users can also
choose to download the results directly from these tools for a
further in-depth analysis off-line.

Performance evaluation strategy

Performance evaluation strategies including k-fold cross-
validation (CV) and independent tests are widely used for
performance evaluation of peptide-binding prediction tools and
for further optimization. For k-fold CV, the data set of the tool
is divided into k partitions. The validation procedure will be
performed k times. Each time one of the k partitions is selected
as a validation data set, while the remaining (i.e. k−1) partitions
are used to train the model. The prediction performance of the
trained model then would be evaluated using the validation
data set. The final performance is calculated as the average
performance over those k individual performances. The leave-
one-out (LOO) CV is called when k equals the total number of
data entries. This method is much more thorough compared
with k-fold CV. The data set is first divided into N parts, where
N is the number of entries in the entire data set. The training
process is carried out N times, and each time one entry will
be validated based on the model that has been trained on the
remaining (N–1) entries. The overall performance is the average
over all N training processes. Normally, the CV method is used
to test the internal performance and to avoid the overfitting of
the model. Independent test is another popular strategy used
for performance evaluation of the tools. Here, the independent
test data, which is non-overlapping with the training data of the
tools, is collected and becomes an independent test data set.
This independent test data set is used as a uniform validation
data source to test the performance of different tools. Therefore,
compared to the CV method, the performance of different tools
evaluated on the same independent data test are comparatively
more objective, indicative of the tools’ generalization ability and
can be compared mutually.

As shown in Table 1, except for SYFPEITHI for which there
was no information about the evaluation methods used, all
remaining tools reviewed here were evaluated by performing
CV and/or independent tests. Tools such as PSSMHCpan 1.0,
NetMHCpan 4.0, ConvMHC, HLA-CNN and NetMHCstabpan 1.0
used both methods for performance evaluation. Tools that were
evaluated using CV only included Pickpocket 1.1, SMMPMBEC,
NetMHC 4.0 and MHCnuggets 2.0, while RANKPEP, MixMHCpred
2.0.1, MHCflurry 1.2.0, IEDB-AR-Consensus and NetMHCcons 1.1
were evaluated using the independent test only in their origi-

nal studies. Here, to allow a fair comparison, the performance
benchmarking of all these tools is conducted using a curated up-
to-date independent test data set aforementioned.

To measure the prediction performance of the different tools,
four commonly used performance metrics for evaluating the
algorithms’ performance were employed [97]. These include
accuracy (Acc), sensitivity (Sn), specificity (Sp) and the Matthews
Correlation Coefficient (MCC). The MCC was chosen to enable a
more balanced assessment of tools that are developed based on
different data sets. These four performance metrics are defined
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn = 1 − N+−
N+ 0 ≤ Sn ≤ 1

Sp = 1 − N−+
N− 0 ≤ Sp ≤ 1

Acc = ∧ = 1 − N+−+N−+
N++N− 0 ≤ Acc ≤ 1,

MCC =
1−

(
N+−
N+ + N−+

N−
)

√(
1+ N−+−N+−

N+
)(

1+ N+−−N−+
N−

) − 1 ≤ MCC ≤ 1

(11)

where N+, N+
−, N− and N−

+ represent the numbers of positives,
false negatives, negatives and false positives, respectively.

In addition, in this study, the receiver operating characteristic
(ROC) curves were also used to visualize the performance of dif-
ferent methods, with the area under the curve (AUC) calculated
to quantify their performance.

Results and discussion

Conservation analysis of sequence motifs
of the HLA-I ligands

The binding motif of HLA-I allotypes reflects sequence charac-
teristics of peptide ligands that facilitate binding to the antigen-
binding cleft of specific HLA-I allotypes. HLA-I allotype-specific
scoring matrices can be established based on these conserved
peptide-binding motifs. We analysed the positional preferences
of amino acids for allotype-specific peptide ligands across our
curated validation data set. For each HLA allotype we generated
consensus-binding motifs using the pLogo program [98], which
can be visualized in Figure 2 and Figure S1. Irrespective of the
ligand length, peptides derived from the same HLA-I allotype
show the consensus-binding motifs. For instance, the peptides
binding to HLA-A∗02:04 and HLA-A∗24:06 prefer Leu and Tyr at
position 2 (‘P2’), as well as Leu/Val or Phe at their C-termini
(Figure 2D–F; Figure S2A, B, C). In addition, it can be seen that
preferential amino acid patterns exist in the peptides binding
to closely related alleles, for example for HLA-B∗27:x (x = 01, 07,
08 and 09), where Arg is often required at P2 (Figure 2G–I; Figure
S2G–O). However, a closer look revealed that HLA-B∗27:01 also
preferred to have Arg at the P1 position, while other allotypes
did not have this requirement. Moreover, the C-termini of ligands
binding to HLA-B∗27:01 were relatively diverse compared to HLA-
B∗27:x (x = 07, 08, 09) that had a strong preference for Leu and Phe
at this position.

Performance evaluation of different tools
for peptide-binding HLA-I prediction

The performance of different tools was assessed in terms of five
commonly used metrics, namely AUC, Sn, Sp, Acc and MCC using
the validation data set as an input. It should be noted that the
training data sets of some reviewed tools are not available, while
several other tools have been updated with an expanded training

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
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Figure 2. Position and residue specificity of four HLA-I alleles, including (A, B, C) HLA-A∗02:01 (9, 10 and 11 mers), (D, E, F) HLA-A∗02:04 (9, 10 and 11 mers), (G, H, I)
HLA-B∗27:01 (9, 10 and 11 mers) and (J, K, L) HLA-C∗02:02 (9, 10 and 11 mers).

data set since their first release. Therefore, there might be some
overlap between the data sets used for developing some tools
and our validation data set. Whenever possible, we downloaded
the training data sets of these tools and removed the overlapping
entries from our validation data set. Then we submitted the
9-, 10- and 11-mer peptide sequences specific for each HLA-I
allotype in the validation data set to the tools. For this evaluation,
the tools’ parameters were set to the recommended configura-
tions in the corresponding publications or to the default values
if no recommendations were given. To illustrate the prediction
performance of each tool, the ROC curves with the calculated
AUC values were plotted and shown in Figure 3, Figure S2 and
Table S2. Moreover, the performance results evaluated in terms
of Sn, Sp, Acc and MCC for each tool are given in Table S2. Of note,
the evaluation of prediction performance is dependent on the
composition of the training data the reviewed predictors have
provided.

MixMHCpred 2.0.1 achieved the best performance among all
scoring function-based tools as it achieved the highest AUC
values among nearly all 19 allotypes, while NetNHCpan 4.0
performed best among all machine learning-based tools, and
NetMHCcons 1.0 achieved a better performance than IEDB-AR-
Consensus in the consensus category. While no tool universally
achieved the best performance for all HLA-I allotypes in the
independent test data set, MixMHCpred 2.0.1 performed best
for most HLA-I allotypes examined. We speculate that one rea-
son for MixMHCpred 2.0.1 achieving the best performance is

that it is a recently published tool trained with both public
HLA-peptide data sources from 40 cell lines and also in-house
data from immunoaffinity purification experiments involving
10 additional cell lines. In addition, MixMHCpred 2.0.1 applied
both fully unsupervised and semi-supervised machine-learning
strategies to identify a total of 52 HLA-I allomorph-specific bind-
ing motifs.

Among the machine learning-based tools, NetMHCpan 4.0
achieved the largest AUC values considering all HLA-I allotypes.
This is possibly because NetMHCpan 4.0 represents the latest
version of NetMHCpan series, which were trained using
both experimental affinity measurements and MS-identified
peptide ligands. Moreover, NetMHCpan 4.0 uses the pseudo-
sequences of HLA-binding pockets to calculate the similarities
in ligand binding between different HLA allotypes. Therefore,
for HLA allotypes with little binding data NetMHCpan 4.0 is
able to achieve a high-prediction performance compared to
other machine learning-based tools, e.g. HLA-A∗24:06 (9 mers)
(AUC = 0.989; Figure S2A), HLA-A∗24:13 (9 mers) (AUC = 0.974;
Figure S2B), HLA-B∗35:08 (9 mers) (AUC = 0.909; Figure S2L) and
HLA-C∗03:04 (10 mers) (AUC = 0.977; Figure S2T). As a compari-
son, other tools only obtained high AUC values when predicting
peptide binding to well-studied HLA-I allotypes. For instance,
MHCnuggets 2.0 achieved an AUC value of 0.877, 0.955, 0.942,
0.985 and 0.985 for HLA-B∗27:01 (9 mers), -B∗27:09 (10 mers),
-B∗27:09 (11 mers), -B∗56:01(9 mers) and -C∗03:04 (9 mers),
respectively (Figure 3G; Figure S2J, K, O, S).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
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Figure 3. ROC curves and the corresponding AUC values of the reviewed predictors for peptides with lengths of 9, 10 and 11, binding to HLA-I molecules specific for (A,

B, C) HLA-A∗02:01 (9, 10 and 11 mers), (D, E, F) HLA-A∗02:04 (9, 10 and 11mer), (G, H, I) HLA-B∗27:01 (9, 10 and 11 mers) and (J, K, L) HLA-C∗02:02 (9, 10 and 11 mers).
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As for the consensus methods, NetMHCcons 1.1 achieved
better AUC values compared with IEDB-AR-Consensus. The
NetMHCcons 1.1 used different types of combinations of
peptide-binding prediction tools according to the query pair
of peptide and HLA-I allotype as discussed in the section of
consensus methods. This might be the primary reason the
NetMHCcons 1.1 achieved the best prediction performance.
For instance, NetMHCcons 1.1 also utilizes pseudo-sequences
of HLA-binding pockets used in NetMHCpan 4.0 to predict
binding to HLA allotypes with little binding data, e.g. HLA-
A∗24:06 (9 mers) (AUC = 0.986; Figure S2A), HLA-A∗24:13 (9 mers)
(AUC = 0.971; Figure S2B), HLA-B∗35:08 (9 mers) (AUC = 0.884;
Figure S2L) and HLA-C∗03:04 (10 mers) (AUC = 0.989; Figure S2T).

Prospective strategies for improving the prediction
performance of antigenic peptides and developing
next-generation bioinformatics tools

Based on our independent evaluation of prediction performance,
we foresee that peptide-binding prediction will continue to be
improved as the volume and quality of training data increases
(such as observed for MixMHCPred 2.0.1). Similarly, machine-
learning algorithms (such as NetMHCpan 4.0) also benefit from
improved training data sets. Such ligand prediction tools have
already facilitated the discovery of new epitopes in many dis-
eases and cancers [99–102]. However, only a very small propor-
tion of the predicted binders are naturally targeted by T cells
(i.e. T-cell epitopes) [3]. In this context, we also used the IEDB
T-cell assay data set, which contains experimentally verified
immunogenic and non-immunogenic peptides, to evaluate the
performance of the prediction tools reviewed here. As it turned
out, independent of the predictor, those peptides that were
predicted to be binders are mostly experimentally verified non-
immunogenic according to IEDB (for peptides that are verified as
non-immunogenic peptides and predicted as binders, more than
95% of are pathogen-derived peptides, data not shown). This
result suggests that the prediction of immunogenicity cannot
solely rely on the binding affinity between HLA allotypes and
peptides. The immunogenicity of a peptide is associated with
various properties. These include the available T-cell receptor
repertoire, ability of the peptide to be effectively processed and
liberated from the parental antigen, the duration and context
of presentation and binding to HLA allotypes and so on [4,
103]. A recent study shows that more than 80% of MHC class
I-bound peptides derived from virus can be immunogenic in
virus-infected mouse. The study demonstrated that the major
CD8+ T-cell responses are strongly associated with high affinity
of peptide to MHC class I molecule. Besides that, the study also
showed evidence and pointed out that the peptide abundance
and the time of gene expression may play roles in the CD8+
T-cell immunity [104]. This finding suggests that most of pre-
sented viral MHC class I peptides may be immunogenic, but
the T-cell response may be dominated by a few peptides. Thus,
how to design a prediction method that can predict dominant
T-cell epitopes is still a challenge. We believe that integrating
peptide properties related to immunogenicity into an algorithm
using cutting-edge machine-learning techniques is a promising
direction for improving the prediction of immunogenicity. To this
end, we provide several insights for further discussion and future
directions.

Firstly, to identify potential epitopes efficiently, peptides that
have been experimentally annotated as antigenic, i.e. being able
to induce a T-cell response and peptides that are clearly pre-
sented yet fail to elicit a response, as high affinity of peptides

is reported to be strongly associated with T-cell responses [104],
are the ideal data source for extracting informative features and
constructing accurate prediction models. Various features such
as physicochemical properties of peptides, the stability of pHLAs
complex, antigen processing and the structural contact between
pHLAs and TCRs have been shown to influence the immuno-
genicity of peptides [48, 105–107]. More accurate epitope predic-
tion may be achieved by considering these related features along
with peptide binding. In addition to proteomic information, the
discovery of immunogenic peptides may also be facilitated using
genomic data generated from NGS techniques, which might pro-
vide potentially useful information such as identifying somatic
mutations within tumour cells to aid the identification of neo-
antigens for personalized cancer immunotherapy [108–110].

Secondly, the use of DL is also a promising direction in
improving the performance of immunogenic peptide prediction.
Compared to conventional machine-learning algorithms, DL-
based methods can introduce innovative network architectures
and regularization techniques, which allow the functions of the
algorithms to be trained to simulate the complexity of peptide
binding and T-cell recognition, while avoiding common issues
faced by machine-learning methods such as overfitting and slow
convergence [111, 112]. Despite the time-consuming model train-
ing process, DL-based methods have been shown to outperform
other methods in a number of different research areas given suf-
ficient training data [32, 111]. In addition to that, DL methods are
particularly suitable for undertaking high-throughput prediction
tasks, particularly because they do not need to involve and
use feature encodings to represent the original data samples.
Thus, DL methods are attractive and promising for analysing
the rapidly increasing amount of available data generated by
advanced high-throughput techniques.

With the rapid development in the field of machine
learning, several novel algorithms have been proposed that
exhibit promising prediction performance and are attractive
for researchers. For instance, a novel incremental decision
tree-learning algorithm, the Hoeffding Anytime Tree, has been
recently developed. It is based on the conventional Hoeffding
Tree [113] but with a minor modification that allows it to achieve
a significantly improved predictive performance on most of the
largest classification data sets [114]. Moreover, algorithms like
reinforcement learning can improve the prediction accuracy
further and autonomously by receiving reward or punishment
according to the model performance [115, 116]. This property
is also attractive for immunogenicity predictions because the
results of experimental tests can be fed back to improve the
efficiency and accuracy of the model.

Conclusion

Once liberated from the parental protein, the selection and
binding of peptide antigens to available HLA allotypes is the
first critical step in influencing the immune response and
ultimately the survival of the host. For this reason, tremendous
efforts and resources have been applied to accurately predict
which pathogen-derived or neo-antigen-derived peptides are
selected for antigen presentation. Available tools now do quite
a respectable job for predicting a peptide’s ability to bind to a
given HLA allotype, even in the absence of training data sets for
a specific HLA allomorph. The development of these prediction
tools enables immunologists to narrow down the search space
of antigen candidates that need to be experimentally validated.
However, the integration of other host-specific information will

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz051#supplementary-data
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be essential to predict which of the peptides present on the
cells surface will be targeted for T-cell responses. In addition,
advanced machine-learning algorithms like DL are ideal for
processing such extremely large information from the host and
generating key features for predicting immunogenicity. There-
fore, the combination of skills from immunologists and bioin-
formaticians will assist the development of immunogenicity
prediction in a faster and more efficient way. In this review
and survey work, we have introduced and comprehensively
evaluated the currently available tools for the prediction of pep-
tides binding to different HLA-I molecules. Additionally, we have
discussed, reviewed and assessed all methods in terms of their
calculation methods of the prediction score, prediction algo-
rithm(s), functionality and performance evaluation strategy. To
obtain a more objective performance evaluation, we constructed
an independent test data set to benchmark all tools. Based on
the assessment results, MixMHCpred 2.0.1 achieved the highest
prediction performance across most of the HLA-I molecules
and is the best predictor among scoring function-based tools.
Apart from that, NetMHCpan 4.0 and NetMHCcons 1.1 generally
achieved the best performance results in the machine learning-
based and consensus-based tools, respectively. This study
provides useful guidance to researchers who are interested in
developing an antigen prediction model in future studies. Addi-
tionally, feedback of data on immunogenicity into such models
will improve our understanding of the antigen-processing path-
ways and subsequent T-cell recognition patterns. Finally, we
hope that more accurately predicted peptide binding will assist
with the development of immunotherapy and vaccine design.

Key Points
• We conducted a comprehensive review and assessment

of 15 currently available tools for predicting human
leukocyte antigen (HLA) class I (HLA-I)-binding pep-
tides, including 6 scoring function-based, 7 machine
learning-based and 2 consensus methods.

• This review and survey systematically analysed these
tools with respect to the computational methods of the
prediction score, employed algorithms, performance
evaluation strategies and software functionality.

• All tools underwent a comprehensive performance
assessment based on 19 different HLA-I allotypes and
up-to-date independent data sets of experimentally
verified HLA-I allotype-specific ligands.

• Extensive benchmarking tests show that MixMHCpred
2.0.1 performs best across most of HLA-I allotypes
included in the validation data sets, while NetMHCpan
4.0 and NetMHCcons 1.1 achieve the overall best perfor-
mance among machine learning-based and consensus-
based tools, respectively.

• This study provides a comprehensive analysis and
benchmarking of currently available bioinformatics
tools for HLA-I peptide-binding prediction and gives
directions to the wider research community for devel-
oping the next generation of peptide-binding prediction
tools.
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