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Abstract

A number of machine learning (ML)-based algorithms have been proposed for predicting mutation-induced stability
changes in proteins. In this critical review, we used hypothetical reverse mutations to evaluate the performance of five
representative algorithms and found all of them suffer from the problem of overfitting. This approach is based on the fact
that if a wild-type protein is more stable than a mutant protein, then the same mutant is less stable than the wild-type
protein. We analyzed the underlying issues and suggest that the main causes of the overfitting problem include that the
numbers of training cases were too small, and the features used in the models were not sufficiently informative for the task.
We make recommendations on how to avoid overfitting in this important research area and improve the reliability and
robustness of ML-based algorithms in general.
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Introduction
The ability to predict protein stability changes upon mutation is
of great scientific interest and is also of broad practical impor-
tance [1–8]. For example, it can be used to estimate the effects of
nonsynonymous single-nucleotide polymorphisms, which can
be useful for precision diagnostics and medicine. This is espe-
cially important for genomic diseases such as cancers [9–11].
For example, it was discovered that the level of DNA methyl-
transferase 1 (DNMT1) was elevated in breast cancer because
of an increase in protein half-life [10]. A book devoted to the
modulation of protein stability in cancer therapy was published
in 2009 [11].

Recognizing the great potential of predicting protein stability
changes upon mutation, many different methods have been
tested [12–24]. Earlier approaches included comparative analysis

of relative stability between wild-type proteins (WT) and their
mutants (MU) to establish principles that govern protein stability
[12]. These principles were then used to design point mutants
that may increase protein stability. Successful cases included
decreasing the entropy of unfolding [25], engineering surface
salt bridges [26], introducing disulfide bridges [27] and so on.
This type of approach was made possible largely due to the
structure and stability measurements of hundreds of mutant
lysozymes of phage T4, made available by Dr Brian Matthews
and coworkers [12]. Only a limited number of successful cases
have been reported, mostly in the case of the T4 lysozyme [12].

Force field-based algorithms were also introduced decades
ago and are still being actively researched [13–15]. Some of
these methods have shown better-than-random performance in
prospective validations but generally are not considered gold
standards for improving protein stability [28]. Further, these
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Figure 1. A schematic representation of free energy difference between wild-type and mutant proteins.

approaches require high-resolution 3D structures and are often
highly computer-intensive. Therefore, they are best suited for
low-throughput analysis and prediction of proteins with known
3D structures.

In recent years, algorithms based on machine learning (ML)
technologies for predicting protein stability changes upon muta-
tion have attracted increasing attention because they often are
less computer resource demanding than force field approaches,
and some do not require 3D structures [16–24]. Many ML algo-
rithms, such as support vector machines (SVM) [16–19], neural
networks [20] and multiple regression and classification tech-
niques [21, 22], have been used for the purpose. The ML methods
hold great promises because they may not only provide valuable
predictions to guide experiment design but also afford insights
into the complex relationship between protein sequence, struc-
ture and stability. However, the performance of these algorithms
has been challenged as several performance reviews failed to
reproduce the high accuracies found by the authors [29, 30].
Recently, in a blind prospective validation, none of 63 mutants
predicted to be stabilizing were experimentally observed to be
stabilizing [31].

We proposed a simple method, based on physical prin-
ciples, to evaluate methods for predicting protein stability
changes upon mutation by using hypothetical reverse mutation
(HRM) [32–34]. This approach is based on the fact that if
a wild-type protein is more stable than a mutant protein,
then the same mutant is less stable than the wild-type
protein. Since then, a few more algorithms using HRM have
been published, which assert better performance than older
methods [35–37].

In this review, we use the HRM method to test three newly
developed algorithms, along with two widely cited methods pub-
lished earlier, to evaluate if there has been significant improve-
ment in the past several years since HRM was proposed as
an evaluation tool. Unfortunately, as we show in the following
sections, these newer algorithms still suffer from the problem of
overfitting and show no improvement over the older methods.
In this critical review, we focus on identifying the sources of the
problem and provide suggestions for how to move this rather
important research forward.

Methods
Hypothetical reverse mutation

Protein stability changes upon mutation are often measured
through changes in the alterations of folding free energies (ΔΔG)
between wild-type proteins and their mutants. Because free

energy is a thermodynamic state function [38], the ΔΔGW→M

of a mutation (W → M) equals the -ΔΔGM→W of a hypothetical
mutation from the mutant to the wild-type protein (M → W)
(Figure 1). Mutation is a relative term: if a protein in human and
mouse differs by one amino acid, the mouse protein is a mutant
to the human one, and the human protein can also be considered
as a mutant to the mouse wild-type protein. Thus, the reverse
mutation is termed hypothetical only because the wild-type
protein is already defined, not because it does not exist. In
fact, it is real because both wild-type and mutant proteins do
exist, confirmed by their structures. Because free energy is a
state function, ΔΔG does not depend on the path between wild-
type and mutant proteins, and is determined because these two
endpoints are defined [39].

Since HRMs were not used in training the analyzed algo-
rithms and their ΔΔGM→W can be easily obtained, they provide
a simple and convenient method to test whether a predictor is
robust.

Mutation datasets

We identified 125 mutations of 9 wild-type proteins in the
ProTherm database [40] for which both wild-type and mutant
protein structures were available. In these mutations, the ��Gs
of both forward and reverse mutations can be predicted based on
their experimentally determined structures, and the predicted
��Gs can be compared to experimental data.

The structures of these wild-type proteins and their relevant
mutants were downloaded from the protein data bank (http://
www.pdb.org). The median and average of RMSD of the WT
and corresponding MU structure pairs are 0.263 and 0.318 Å,
respectively, indicating a vast majority of the mutants did not
induce significant structure change, and the qualities of the MU
and WT structures are similarly good. For each mutation in the
dataset, a corresponding HRM was created by swapping the wild-
type protein and its mutant in a mutation (i.e., the actual mutant
protein is now considered as the hypothetical wild-type protein
and the actual wild-type protein is now treated as the mutant
protein). The ��G during an HRM was assigned with the same
value but with an opposite sign to its experimental forward
mutation (Figure 1).

Reviewed algorithms

We analyzed five representative algorithms: MUpro [17],
I-Mutant2.0 [16], STRUM [35], mCSM [36] and DEUT [37]. The
base algorithms and features used to develop models are

http://www.pdb.org
http://www.pdb.org
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Table 1. Summary of reviewed algorithms

Base algorithm No. of features Structure required? Year published Type of features

mCSM [36] GP for regression, RF
for classification

? Yes 2013 Graph-based atom distance patterns,
pharmacophore changes, experimental
conditions

DUET [37] SVM ? Yes 2014 Predictions from Site Directed Mutator
(SDM) and mCSM

STRUM [35] GBRT 120 Yesξ 2016 Sequence-based, threading
template-based, i-TASSER model-based

muPro [17] SVM 140 (sequence only),
40 (structure only),
160 (sequence +
structure)

Optional 2005 20 for the type of mutation (−1 for the
deleted residue, 1 for newly introduced
residue, 0 for all others); 120 (6 ∗ 20) for
next three residues for each side, 20 for
the frequency of each type of residues
within a sphere of 9 A

iMutant [16] SVM 42 Optional 2005 Temperature, pH, 20 mutation types,
20 spatial environment (0.9 nm) or
nearby residues (9 on each side)

GBRT indicates gradient boosted regression tree; RF, random forest; GP, Gaussian process, SDM: Site Directed Mutator; ξ , may use low-resolution structure modeling; ?,
no exact number was given.

Table 2. Performance of ΔΔG prediction algorithms for mutations and hypothetical reversed mutations

Inconsistence
(%)

Sign correctly predicted (%) R F
W→M M→W WT→MT MT→WT WT→MT MT→WT

mCSM [36] 88.8 81.6 29.6 0.649 −0.040 0.44 0.024
DUET [37] 73.6 84 36 0.649 −0.017 0.392 −0.008
STRUM [35] 75.2 86.4 31.2 0.837 −0.055 0.648 0.056
muPro [17] 73.6 96.8 31.2 0.971 −0.018 0.888 0.008
iMutant [16] 77.6 88.8 28.8 0.937 0.048 0.824 −0.136

W indicates wild-type protein; M, mutant; R, Pearson correlation coefficient, 1 is perfect and 0 is random; F, Fechner correlation coefficient, 1 is perfect and 0 is random.
Percent of inconsistence: the percent of wild-type to mutant and mutant to wild-type pairs predicted with the same sign.

summarized in Table 1. Three of these algorithms—namely,
MUpro, I-Mutant2.0 and DUET—were developed based on the
SVM algorithm [41], one of the most widely used ML algorithms
(Table 1). STRUM utilized gradient-boosted regression tree and
mCSM employed Gaussian process regression for regression and
random forest for classification purpose.

Evaluation metrics

To evaluate the prediction performance of evaluated algorithms,
we used several statistical metrics. The first was the percent of
inconsistence, defined as the percent of mutation (W → M) and
their hypothetic reverse mutation (M → W) pairs predicted with
the same sign. As illustrated in Figure 1, a mutation and its HRM
in reality always share the same ��G values but the opposite sign.
When a mutation and its HRM share the same sign, the results
are two mutually exclusive situations that cannot coexist: a wild-
type protein is more stable than its mutant but, at the same time,
the same mutant is more stable than the wild-type protein. A
high level of inconsistence strongly suggests that the predictor
is overfitted by forward mutations.

We also calculated the percent of correctly predicted signs
for forward mutations and reverse hypothetical mutations to
demonstrate the performance gap between these two groups. At
minimum, a robust predictor should be able to accurately predict
whether a mutation is stabilizing or destabilizing. The Pearson
and Fechner correlation coefficients of the experimental and
predicted ��G values were calculated for forward mutations and
HRMs. In addition, we used different ��G values as thresholds

to convert the predictions into binary classes (i.e., stabilizing
and destabilizing) and generated the area under receiver operat-
ing characteristic (ROC) curve to visualize the performance gap
between W → M and M → W predictions.

Results and Discussions
The performance problem

Table 2 provides a summary of performance of all five algorithms
under review. The percent of inconsistent predictions is above
70% in all five algorithms, and mCSM resulted in the worst
performance: almost in 9 out of 10 cases it predicted that both
forward and reverse mutations share the same sign. A close look
at the percentages of correctly predicted signs of ��G shows the
performance of all algorithms is vastly different for forward and
reverse mutations: while all algorithms predicted the signs of
forward mutations at accuracies above 80%, including 97% for
MUpro, the percentages dropped to ∼30% for the HRMs. The Pear-
son and Fechner correlation coefficients of forward and reverse
mutations show the same trend: all algorithms performed very
well for forward mutations, but their results for HRMs essentially
reveal no correlation with actual experimental data. Scatter
plots of predicted versus experimental data are presented in
Figure 2 and Supplementary Materials. The ROC curves and their
associated AUC values suggest the same conclusion (Figure 3):
the predictors were overfitted for the further mutations, and
thus did not perform well for the HRMs, which were not used
in the training.
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Figure 2. Scatter plots of I-Mutant2.0 predictions versus experimental data.

Figure 3. ROC curves and their AUCs of ΔΔG prediction algorithms for wild-type to mutant and mutant to wild-type mutations. Different ��G values were used as

thresholds to convert the predictions into binary stabilizing and destabilizing classes.

Taken together, all performance metrics used in the study
consistently shows that the tested five algorithms were prone to
overfitting. Therefore, they have little practical value. In addition,
an important finding is that the newer algorithms did not show
any improvement over the two older ones.

What went wrong?

The performance analyses using HRMs in this study show that
the five tested ML models all suffer from the problem of overfit-
ting. It is noteworthy that all these models were evaluated by the
authors using n-fold cross validation, a common practice widely
considered as an acceptable validation approach. Our results
raise the question, what went wrong? To determine the causes
of the problem, it is necessary to analyze the procedures of how
these models were constructed in detail.

For all models derived using ML methods to have acceptable
predictive power, three essential elements are required: a robust

base algorithm, a sufficiently large set of training data and a
set of informative features relevant to the target of prediction.
Since all evaluated algorithms were based on general purpose
algorithms that have been successfully utilized in many appli-
cations, the base algorithm is unlikely to be the sole source of
the overfitting problem. Thus, we rationalize that the causes
were more likely with the training data and features used to
build models. Here we analyze the training data and the features
frequently used in the models.

Training data

All algorithms reviewed in this project were developed based
on the experimental data from ProTherm, a publicly available
database devoted to experimentally determined protein stabil-
ity changes by mutation [40]. Because ProTherm has multiple
entries for some mutations from different literature, merging
and filtering steps are required to eliminate redundancy. In
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addition, many algorithms require 3D structures to make pre-
dictions. Depending on the filtering criteria, the number of final
sets of mutations passing the filtering steps was usually a few
thousands. For example, mCSM was based on a set of 2648
single-point mutations in 131 different global proteins as the
main dataset to build models for predicting ��G [36]. STRUM
instead relied on a set of 3421 single-point mutation involving
150 proteins [35]. The situation is further complicated by a report
published in 2018 indicating that ProTherm contained numerous
errors in sequence, structure or stability data [42]. The authors
of that report concluded that 1197 (29%) of the 4148 entries
in the ProTherm database with values of ��G were deemed
to be useful. This number of cases is small if one considers
there are thousands of distinct protein domains [43] and 380
different types of single-residue mutations [42]. Protein domains
are distinct functional units [44], and therefore the same type of
mutation at the residue level may induce different level of sta-
bility changes to different domains. Thus, only a small percent
of domains were actually represented in the training data. There
are 20 different amino acid residues, each of which can mutate
to one of the other 19 different residues. For each type of single-
residue mutations, there are less than 10 samples on average
from which to learn patterns. Similarities between amino acids
vary significantly and so do the mutations. A mutation between
two very different residues likely causes more changes than one
between two similar residues. Therefore, although it is possible
to learn patterns across different types of mutations, it is only
possible if the similarities among mutations are considered in
training. Unfortunately, we have not seen such information used
in any current models. Thus, the task of predicting stability
changes upon mutation is prone to overfitting because of the
limited number of cases in the available experimental data for
training and testing purposes.

Features relevant to protein stability

Even with sufficient good data, it is still necessary to find fea-
tures relevant to the target property under investigation before
it is possible to develop robust ML models. To determine which
features are relevant to protein stability changes upon mutation,
it is necessary to examine what happens when a mutation
occurs.

When a residue in a protein is replaced by another residue
(i.e., a mutation), chemical bonds between the outgoing residue
and its neighbor residues are replaced with a new set of bonds
involving the incoming residue. The difference between peptide
bonds (amide bonds) linking two amino acids is usually minimal;
therefore, it is often ignored for simplicity. However, a mutation
brings in a different type of residue with a new set of cova-
lent bonds, volume, ionic strength and hydrophobicity. If these
properties significantly differ from those of the outgoing residue,
they may cause significant changes to the conformation and the
non-covalent bond network among the mutation site and sur-
rounding residues in order to reach a new energy minimum. The
degree and extent of conformation change depends on the types
of the outgoing and incoming residues and also the surrounding
environment. For example, a mutation of a positively charged
residue replaced by another positively charged residue usually
causes fewer changes than a negatively charged residue [45]. In
addition, a mutation of a polar surface residue with its side chain
sticking outward would require less conformation adaptation
than a nonpolar residue in a well-packed hydrophobic core
[46, 47]. The difference of hydrophobic effect change results

in different changes in the specific heat (�Cp), and therefore
protein stability [48].

The total destabilizing and the total stabilizing energies of
proteins are both about two magnitudes larger than the differ-
ence between them [49]. Most folded globular proteins are only
stable by 20–60 KJ/mol, relative to their unfolded forms [49]. The
energy needed to stabilize/destabilize a protein is quite small
because it only takes ∼5.7 KJ/mol to cause a 10-fold change in
the equilibrium constant between folded and unfolded protein
molecules [49]. While non-covalent bonds are usually weaker
than covalent bonds, their changes may cause significant impact
to the protein stability [49]. Considering the energy contribution
of one typical protein hydrogen bond is in the range of 20–25
KJ/mol [50], a net gain or loss of a hydrogen bond of a mutant
over its wild type counterpart can significantly (de)stabilize the
mutant. There are usually hundreds of hydrogen bonds formed
in a typical protein because the number of hydrogen bonds in a
folded protein can be at least two per amino acid residue [51].
Further, the strength of hydrogen bonds highly depends on the
distances and angles between the three involved atoms. More-
over, non-covalent bonds can also be temporary, and a surface
residue may form a hydrogen bond with different residues or
water molecules.

Overall, it is very challenging to generate informative features
for predicting protein stability changes upon mutation. The
margin of error of predicting mutation-induced stability is
so small that it is unlikely it can be accurately predicted
based on mainly macro properties such as the composition
of the amino acid residues surrounding the mutation sites
because the values of these features do not change with
mutation.

Types of features relevant to protein stability changes

Based on the above analysis, it is logical to group features that
may be relevant to the protein stability changes into four types:
(1) the type of mutation (i.e., outgoing and incoming residues);
(2) changes in the space surrounding the mutation site; (3) the
environment surrounding the mutation site; (4) the conditions
at which the stability change is measured (e.g., pH, temperature,
etc.). Although remote residues not close to the mutation site
may affect the stability changes upon mutation, its effect usually
is relatively small and therefore can be ignored in most cases
for simplicity. The features in group 1 are certainly different
between wild type and mutant and important to protein sta-
bility; however, they alone are not very informative because the
same mutation can have a stabilizing or de-stabilizing effect in
different proteins or even just under different conditions in some
cases. Group 2 features encode the changes to the surrounding
environment induced by the mutation. They are more difficult
to obtain than other groups because structures of both wild-
type and mutant proteins are required. In addition, it is also
challenging to find meaningful ways to measure the differences.
It is important to note that the features in groups 3 and 4 remain
the same for all mutations, including HRMs in the same position.
Therefore, these types of features are only useful through the
types 1 and 2 features. Overall, the features from the 1st two
groups should be more important than the other two groups.
Most of the features used in existing algorithms are from the
1st, 3rd and 4th groups because of the difficulty to obtain the
important group 2 features. To give an example, we analyzed the
features used in I-Mutant2.0 algorithm in detail, presented in the
Supplementary Material.
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Conclusion and Future Prospects

We have reviewed five representative algorithms for predicting
mutation-induced stability change in proteins and found they
have not yet reached a level for practical use, likely due to
the limited amount of training data and unsatisfactory features
upon which the current algorithms were built. For other algo-
rithms not tested in the study, we provide the PDB codes of
proteins and their mutants used in the study as supplementary
materials so others can perform a quick test before they use any
of these algorithms. Caution should be taken though when HRM
is used to evaluate predictors. It is necessary but not sufficient to
vindicate the robustness of a predictor even when it delivers
similar performance for forward and reverse mutations. For
example, this approach should not be used to judge methods
trained on combined forward and HRMs because HRMs were
already used in the training [32, 33, 52]. Therefore, these models
could be overfitted in a more subtle way that requires a different
approach to detect the potential overfitting problem. Besides,
these models were trained on uncorrected data, consequently
the predictions are not reliable anyway [42]. Thus, we do not
evaluate these predictors in the present study.

Based on the analyses presented here, we believe that the
keys to the success of developing ML-based methods include
the availability of a significant amount of reliable experimental
data and informative features for such a difficult task. While
the former relies on bench scientists to perform more exper-
iments and therefore accumulate more usable data, the latter
requires intelligent collaboration between experimentalists and
informaticists. Useful features need to be based on chemical/-
physical properties of amino acid residues around the mutation
site. It is especially important to discover more informative
type-2 features because they are essential but largely not used
in the current models. A possible solution is to take advan-
tage of both ML- and traditional force field-based molecular
simulations by first deriving features from molecular modeling
studies to generate features that model atom level interac-
tion changes after mutation and then applying ML to find the
most informative features. Although force field-based simula-
tions are computer power demanding, recent advances in com-
puter and software technologies such as efficient algorithms and
large-scale parallel computing allow the studies to be performed
within a reasonable time frame [53, 54]. A key to success is
that features and models are evaluated extensively to determine
whether they are informative and robust. Otherwise, any pat-
terns detected from learning could be spurious, as an artifact of
overfitting.

We hope that publication of this critical review brings
a discussion about the status of the research to the com-
munity. As some of these reviewed algorithms have already
been widely cited, the community needs to be made aware
of the reality that these algorithms are unlikely to help
them in predicting stability changes upon mutation and
guiding them to design more stable proteins. Understanding
the limitations of current methods is an important step
that can promote more research in this important field
and can improve research reproducibility and reliability in
general.

A few final words: we should always have realistic expecta-
tions of the performance of predictive models. For a problem
as complex as predicting stability changes upon mutation, one
should never have expected good performance based on rudi-
mentary features such as residue composition, etc. In addition,
there is always a performance ceiling no matter what ML algo-

rithm and features are used, as there are always exceptions to
any possible rules and patterns discovered by ML for such a
complex problem. A red flag should be immediately raised when
‘excellent’ performance is apparently achieved. More often than
not, it is due to overfitting rather than genuine and robust perfor-
mance. Sometimes the problem can be identified by analyzing
data and features and confirmed with physical principles such
as HRMs used in the present study.

Key Points
• The ability to predict protein stability changes upon

mutation is of great scientific interest and practical
importance;

• The five ML-based algorithms for predicting protein
stability changes upon mutation reviewed in this study
were prone to overfitting and therefore have little prac-
tical value;

• Future development of robust algorithms for predicting
protein stability changes upon mutation may rely on
the availability of a very substantial increase in the
volume of experimental data and informative features.
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The views expressed in this article are the personal opinions
of the author and do not necessarily reflect policy of the US
National Cancer Institute.
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