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Proteogenomic characterization reveals therapeutic 
vulnerabilities in lung adenocarcinoma

A full list of authors and affiliations appears at the end of the article.

Summary

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic 

opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 

101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale 

proteomics, phosphoproteomics and acetylproteomics. Multi-omics clustering revealed four 

subgroups defined by key driver mutations, country and gender. Proteomic and phosphoproteomic 

data illuminated biology downstream of copy number aberrations, somatic mutations and fusions, 

and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR 
and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 

with immune-cold behavior and underscored a potential immunosuppressive role of neutrophil 

degranulation. Smoking-associated LUADs showed correlation with other environmental exposure 

signatures and a field effect in NATs. Matched NATs allowed identification of differentially 

expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset 

represents a unique public resource for researchers and clinicians seeking to better understand and 

treat lung adenocarcinomas.

In Brief

Comprehensive proteogenomic characterization of lung adenocarcinomas and paired normal 

adjacent tissues from patients of diverse smoking status and country of origin yields insights into 

cancer taxonomy, oncogenesis and immune response, offers novel candidate biomarkers and 

therapeutic targets, and provides a community resource for further discovery.

Graphical Abstract
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Introduction

Lung cancers are the leading cause of cancer deaths in the United States (Siegel et al., 2019) 

and worldwide (Bray et al., 2018). Despite therapeutic advances including tyrosine kinase 

inhibitors and immunotherapy, sustained responses are rare and prognosis remains poor 

(Herbst et al., 2018), with a 19% overall 5-year survival rate in the United States (Bray et al., 

2018) and a worldwide ratio of lung cancer mortality-to-incidence of 0.87. Adenocarcinoma 

(LUAD), the most common lung malignancy, is strongly related to tobacco smoking, but 

also the subtype most frequently found in individuals who have reported no history of 

smoking (“never-smokers”) (Subramanian and Govindan, 2007; Sun et al., 2007). The 

genetics and natural history of LUAD are strongly influenced by smoking status, gender, and 

ethnicity, among other variables (Chapman et al., 2016; Okazaki et al., 2016; Subramanian 

and Govindan, 2007; Sun et al., 2007). However, contemporary large-scale sequencing 

efforts have typically been based on cohorts of smokers with limited ethnic diversity. Among 

the major sequencing studies that have helped elucidate the genomic landscape of LUAD 

(Clinical Lung Cancer Genome Project (CLCGP) and Network Genomic Medicine (NGM), 

2013; Ding et al., 2008; Imielinski et al., 2012), only The Cancer Genome Atlas (TCGA) 
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measured a small subset of proteins and phosphopeptides, restricted to a 160-protein 

reversed phase array (Cancer Genome Atlas Research Network, 2014). As the most frequent 

genomic aberrations in LUAD involve RAS/RAF/RTK pathway genes that lead to cellular 

transformation mainly by inducing proteomic and phosphoproteomic alterations (Cully and 

Downward, 2008), global proteogenomic profiling is needed to provide deeper mechanistic 

insights. Furthermore, while prior molecular characterization has identified a number of 

oncologic dependencies and facilitated the development of effective inhibitors for LUAD 

driven by EGFR mutation (Lynch et al., 2004; Paez et al., 2004) and ALK (Kwak et al., 

2010), ROS1 (Shaw et al., 2014) and RET fusions (Gautschi et al., 2017; Kohno et al., 2012; 

Takeuchi et al., 2012), a substantial proportion of LUADs still lack known or currently 

targetable mutations.

To further our understanding of LUAD pathobiology and potential therapeutic 

vulnerabilities, the National Cancer Institute (NCI)’s Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) undertook comprehensive genomic, deep-scale proteomic and post-

translational modifications (PTM) analyses of paired (patient-matched) LUAD tumors and 

normal adjacent tissues (NATs). Our integrative proteogenomic analyses focused particularly 

on novel and clinically actionable insights revealed in the proteome and PTMs. The 

underlying data represent an exceptional resource for further biological, diagnostic and drug 

discovery efforts.

Results

Proteogenomic landscape and molecular subtypes of LUAD

We investigated the proteogenomic landscape of 110 treatment-naïve LUAD tumors and 101 

paired normal adjacent tissues (NATs), prospectively collected under strict protocols limiting 

ischemic time. The samples represented diverse demographic and clinical characteristics 

including country of origin and smoking status (Figure 1A, Table S1). After confirmation of 

LUAD histopathology by multiple expert pathologists, aliquots of cryopulverized tissue 

were profiled by whole exome (WES, nominal 150x coverage), whole genome (WGS, 

nominal 15x coverage), RNA (RNA-seq) and miRNA sequencing (miRNA-seq), array-based 

DNA methylation analysis, and in-depth proteomic, phosphoproteomic and acetylproteomic 

characterization (Figures 1B, S1A, Tables S2, S3), with complete data for 101 tumors and 96 

NATs. Tandem mass tags (TMT)-based isobaric labeling was used for precise relative 

quantification of proteins, phosphosites and acetylsites. Excellent reproducibility and data 

quality were maintained across the entire dataset (Figure S1C–F). Appropriate filtering 

resulted in a comprehensive, deepscale proteogenomic dataset allowing extensive integrative 

analysis (Figure 1C, Tables S2, S3). The general landscape of somatic alterations, focal 

amplifications and deletions in this study was consistent with prior large-scale profiling 

efforts including TCGA (Campbell et al., 2016; Cancer Genome Atlas Research Network, 

2014; Weir et al., 2007), although with a different distribution likely due to the greater 

demographic diversity and larger proportion of self-reported never-smokers in the current 

study (Figure 1D).

To investigate the intrinsic structure of the proteogenomics data, non-negative matrix 

factorization (NMF)-based unsupervised clustering was performed on RNA, protein, 
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phosphosites and acetylsites, collectively as “multi-omics clustering” and individually 

(except RNA) (Figures 1E, S1G–I). The 4 stable clusters (C1–4) (Figure 1E) overlapped 

with previously characterized mRNA-based proximal-inflammatory, proximal-proliferative 

and terminal respiratory unit clusters (Cancer Genome Atlas Research Network, 2014; 

Wilkerson et al., 2012), but subdivided the second of these into two distinct clusters. The 

core samples of the clusters were significantly associated with distinctive clinical and 

molecular features (p-value <0.01; Figure 1F, Table S1). Cluster 1 (C1), aligned with 

proximal-inflammatory, was enriched for TP53 mutants, STK11 wild-type (WT), and CpG 

island methylator phenotype (CIMP)-high status; C2, a proximal-proliferative subcluster, 

was distinguished by Western patients (especially from USA), TP53 and EGFR WT status, 

and intermediate CIMP status; C3, the dominant proximal-proliferative cluster, was enriched 

for Vietnamese patients and STK11 mutation (including two structural events identified 

from WGS; Table S1); and C4, aligned with terminal respiratory unit, was enriched for 

EGFR mutations, female sex and Chinese nationality and was essentially devoid of KRAS 
or STK11 mutations. Most of the samples harboring EML4-ALK fusions were assigned to 

C4 and lacked mutations in other key driver genes, consistent with a primary role for EML4-
ALK in LUAD tumorigenesis (Gao et al., 2018). Of note, NMF clustering based on sample 

purity-adjusted protein data matrices led to similar clusters compared to the unadjusted data. 

While NMF clusters had distinctive biology, linear models did not identify biologically 

coherent sets of differential markers between sexes, tumor stages or histological subtypes 

once major covariates were accounted for (Table S3).

To further explore the biology associated with the multi-omics taxonomy, we performed 

over-representation pathway analysis (Zhang et al., 2016) using differentially regulated 

genes, proteins, and post-translational modifications (PTMs) in each of the clusters (Figure 

1E, Table S3). C1/proximal-inflammatory samples were primarily associated with immune 

signaling across multiple data types. The C2 subset of the proximal-proliferative subtype 

demonstrated signaling by Rho GTPases, as well as signatures of hemostasis and platelet 

activation, signaling and degranulation, suggestive of systematic disturbances in coagulation 

homeostasis. The dominant proximal-proliferative subtype in C3 had a distinctive histone 

deacetylase signature but also upregulation of cell cycle pathways. Finally, the terminal 

respiratory unit subtype in C4 was distinguished by surfactant metabolism, MAPK1/

MAPK3 signaling, MECP2 regulation, and chromatin organization in the acetylproteome. 

Notably, C1, characterized by increased expression of immune system-related genes, 

included samples with high non-synonymous mutation burden and CIMP-high status. 

Altogether, the pathway enrichment analysis highlights intrinsic differences in both 

oncogenic signaling and host response across LUAD subtypes.

To explore the pattern of miRNA expression in LUAD, we performed unsupervised Louvain 

clustering of 107 tumor samples with available miRNA data based on expression of mature 

miRNAs. Five subgroups of LUAD patients were identified by their distinctive miRNA 

expression profiles (Figure S1J, Table S3). Two of the miRNA clusters were markedly 

enriched for tumors from C1/proximal-inflammatory and C3/proximal-proliferative multi-

omics clusters, while the remaining three miRNA clusters had mixed composition. One 

miRNA cluster included all 5 EML4-ALK as well as the HMBOX1-ALK fusion tumors, and 

featured high expression of miR-494, miR-495, and miR-496, the first two previously 
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implicated in NSCLC (Romano et al. 2012; Chen et al. 2017). The vast majority of patients 

with STK11 mutations were categorized into another subgroup in which well-documented 

cancer-associated miRNAs such as miR-106b-5p, miR-20a-5p, and miR-17–5p were highly 

expressed (Lu et al., 2017; Shi et al., 2018).

The relationships between epigenetic and genomic events and downstream expression of 

RNA, proteins, and PTMs were explored in detail. Cross-referencing gene fusions in the 

cohort with a curated kinase fusion database (Gao et al., 2018) allowed identification of all 

rearrangements involving kinases (Figure 2A). While fusions involving ALK, ROS1, RET, 
and PTK2 genes were most recurrent, several novel, potentially oncogenic kinase fusions 

were also discovered. Generally, such oncogenic kinases contained in-frame fusions, while 

kinases with a tumor suppressive role (such as STK11, STK4, ATM, FRK, and EPHA1) 
exhibited disruptive out-of-frame events (Figure 2A). Several kinase fusions showed 

commensurate differential RNA, protein, and phosphosite expression of the index cases 

(Figure 2B). Besides ALK, instances of ROS1, RET, PRKDC, and PDGFRA overexpression 

were found in tumors but not in paired NAT samples. Investigation of the fusion architecture 

of the highly recurrent in-frame ALK gene fusions (n=7) identified multiple 5’ partners 

including the well-established EML4 as well as novel HMBOX1 and ANKRD36B genes 

(Figure S2A). WGS data provided precise genomic breakpoints in the intron proximal to 

exon-20 (e20) underlying ALK rearrangements in 5 cases (Figure S2B). All ALK gene 

fusion cases showed outlier expression of ALK mRNA and all in which the protein was 

detected (4/7) showed outlier ALK total protein abundance. However, the most dramatic 

difference was seen in the specific increase in ALK phosphosite Y1507 (Figure 2C). While 

RNA expression levels of the 5’ partner genes were uniformly high and did not differ 

between fusion-positive and -negative samples (Figure 2D), both EML4-Y226 and 

HMBOX-S141 showed increased phosphorylation only in the corresponding gene fusion-

positive tumor samples (Figure 2E). We employed IHC to validate observation of the fusion-

specific ALK phosphosite Y1507 using commercially available ALK and phospho (Y1507) 

ALK antibodies. We noted tumor-specific positive staining in all available ALK fusion-

positive cases, whereas no detectable staining was observed in either samples with 

ROS1/RET fusions or paired NATs (Figures 2F, S2C). To assess phosphorylation of 

canonical and possible novel targets by mislocalized ALK fusion proteins (Ducray et al., 

2019), we identified all protein phosphorylation events associated with ALK fusion. This 

analysis identified tyrosine phosphorylation of multiple proteins such as SND1, HDLBP, and 

ARHGEF5 (Figure 2G), providing new potential insights into oncogenic ALK fusion protein 

signaling, pending further validation to establish direct functional connections. SND1, for 

instance, has previously been described as an oncogene (Jariwala et al., 2017), impacts 

biological processes such as angiogenesis and invasion, and regulates expression of 

oncogenic miRNAs (Chidambaranathan-Reghupaty et al., 2018), suggesting a novel role in 

ALK fusion-mediated tumorigenesis.

While sample-wise mRNA-protein correlations were fairly consistent between tumors and 

NATs (Figure S3A, Table S4), gene-wise correlations displayed striking differences (Figure 

3A), results unchanged after adjusting for immune and stromal infiltration. We identified a 

total of 227 transcript / protein pairs differentially correlated (FDR < 0.01) between tumors 

and NAT pairs, globally or within 4 major mutational subtypes (Figure 3A, Table S4). The 
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identified gene products were markedly enriched for RNA metabolism, peptide biosynthesis, 

methylation, mRNA splicing, nuclear processing, mitochondrial organization, and chromatin 

modifiers (p-value <10−3), suggesting tighter or more active translational control of proteins 

involved in proliferation, cell cycle events and survival in tumors (Figure S3B).

The impact of CNAs on RNA and protein abundance in both cis and trans was characterized 

(Figure 3B, Table S4). CNA correlations were broadly comparable but considerably 

dampened at the levels of protein and PTMs (Figures 3C, S3C). A total of 6,043, 2,354, and 

244 significant positive correlations (cis-effects) were observed for RNA, proteins, and 

phosphoproteins, respectively, with only 156 significant cis-effects overlapping between all 

3 (Figure 3C; Table S4). A similar trend was observed within 593 cancer-associated genes 

(CAG) (Figure 3C, Table S4); the 12 CAGs showing significant overlapping regulation were 

CREBBP, KMT2B, PSIP1, AKT2, EGFR, GMPS, IL6ST, IRF6, NFKB2, PHF6, YES1, and 

ZBTB7B. In addition, numerous genes associated with recurrent LUAD-specific CNA 

events (Campbell et al., 2016) showed downstream expression effects, including significant 

cis-regulation at RNA and protein levels for CDK4, RB1, SMAD4, ARID2, MET, 

ZMYND11 and ZNF217.

To help nominate functionally important genes within CNA regions, we compared protein-

level trans-effects to approximately half a million genomic perturbation signatures contained 

in the Connectivity Map database (https://clue.io/cmap). Trans-effects significantly 

paralleled the associated gene perturbation profiles for 12 CNA events (FDR <0.1) (Figure 

3D, Table S4). Ras-related protein Ral-A (RALA) is a GTPase that has been shown to 

mediate oncogenic signaling and regulate EGFR and KRAS mutation-mediated 

tumorigenesis (Gildea et al., 2002; Kashatus, 2013; Peschard et al., 2012). Our data suggests 

that amplification of RALA may affect the biology of EGFR mutant tumors. The role of 

basic leucine zipper and W2 domain 2 (BZW2) in LUAD has not been elaborated, but 

BZW2 stimulates AKT/mTOR/PI3K signaling and cell growth in bladder and hepatocellular 

carcinoma (Gao et al., 2019; Jin et al., 2019), and has also been shown to interact with 

EGFR (Foerster et al., 2013). The lysosomal cysteine proteinase cathepsin B (CTSB) has 

long been described as a marker of poor prognosis in LUAD (Fujise et al., 2000; Inoue et al., 

1994) with mechanistic association with metastasis (Erdel et al., 1990; Higashiyama et al., 

1993). Protein-level trans-effects thus provide testable mechanistic hypotheses for the 

tumorigenic impact of CNAs.

DNA methylation analyses showed LUAD tumors to be much more highly methylated than 

their counterpart NATs (p-value <0.0001) (Figure S3D, Table S2). Unsupervised clustering 

of the tumor methylome revealed CIMP-high, -intermediate, and -low clusters, with CIMP-

low clusters nevertheless having focal areas of increased methylation (Figure S3E). Figure 

3E shows the landscape of 120 methylation-driven cis-effects that were associated with 

coordinated differential expression at the RNA, protein and phosphoprotein levels, 

increasing their likelihood of functional significance (Song et al., 2019); Table S4). The 

majority (85/120) were directly supported by probe-level data in the promoter region of the 

gene. While many of these were novel, others, including CLDN18, ANK1 and PTPRCAP 

(Figure 3F) have strong associations with LUAD biology. CLDN18 is highly expressed in 

lung alveolar epithelium; its knockdown leads to increased lung parenchyma, expansion of 
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lung epithelial progenitor populations, and increased propensity for lung adenocarcinoma 

development (Zhou et al., 2018). ANK1 promoter CpG islands are hypomethylated in 

normal lung but methylated in more than half of lung adenocarcinomas, especially with 

positive smoking history. ANK1 knockdown affects cancer-relevant pathways; furthermore, 

miR-486–3p and miR-486–5p, both strongly associated with lung adenocarcinoma 

oncogenesis, are located within ANK1 introns and are co-expressed with their host gene. 

PTPRCAP (CD45 associated protein), together with the three other members of its 

supramolecular complex, PTPRC (phosphatase CD45), co-receptor CD4, and kinase LCK, 

is implicated in regulation of lymphocyte function (Kruglova et al., 2017; Matsuda et al., 

1998). While methylation probe positions did not allow us to determine whether the 

complex partners of PTPRCAP are regulated by methylation, they showed coordinated 

expression at the protein level (Figure 3G). Notably, PTPRCAP was included in a 5-gene 

methylation-based immune signature associated with survival in multiple malignancies 

including lung cancer (Jeschke et al., 2017). Other cancer-related genes with “cascading” 

methylation effects include BCLAF1, GSTP1, MGA, and TBX3, all of which have 

established roles in tumorigenesis or cancer prognosis (Cancer Genome Atlas Research 

Network, 2014)(Chen et al., 2013; Gurioli et al., 2018).

Connecting driver mutations to proteome, phosphoproteome and pathways

We examined how selected mutated genes that were significant in prior large-scale LUAD 

genomics studies (Cancer Genome Atlas Research Network, 2014; Ding et al., 2008); (Table 

S5) influenced expression of either the cognate gene product (cis-effects), or other gene 

products (trans-effects), specifically of a defined set of cancer-related genes (Bailey et al., 

2018). We identified 11 genes with significant (FDR < 0.05) cis- or trans-effects in RNA, 

protein or phosphoprotein data (Figures 4A, S4A). TP53 and EGFR mutations resulted in 

elevated cognate protein and phosphosite abundance, whereas STK11, RBM10, RB1, NF1 
and KEAP1 mutations reduced both cognate protein and phosphosite abundance. TP53 
showed evidence of post-translational regulation, while TP53 mutant tumors showed 

upregulation of proteins in the mismatch repair (MMR) pathway, such as MLH1, MSH2, 

MSH6, and PSM2, and proteins involved in the DNA damage response (DDR) pathway, 

including ATM, ATR, and BRCA1. TP53 mutant tumors also showed significantly elevated 

EZH2 protein relative to RNA expression, as observed in TP53 mutant cell lines (Kuser-

Abali et al., 2018), and downregulation of proteins involved in Wnt signaling (e.g. AXIN1 

and TCF7L2) (Rother et al., 2004; Sanchez-Vega et al., 2018). Mutations in RB1, another 

key cell cycle-related gene, were associated with increased CDK4 protein abundance, which 

may contribute to resistance to CDK4/6 inhibitors in RB1-mutated LUAD samples. 

SMARCA4 mutation led to increased SMAD2 protein expression, while STK11 mutation 

was associated with increased phosphorylation of SMAD4 (S138). SMADs 2 and 4 are key 

elements in the transcriptional regulation of epithelial-mesenchymal transition (EMT) 

induced by TGF-β signaling (Xu et al., 2009). EGFR mutant samples showed decreased 

CTNNB1 expression at the level of RNA but elevated expression both at the level of 

proteome and phosphoproteome. CTNNB1 has been shown to play a critical role in EGFR-

driven LUAD (Nakayama et al., 2014), and the trans-regulated phosphosite S552 on 

CTNNB1 induces its transcriptional activity (Fang et al., 2007). Altered phosphorylation and 

decreased acetylation were also observed for CTNND1, which has been implicated in NF-
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KB and RAC1-mediated signaling but not previously described in EGFR-mediated LUAD 

(Mizoguchi et al., 2017; Perez-Moreno et al., 2006).

The cis- and trans-effects identified above (Figure 4A) helped reveal the detailed regulatory 

network of the KEAP1/NFE2L2 (NRF2) complex. KEAP1 interacts with NFE2L2 through 

two distinct binding domains, DLG and ETGE (Canning et al., 2015; Fukutomi et al., 2014), 

and undergoes conformational change under oxidative stress allowing NFE2L2 to execute 

the antioxidant response vital to lung cancer progression and metastasis (Lignitto et al., 

2019; Wiel et al., 2019). Twelve LUAD tumors harbored KEAP1 mutations (Figure S4B) 

that did not impact expression of KEAP1 or NFE2L2 RNA (Figure S4C), but generally 

resulted in downregulation of KEAP1 protein expression and increased phosphorylation of 

NFE2L2 on S215 and S433 (FDR <0.05) (Figures S4C, 4B). One BTB domain missense 

mutation (G511V) did not downregulate KEAP1 protein expression but had amongst the 

highest levels of NFE2L2 phosphorylation (Figure 4B), suggesting a novel mechanism of 

action. Superposition of the site on the KEAP1 crystal structure showed that the G511V 

mutation fell close to the KEAP1/NFE2L2 binding domain (Figure 4C). We hypothesize that 

this mutation functions to disrupt KEAP1-NFE2L2 interaction rather than to impact protein 

stability. Most proteins and phosphosites upregulated in samples with KEAP1 mutations 

(Figures S4D, E) are members of the NFE2L2 oncogenic signatures and associated with 

antioxidant responses cytoprotective to cancer cells (Figure S4F) (Taguchi and Yamamoto, 

2017).

Identification of therapeutic strategies from proteogenomics analyses

Comparison of global differential regulation of RNA, proteins, phosphosites and acetylsites 

revealed extreme phosphosite outliers in both KRAS and EGFR mutant tumors (Figures 4D, 

E, Table S4). KRAS mutant tumors showed significant upregulation of numerous cancer-

associated phosphosites, including SOS1 phosphorylation on S1161. SOS1 is a guanine 

exchange factor (GEF) that activates KRAS (Vigil et al., 2010), and inhibition of SOS1 and 

KRAS is an emerging therapeutic strategy for KRAS mutant cancers (Hillig et al., 2019; 

O’Bryan, 2019). The observed C-terminal phosphorylation of SOS1 (Kamioka et al., 2010) 

likely relieves its constitutive interaction with GRB2 (Giubellino et al., 2008) allowing its 

recruitment to the membrane for KRAS activation in a GRB2-independent manner 

(Aronheim et al., 1994; Rojas et al., 2011). Interestingly, we also observed C-terminal 

phosphorylation of another GEF containing protein, DNMBP (TUBA), the role of which is 

not yet established in LUAD or KRAS mutant cancers.

EGFR mutant tumors showed highly significant and remarkably consistent tyrosine 

phosphorylation of PTPN11/Shp2 at Y62, but no effect was observed at the RNA or protein 

levels (Figures 4E, F). While prior studies have associated PTPN11/Shp2 phosphorylation 

with important biological consequences in non-small cell lung cancer (NSCLC) cell lines 

and xenograft models, this is, to our knowledge, the first report of such phosphorylation in a 

large set of primary treatment-naïve LUADs. In its basal state, PTPN11/Shp2 is inactive in a 

closed conformation due to the interaction between the N-terminal Src homology 2 (N-SH2) 

domain and the active site of the phosphatase (PTP) domain. Upon active conformational 

change induced by growth factor receptor and cytokine signaling, the phosphatase regulates 
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cell survival and proliferation chiefly through RAS and ERK activation (Matozaki et al., 

2009). Elevated PTPN11/Shp2 mRNA and protein expression have been associated with 

metastasis and decreased overall and progression-free survival in EGFR-positive NSCLC 

patients (Tang et al., 2013, Karachaliou et al., 2019). Importantly, residue Y62 falls in the 

interface between the N-SH2 and PTP domains, where its phosphorylation is thought to 

stabilize the active protein conformation (Ren et al., 2010). Notably, ALK fusion-driven 

tumors also showed outlier phosphorylation of PTPN11/Shp2, albeit at the C-terminal 

tyrosine phosphorylation sites Y546 and Y584 (Figure S4G).

Irrespective of the mode of activation, multiple lines of evidence suggest that PTPN11/Shp2 

inactivation can suppress tumorigenesis (Aceto et al., 2012; Prahallad et al., 2015; Ren et al., 

2010; Schneeberger et al., 2015), making it among the highest priority PTP targets for 

anticancer drug development (Ostman et al., 2006). PTPN11/Shp2 inhibitors have shown 

great promise in preclinical trials (Chen et al., 2016b) and targeted agents from multiple 

companies are now in clinical trials. Our data suggest that EGFR mutant- and ALK fusion-

driven LUADs would be particularly promising target populations for such therapy.

Protein-level pathway comparison of tumors driven by EGFR and KRAS mutations showed 

remarkable disparity in complement and clotting cascades, with upregulation of coagulation 

in KRAS and downregulation in EGFR mutant samples (Figure S4I and hemostasis 

signature, Figure 1E). The increased risk of venous thromboembolism (VTE) in patients 

with primary lung cancer is well-established (Chew et al., 2008), as are the risks of 

prophylactic anticoagulation (Key et al., 2019). Our data suggest that VTE management 

might be stratified by mutation type, a concept supported by a recent NSCLC study in which 

the likelihood of VTE was significantly lower in patients without EGFR mutations (Dou et 

al., 2018).

To systematically nominate druggable targets specific to groups of LUADs characterized by 

key driver events, we assessed hyperphosphorylation of kinases as a proxy for abnormal 

kinase activity (Blumenberg et al.; Dou et al., 2020; Mertins et al., 2016) (Figure 4G) and 

annotated outliers for the degree to which shRNA- or CRISPR-mediated depletion reduced 

survival and proliferation in lung cancer cell lines (Barretina et al., 2012; Tsherniak et al., 

2017). Multiple significantly hyperphosphorylated kinases (FDR <0.20) were identified in 

samples with EGFR, KRAS, TP53, STK11, KEAP1 or EML4-ALK alterations, the majority 

of which lacked any associated aberration in CNA, RNA or protein expression. Importantly, 

several driver-specific outlier kinases have interactions with FDA-approved drugs. In 

addition to EGFR in EGFR mutants, we saw outliers in PRKCD in KRAS mutants, BRAF in 

TP53 mutants, and WEE1 in EML4-ALK fusions. Furthermore, we identified 27 putatively 

druggable kinases with known but as yet non-FDA approved inhibitors (Cotto et al., 2018). 

Similar phosphorylation outlier analyses were performed for phosphatases, ubiquitinases, 

and deubiquitinases (Figure S4J), though the role of phosphorylation in these protein classes 

is not fully established.

Immune landscape of lung adenocarcinoma

The composition of the tumor microenvironment in our cohort was studied using xCell 

(Aran et al., 2017) on the RNAseq data of both tumors and NATs. 64 different cell types 
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were identified, spanning immune, stromal and other groups (Table S5). Consensus 

clustering identified three major immune clusters, designated “Hot”- (HTE), and “Cold”-

tumor-enriched (CTE) and NAT-enriched (Figure 5A, upper panel, Table S5). Associations 

were observed between immune and multi-omics clusters, with enrichment of multi-omics 

cluster C1 in HTE and of clusters C3 and C4 in CTE immune clusters (p-value < 0.0003). 

CIMP-low status also associated with HTE (Figure 5A). HTE were distinguished from CTE 

tumors by their stronger signatures for B-cells, CD4+ and CD8+ T-cells, dendritic cells and 

macrophages. The HTE proteome was characterized by upregulation of multiple immune-

related, oncogenic, and signaling pathways (Figure 5A, middle panels, Table S5), many of 

which were significantly enriched (FDR <0.01) exclusively in the proteomics dataset. PD1 

RNA and PD-L1 RNA and protein were also upregulated in the immune HTE cluster (FDR 

< 0.01, Figure 5A, lower panel, Table S5). Notably, however, the HTE subtype also revealed 

the presence of immune inhibitory cells such as regulatory T-cells, and showed RNA 

upregulation of key markers of T-reg function such as CTLA4 (FDR < 1E-10) and FOXP3 

(FDR < 0.0001) (Table S5). Transcripts for cytokines including TGF-beta and IL-10, known 

to enhance T-reg suppressive mechanisms, were upregulated in HTE tumors. As tumors with 

high T-reg infiltration are typically associated with poor prognosis (Shimizu et al., 2010), 

anti-CTLA4 therapy may benefit this population (Wing et al., 2008).

Various metabolic pathways were upregulated in CTE cluster tumors (Figure 5A, Table S5). 

Glycolysis, which has been implicated in immune evasive mechanisms in many solid tumors 

but only marginally in LUAD (Ganapathy-Kanniappan, 2017) (Giatromanolaki et al., 2019), 

was significantly upregulated only in proteomics data, as were “Peroxisome” and “PPAR 

Signaling Pathway” activities (both FDR < .001) (Figure 5A, middle panel, Table S5). 

Several studies have shown that IFN gamma (IFNG) promoter activity can be inhibited by 

PPAR-gamma activation (Marx et al., 2000), and that suppression of the inflammatory 

immune response by PPAR-gamma activation may be achieved through induction of 

immune cell apoptosis. PPAR-gamma activation was shown to impair T-cell proliferation 

through an IL-2 dependent mechanism, while PPAR-beta activation was shown to favor 

oxidation of fatty acids and glucose in developing T-cells (Le Menn and Neels, 2018). In 

addition, CTE tumors showed upregulation of cell-cell junction and other proteins that 

provide barrier functions for epithelium, suggesting a mechanical barrier against immune 

cell infiltration (Figure 5A, Table S5; cf Figure 1E) (Salerno et al., 2016) (Streeck et al., 

2011).

As an orthogonal assessment of the immune landscape of LUAD, we ranked tumors by 

activity of the IFNG axis, which is responsible for activation of the adaptive immune system 

(Abril-Rodriguez and Ribas, 2017), and assessed regulation of established protein markers 

of immune evasion (Achyut and Arbab, 2016; Allard et al., 2016a; Liu et al., 2018). The 

protein abundance of some important immune evasion markers (Jerby-Arnon et al., 2018), 

including IDO1, was upregulated in both the HTE and INFG-high clusters (Figures 5A, 

S5A). IDO1 has well-documented roles in angiogenesis, EMT (Zhang et al., 2019a), and 

cancer immunosuppression (Liu et al., 2018); hence IDO1 inhibition may represent an 

additional therapeutic opportunity in immune hot LUAD tumors (Kozuma et al., 2018a; 

Takada et al., 2019). Other important immune evasive or immune-related markers were also 

observed. The pulmonary epithelium is a physical barrier that produces antimicrobial mucus 
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and surfactant proteins, facilitates host-microbiota interactions to control mucosal immunity, 

and is critical for tumor development (Whitsett and Alenghat, 2015). Upregulation of 

immunosuppressive components of the pulmonary epithelium barrier, including MUC5B 

and WFDC2 (HE4), was observed in the CTE cluster of lung tumors (Figure 5A, lower 

panel) (Parikh et al., 2019; Roy et al., 2014), and surfactants SFTPB, DMBT1, SFTPA1, and 

SFTPD were increased in tumors with low IFNG axis scores (Figure S5B) (Nayak et al., 

2012; Seifart et al., 2005; Wang et al., 2009).

Notably, the NAT-enriched cluster had immune infiltration signatures that were intermediate 

between the HTE and CTE subtypes (Figure 5A), suggesting bi-directional regulation, with 

pro-inflammatory mechanisms in HTE and immune-evasive mechanisms in CTE tumors. 

The most dramatic down-regulation of immune activation was in STK11 mutant tumors, 

with marked reductions in xCell-derived Dendritic cell, Natural Killer T-cell and 

Macrophage signatures (Figure 5B, Table S5, FDR < 0.1). In striking contrast, STK11 
mutant- associated NATs were enriched for dendritic cell and macrophage infiltration 

(Figure 5C, FDR < 0.1). ESTIMATE immune scores (Yoshihara et al., 2013), reduced for all 

STK11 mutants, were particularly low for those wild-type for KRAS (Figure 5D, Table S5). 

This immune downregulation was not due to low mutation burden, as NMF cluster C3, 

strongly enriched for STK11 mutants (Figure 1E), was second only to cluster C1 in somatic 

mutation burden (Figures S5C, D). The immune-cold landscape of STK11 mutant tumors 

proved to be the dominant feature in a deep-learning-based predictive algorithm for 

determining LUAD mutational status from histopathology that achieved 94% accuracy at the 

slide level (Figure 5E). The defining histopathologic features of STK11 mutant samples 

related to tumor epithelium, whereas STK11 WT samples were predominantly characterized 

by immune cells (Figure 5C).

To understand the mechanisms underlying the immune-cold phenotype of STK11 mutants, 

we examined differential RNA, protein and phosphoprotein expression between STK11 WT 

and mutant samples. Pathway enrichment identified neutrophil degranulation to be the 

signature most strongly associated with STK11 mutation. Notably, neutrophils did not 

appear to be either specifically enriched or depleted in STK11 mutant tumors (Figures 5A, 

5B). Nevertheless, the robustness of this association was apparent even in unsupervised 

approaches. Independent component analysis (Liu et al., 2019) identified a cluster strongly 

enriched for STK11 mutant tumors, the defining proteomic pathway feature of which was 

neutrophil degranulation (Figures 5F, S5F, Table S5). All 16 of the measured proteins 

strongly associated with neutrophil degranulation were coherently overexpressed in STK11 
mutant tumors (Figure S5G). This signal was not detectable at the RNA level as the proteins, 

following translation, are stored in the granules until later release (Figures 5G, S5G). Most 

of these proteins, including CAMP, LTF, BPI, MMP8, MMP9, MPO, LCN2, ELANE and 

ARG1, have established immune modulatory functions, collectively suggesting a compelling 

hypothetical mechanism that may account for some of the immunologic effects of STK11 
mutation.
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Characterization of smoking-related phenotype in tumors and NATs

In order to better characterize the influence of smoking as a major contributor to LUAD, we 

used SignatureAnalyzer (Kim et al., 2016) (Figure S6A, Table S6) to identify the dominant 

di-nucleotide polymorphisms (DNP) GG->TT or CC->AA (~50%) associated with smoking 

status. We then integrated tumor purity estimates, counts of total mutations, and percentages 

that are smoking-signature mutations and smoking-signature DNPs into a continuous 

smoking signature score, and defined High and Low Smoking Scores (HSS, LSS) (Figure 

S6B, Table S6). No fully independent smoking effect emerged from linear models adjusted 

for known confounders including mutation status, sex and place of origin. However, 

conventional differential protein and pathway analysis to identify potential carcinogenic or 

tumor-supportive mechanisms specific to never-smokers (NS) identified a set of proteins 

with prior evidence of relevance to LUAD biology (Table S6). Regression of the 96 possible 

trinucleotide mutation combinations between the samples in our cohort and the 

environmental signatures reported by Kucab and colleagues (Kucab et al., 2019) found 

strong correlations in many samples of signatures of polycyclic aromatic hydrocarbons 

(PAHs) known to be present in cigarette smoke, including DBADE, DBA, and 5-

Methylchrysene (Figure 6A, Table S6). Moreover, these cases correlated highly with our 

smoking score and with self-reported smoker status (Figure 6A). Other environmental 

contributors, evidently unrelated to cigarette smoking, were nevertheless also strongly 

correlated (Figure S6C), suggesting caution in interpreting these mutational associations and 

emphasizing the need for comprehensive clinical annotation including details on 

environmental and occupational exposures and dietary habits.

As reported for other cancers (Malta et al., 2018), tumors showed significantly higher RNA-

based stemness index compared to NATs (Figure S6D). Within both tumors and NATs, 

samples with HSS showed higher stemness than samples with LSS (Figure S6E), consistent 

with the known field cancerization effect of tobacco exposure (Walser et al., 2008).

We identified 6 patterns of differential pathway regulation between tumor and paired NAT 

samples with HSS and LSS (Figure 6B, Table S6). Pathways including cell cycle and 

transcription machinery were reduced in NATs with HSS compared to LSS, but this pattern 

was reversed in tumors (Pathway Group (PG)1). Contrariwise, the AIM2 inflammasome, 

P53 pathway activity, and apoptosis were higher in NATs with HSS than LSS, but lower in 

HSS tumors, consistent with smoking-related tumors more effectively inactivating tumor 

suppressors and overcoming immune surveillance and apoptosis (PG2). HSS had parallel 

effects on tumors and NATs in higher MYC target activity and ferroptosis, and lower Hippo 

pathway signaling and NF-kB and IL-17 activity (PG3 and 4). Finally, pathways including 

the unfolded protein response and RAS signaling through NTRK2 were higher in tumors but 

not NATs with HSS, while necroptosis and caspase signaling through death receptors were 

lower (PG5 and 6). Notably, the smoking signature-associated pathway-level differences that 

defined pathway groups 1–4 were more prominent on the protein than RNA level (Figure 

S6F).

Among the proteins differentially regulated in smokers and never-smokers were Rho 

GTPase signaling pathway members ARHGEF5 and its phosphosite ARHGEF5_Y1370y, 

elevated in SNS, and SRGAP1, suppressed in SNS (Figures 6C and PG4 in 6B). 
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ARHGEF5_Y1370y levels were highest in patients with ALK fusion, consistent with its 

extreme outlier status (Figure 2F). Activating phosphorylation of ARHGEF5 by tyrosine 

kinases (e.g. EML4-ALK), accompanied by downregulation of the negative Rho GTPase 

regulator SRGAP1, may lead to hyperactivation of Rho GTPase signaling and tumorigenesis 

in a subset of non-smoking patients. Auto-inhibitory peptides blocking the activity of 

ARHGEF5 have been described (He et al., 2015; Huang et al., 2015) and represent a 

potential therapeutic intervention in this population. Differential pathway analysis also 

provided evidence that, in non-smokers, the cytoprotective and anti-inflammatory stress 

response Heme oxygenase system might contribute to tumor survival (see also PG2, Figure 

6B). This process can potentially be inhibited by metalloporphyrins or imidazole-based 

drugs (Podkalicka et al., 2018).

Tumor-NAT comparisons reveal tumorigenic changes and biomarker candidates

Proteogenomic profiles were derived for both tumors and paired NATs, presenting a unique 

opportunity to explore proteogenomic remodeling upon tumorigenesis (Table S7). Protein-

level PCA showed tumor and much more homogenous NAT populations to be completely 

distinct (Figures 7A, S7A). Enrichment analysis of differential protein abundance between 

paired tumor and NAT samples (Figure S7B, Table S7) revealed that tumorigenic processes 

including cell cycle progression, MYC targets and glycolysis were upregulated in tumor 

samples (FDR < 0.001) (Figure S7C, Table S7). We observed 70 phosphosites [31 up, 39 

down] and 11 acetyl-sites [10 up, 1 down]) for which abundance in tumors was markedly 

differential relative to associated protein expression, indicating a change in site 

stoichiometry (Table S7). NPM1 T199 showed the highest level of phosphorylation in 

tumors (log2 FC >5, FDR < 0.01); phosphorylation of the T199 residue is known to be 

critical for NPM1-mediated DNA damage repair (Koike et al., 2010) (Table S7). Of note, 

proliferation marker MKI67 phosphorylation was dramatically upregulated in tumors (log2 

FC>5) relative to its protein abundance (log2 FC<2) (Figure 7B). Acetylsite regulation 

included hyper-acetylation of the EP300 substrate, Histone 2B (HIST1H2BA K22/K25, log2 

FC >4–5) (Weinert et al., 2018). Interestingly, we also observed significant acetylation of 

EP300 K1558 (log 2 FC >4), a key acetylation site in the protein activation loop that may be 

indicative of its activity (Thompson et al., 2004). HIBCH, associated with valine 

metabolism, was the only protein distinctly hypoacetylated in tumors (K358; -log2 FC >4).

Deep proteogenomics characterization of LUAD tumors and paired NATs also provided a 

powerful dataset to nominate candidate biomarkers. Using stringent cutoffs for quantitative 

difference, significance and consistency (log2 FC >2, FDR <0.01, and differential in ≥90% 

of all Tumor-NAT pairs), we identified 289 proteins upregulated at the protein level (Table 

S7). The potential clinical utility of these protein markers is annotated in Figure S7D, with 

orthogonal support provided by the proportions of tumors in the Human Protein Atlas (HPA) 

showing high, medium or low IHC staining. Sixty of these proteins (Figure S7D: Pan-

LUAD) were also significantly differential at the RNA level, of which 5 (GFPT1, BZW2, 

PDIA4, P4HB, PMM2) were upregulated in all tumor samples compared to their paired 

NATs, extending data implicating these metabolic enzymes in cancer (Chen et al., 2002; 

Tufo et al., 2014; Yang et al., 2016). Gremlin 1 (GREM1) protein, highly overexpressed in 

tumors (log2 FC >5, FDR <0.01) in our study, is a known marker of poor prognosis in lung 
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cancer (Mulvihill et al., 2012), and implicated in EMT and metastasis processes (Figure 

S7D, Table S7) (Cleynen et al., 2007; Friedman et al., 2004; Tang et al., 2019). Ovarian 

cancer immunoreactive antigen domain containing 2 (OCIAD2), highly overexpressed in 

tumors (log2 FC > 4, FDR <0.01), is a known poor prognosis marker (Sakashita et al., 

2018), as are stress-related marker candidates DHFR, HYOU1, LDHA, and CBX8 

(Fahrmann et al., 2016; Llado et al., 2009; Takei et al., 2017). Significantly 

hyperphosphorylated and hyperacetylated sites are described in Table S7. While only a few 

amongst these marker candidates are currently targeted by therapeutics in clinical trials, their 

strong and consistent differential expression and associations with lung cancer biology and 

decreased survival support potential utility in early detection and prognostic stratification 

(Kim et al., 2018a; Mulvihill et al., 2012; Sakashita et al., 2018; Wang et al., 2015).

We also explored mutation-specific tumor - NAT differential expression in TP53, EGFR, 
KRAS and STK11 mutant phenotypes (Figures 7C, S7D, Table S7). Patients with TP53 
mutant tumors show high expression of TP53, CCNA2, TOP2A, PLOD2, ANLN, and 

MMP12 (Figure 7C), all shown to have roles in tumorigenesis (Chen et al., 2015; Hosgood 

et al., 2008; Konofaos et al., 2013; Qu et al., 2009; Song et al., 2013). The observed elevated 

CDK1 and CCNB1 protein expression and CDK1 phosphorylation in TP53 mutants have 

been associated with resistance in preclinical models modulated by p53 status (Schwermer 

et al., 2015). Significant overexpression of the proto-oncogene MET was noted in EGFR 
mutants. Extracellular glycoproteins, collagens and enzymes were enriched in KRAS mutant 

tumors, as were the well-described KRAS-associated chemokine CXCL8 and immune target 

THY1 (Sunaga et al., 2012). STK11 mutant tumors were enriched for amino acid 

metabolism proteins, which are associated with nitric oxide metabolic processes, suggesting 

perturbation of the urea cycle in the context of STK11 mutation (Kim et al., 2017; Lam et 

al., 2019).

Phosphosite-specific pathway analyses (Krug et al., 2018) of the entire population of 

tumor/NAT pairs showed upregulated phosphosite-driven signatures chiefly of checkpoint 

control and cell cycle progression in tumors (Figure 7D, Table S7) compared to extracellular 

matrix-focused signatures in paired NATs. Phosphosite-driven signatures that were 

differential between NATs and paired tumors with EGFR (N=38) or KRAS (N=33) 

mutations yielded near-mirror image plots (Figure 7D, Table S7). KRAS mutant tumors 

showed site-driven activation of pathways downstream of RAS, including MAPK1, as well 

as of TAK1, the hub at which IL1, TGF-β and Wnt signaling pathways converge (Santoro et 

al., 2017). Pathways upregulated in EGFR mutant tumors included ROCK1, a Rho-

associated protein kinase that has been shown to enhance EGFR activation in some cancer 

types (Nakashima et al., 2011).

Cancer testis (CT) antigens and tumor neoantigens can serve both diagnostic and therapeutic 

roles, including as targets for potential cancer vaccines. Of 44 CT antigens recurrently over-

expressed in tumors (fold-change ≥2), 9 were observed in ≥10% of samples (Figure 7F). 

KIF2C was the most ubiquitous, being highly expressed in 63% of samples. Seven of these 9 

common CT antigens have been previously associated with lung cancer (Bai et al., 2019; Lei 

et al., 2015; Loriot et al., 2003; Scanlan et al., 2000; Xie et al., 2018; Zhao et al., 2017), 

although their specific roles in tumorigenesis and progression are unclear. IGF2BP3 is 
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associated with tumor progression and poor prognosis in colorectal, lung and hepatocellular 

carcinomas (Jiang et al., 2008; Lochhead et al., 2012; Xu et al., 2012), while AKAP4 has 

been proposed to be a potential biomarker in NSCLC (Loriot et al., 2003). To our 

knowledge, MORC1 and NUF2 are novel CT antigens in LUAD tumors, covering 38% and 

16% of patients, respectively. To identify additional predicted tumor neoantigens, we also 

searched for both RNA transcripts and peptides containing evidence of somatic mutations. 

We identified a total of 2481 mRNA-validated and 49 peptide-validated somatic mutations, 

corresponding to 104 patients (Figure 7F, Table S7). Overall, 97 samples had evidence of 

either CT antigens or neoantigens, holding promise for the future of immunotherapy-based 

approaches to LUAD management.

Discussion

In this study, we report comprehensive proteogenomic characterization of 110 LUAD tumors 

and 101 matched NATs. Unlike TCGA, which included primarily smoking-related LUAD, 

our cohort included roughly equal numbers of current or former smokers and never-smokers, 

as well as a geographically diverse population. Multi-omics unsupervised clustering showed 

that previously-described terminal respiratory unit and proximal-inflammatory clusters 

translate to the protein level, while proximal-proliferative samples showed substructure 

based on TP53 status and place of origin. miRNA taxonomy included clusters enriched for 

STK11 mutant and ALK fusion-driven tumors. We observed consistent differential 

phosphorylation of ALK Y1507 in samples with ALK fusion, in addition to multiple other 

proteins exclusively regulated at the level of phosphoproteome, underscoring their likely 

relevance to ALK-associated biology.

The inclusion of deep-scale proteomic and PTM data allowed us to track the downstream 

signaling consequences of epigenetic and genomic alterations and identify putative 

methylation cis-effects and a novel KEAP1/NFE2L2 regulatory mechanism. Extreme 

phosphorylation events implied therapeutic possibilities including SOS1 inhibition in KRAS 
mutant and PTPN11/Shp2 inhibition in both ALK fusion-and EGFR mutant tumors, the 

latter amenable to inhibitors already in clinical trials. We also systematically identified and 

annotated outlier kinases, some unique to major mutational subtypes, many of which have 

known inhibitors or appear to be druggable. Outliers were predominantly phosphorylation 

events, reinforcing the value of post-translational modification analysis. Paired tumor-NAT 

analysis illuminated elements of oncogenesis and nominated biomarker candidates and 

potential drug development targets.

Integrated proteogenomics further allowed extensive characterization of the immune 

landscape of LUADs and identification of a number of potential therapeutic vulnerabilities, 

including anti-CTLA4 therapy and IDO1 inhibition in immune-hot tumors. We highlighted 

the particular association of STK11 mutation with immune-cold behavior, and implicated 

neutrophil degranulation as a potential immunosuppressive mechanism in STK11 mutant 

LUAD evident only in the proteomics space. The combination of proteogenomic data, 

balanced representation of smokers and never-smokers, and paired tumor / NAT analyses 

enabled us to capture the impact of cancerization in both tumors and adjacent tissues, and 

highlighted a potential oncogenic mechanism centered on ARHGEF5 in never-smokers.
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There are inherent limitations to a study of this type. The interdependence of variables 

including mutational status, ethnicity or geography, gender and smoking status require that 

comparisons based on any one of these be interpreted with caution. Furthermore, given the 

large number of confounders, efforts to adjust for this by linear modeling may not be 

effective in a dataset of this size, frustrating association analyses such as for gender and 

smoking effects. This effort shares with all bulk tumor analyses the lack of spatial and 

cellular resolution that might add orthogonal insights into tumor biology, such as by 

disambiguating the contributions of tumor epithelium and microenvironment. Approaches 

geared to more spatially resolved proteogenomics, such as we and others have recently 

described (Hunt et al., 2019; Satpathy et al., 2020), or integration of single cell genomics 

and proteomics, might add nuance to our understanding of crosstalk between tumor and the 

microenvironment or of tumor evolution. Most importantly, associations of the sort 

described throughout this manuscript are hypothesis-generating, and generally cannot be 

understood as providing firm biological conclusions. The integration of deep-scale 

proteomic and PTM data nevertheless represents a substantial advance over prior genomics 

studies of LUAD, and paired with microscaling methods (Satpathy et al., 2020) points the 

way to improved characterization of clinical cohorts. We hope that both the specific 

observations and hypotheses delineated in this manuscript, and the data that underlie them, 

will be a rich resource for those investigating LUAD and for the larger research community, 

including for the development of targeted chemo- or immuno-therapies.

STAR⋆METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests should be directed to and will be fulfilled 

by the lead author, M.A.G. (gillette@broadinstitute.org).

Material availability—This study did not generate new unique reagents.

Data and Code Availability—Proteomics raw datasets are publicly available though the 

CPTAC data portal https://cptac-data-portal.georgetown.edU/cptac/s/S056

Genomic and transcriptomic data files can be accessed at the Genomic Data Commons 

(GDC); https://portal.gdc.cancer.gov/, via dbGaP Study Accession: phs001287.v5.p4 https://

www.ncbi.nlm.nih.gov/proiects/gap/cgi-bin/study.cgi7studvid=phs001287.v5.p4

Sample annotation, processed and normalized data files are provided as Tables S1–S3.

Software and code used in this study are referenced in their corresponding STAR Method 

sections and also the Key Resource Table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—A total of 111 participants (73 males, 38 females, 35–81 years old) 

were included in this study, collected by 13 different tissue source sites from 8 different 

countries (Table S1). Only histopathologically-defined adult lung adenocarcinoma tumors 

were considered for analysis, with an age range of 35–81. Institutional review boards at 
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tissue source sites, reviewed protocols and consent documentation adhering to the Clinical 

Proteomic Tumor Analysis Consortium (CPTAC) guidelines.

Clinical Data Annotation—Clinical data were obtained from tissue source sites and 

aggregated by an internal database called the CDR (Comprehensive Data Resource) that 

synchronizes with the CPTAC DCC. Clinical data can be accessed and downloaded from the 

DCC (Data Coordinating Center) at https://cptac-data-portal.georgetown.edu/cptac/s/S046. 

Demographics, histopathologic information, and treatment details were collected. LUAD 

histopathology was confirmed for all cases by at least 2 expert pathologists based on high 

resolution images of H&E sections. All histologic https://www.cancerimagingarchive.net/

datascope/cptac/home/ and radiologic https://public.cancerimagingarchive.net/nbia-search/ 

details can be accessed from the listed webportals. The genotypic, clinical, geographical and 

other associated metadata is summarized in Table S1.

METHOD DETAILS

Specimen Acquisition—The tumor, normal adjacent tissue (NAT), and whole blood 

samples used in this manuscript were prospectively collected for the CPTAC project. 

Biospecimens were collected from newly diagnosed patients with LUAD who underwent 

surgical resection and had received no prior treatment for their disease, including 

chemotherapy or radiotherapy. All cases had to be of acceptable LUAD histology but were 

collected regardless of surgical stage or histologic grade. Cases were staged using the AJCC 

cancer staging system 7th edition (Edge et al., 2010). The tumor specimen weights ranged 

from 125 to 715 milligrams. The average tissue mass was 238 mg. For most cases, three to 

four tumor specimens were collected. Paired histologically-normal adjacent lung tissues 

(NATs) were collected from the same patient at tumor resection. Each tissue specimen 

endured cold ischemia for less than 40 minutes prior to freezing in liquid nitrogen; the 

average ischemic time was 13 minutes from resection/collection to freezing. Specimens 

were either flash frozen in liquid nitrogen or embedded in optimal cutting temperature 

(OCT) medium. Histologic sections obtained from top and bottom portions from each case 

were reviewed by a board-certified pathologist to confirm the assigned pathology. For 

samples to be deemed acceptable, the top and bottom sections had to contain an average of 

50% tumor cell nuclei with less than 20% necrosis. Specimens were shipped overnight from 

the tissue source sites to the biospecimen core resource (BCR) located at Van Andel 

Research Institute, Grand Rapids, MI using a cryoport that maintained an average 

temperature of less than −140°C. At the biospecimen core resource, specimens were 

confirmed for pathology qualification and prepared for genomic, transcriptomic, and 

proteomic analyses. Selected specimens were cryopulverized using a Covaris CryoPREP 

instrument and material aliquoted for subsequent molecular characterization. Genomic DNA 

and total RNA were extracted and sent to the genome sequencing centers. The whole exome 

and whole genome DNA sequencing and methylation EPIC array analyses were performed 

at the Broad Institute, Cambridge, MA and RNA and miRNA sequencing was performed at 

the University of North Carolina, Chapel Hill, NC. Material for proteomic analyses were 

sent to the Proteomic Characterization Center (PCC) at the Broad Institute, Cambridge, MA.
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Sequencing sample preparation—Our study sampled a single site of the primary 

tumor from surgical resections, with an internal requirement to process a minimum of 

125mg of tumor issue and 50mg of NAT. DNA and RNA were extracted from tumor and 

NAT specimens in a co-isolation protocol using Qiagen’s QIAsymphony DNA Mini Kit and 

QIAsymphony RNA Kit. Genomic DNA was also isolated from peripheral blood (3–5mL) 

to serve as matched normal reference material. The Qubit™ dsDNA BR Assay Kit was used 

with the Qubit® 2.0 Fluorimeter to determine the concentration of dsDNA in an aqueous 

solution. Any sample that passed quality control and produced enough DNA yield to go 

through the multiple planned genomic assays was sent for genomic characterization. RNA 

quality was quantified using the NanoDrop 8000 and quality assessed using an Agilent 

Bioanalyzer. A sample of sufficient quantity that passed RNA quality control and had a 

minimum RIN (RNA integrity number) score of 7 was subjected to RNA sequencing. 

Identity matches for germline, normal adjacent tissue, and tumor tissue were confirmed at 

the BCR using the Illumina Infinium QC array. This beadchip contains 15,949 markers 

designed to prioritize sample tracking, quality control, and stratification.

Whole Exome Sequencing (WES)

Library construction and Hybrid Selection: Library construction was performed as 

described in (Fisher et al., 2011), with the following modifications: initial genomic DNA 

input into shearing was reduced from 3μg to 20–250ng in 50μL of solution. For adapter 

ligation, Illumina paired-end adapters were replaced with palindromic forked adapters, 

purchased from Integrated DNA Technologies (IDT), with unique dual-indexed molecular 

barcode sequences to facilitate downstream pooling. Kapa HyperPrep reagents in 96-

reaction kit format were used for end repair/A-tailing, adapter ligation, and library 

enrichment PCR. In addition, during the post-enrichment SPRI cleanup, elution volume was 

reduced to 30μL to maximize library concentration, and a vortexing step was added to 

maximize the amount of template eluted. After library construction, libraries were pooled 

into groups of up to 96 samples. Hybridization and capture were performed using the 

relevant components of Illumina’s Nextera Exome Kit and following the manufacturer’s 

suggested protocol, with the following exceptions: First, all libraries within a library 

construction plate were pooled prior to hybridization. Second, the Midi plate from 

Illumina’s Nextera Exome Kit was replaced with a skirted PCR plate to facilitate 

automation. All hybridization and capture steps were automated on the Agilent Bravo liquid 

handling system.

Cluster Amplification and Sequencing: After post-capture enrichment, library pools were 

quantified using qPCR (KAPA Biosystems) using an automated assay on the Agilent Bravo 

with probes specific to the ends of the adapters. Based on qPCR quantification, libraries 

were normalized to 2nM. Cluster amplification of DNA libraries was performed following 

manufacturer’s protocol (Illumina) using exclusion amplification chemistry and flowcells. 

Flowcells were sequenced utilizing sequencing-by-synthesis chemistry. The flow cells were 

then analyzed using RTA v.2.7.3 or later. Each pool of whole exome libraries was sequenced 

on paired 76-cycle runs with two 8-cycle index reads across the number of lanes needed to 

meet coverage for all libraries in the pool. Pooled libraries were run on HiSeq4000 paired-

end runs to achieve a minimum of 150x on-target coverage per library. The raw Illumina 

Gillette et al. Page 19

Cell. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequence data were demultiplexed and converted to FASTQ files; adapter and low-quality 

sequences were trimmed. The raw reads were mapped to the GRCh38/hg38 human reference 

genome and the validated BAMs were used for downstream analysis and variant calling.

Whole Genome Sequencing (WGS)

Cluster Amplification and Sequencing: An aliquot of genomic DNA (350ng in 50μL) was 

used as the input into DNA fragmentation (aka shearing). Shearing was performed 

acoustically using a Covaris focused-ultrasonicator, targeting 385bp fragments. Following 

fragmentation, additional size selection was performed using SPRI cleanup. Library 

preparation was performed using a commercially available KAPA Hyper Prep without 

amplification module kit (KAPA Biosystems) and with palindromic forked adapters with 

unique 8-base index sequences embedded within the adapter (IDT). Following sample 

preparation, libraries were quantified using quantitative PCR (KAPA Biosystems), with 

probes specific to the ends of the adapters using the automated Agilent’s Bravo liquid 

handling platform. Based on qPCR quantification, libraries were normalized to 1.7nM and 

pooled into 24-plexes.

Sample pools were combined with HiSeqX Cluster Amp Reagents EPX1, EPX2, and EPX3 

into single wells on a strip tube using the Hamilton Starlet Liquid Handling system. Cluster 

amplification of the templates was performed according to the manufacturer’s protocol 

(Illumina) with the Illumina cBot. Flowcells were sequenced to a minimum of 15x on 

HiSeqX utilizing sequencing-by-synthesis kits to produce 151 bp paired-end reads. Output 

from Illumina software was processed by the Picard data processing pipeline to yield BAM 

files containing demultiplexed, aggregated, aligned reads. All sample information tracking 

was performed by automated LIMS messaging.

Array Based Methylation Analysis—The Methylation EPIC array uses an 8-sample 

version of the Illumina Beadchip capturing >850,000 methylation sites per sample. Two 

hundred and fifty nanograms of DNA was used for the bisulfite conversion using Infinium 

MethylationEPIC BeadChip Kit (Illumina). The EPIC array includes sample plating, 

bisulfite conversion, and methylation array processing. After scanning, the data was 

processed through an automated genotype-calling pipeline. Data output consisted of raw 

idats and a sample sheet.

RNA and miRNA sequencing

Quality Assurance and Control of RNA Analytes: All RNA analytes were assayed for 

RNA integrity, concentration, and fragment size. Samples for total RNA-seq were quantified 

on a TapeStation system (Agilent, Inc. Santa Clara, CA). Samples with RINs >7.0 were 

considered high quality and were considered for sequencing.

Total RNA-seq libraries were generated using 300 nanograms of total RNA using the TruSeq 

Stranded Total RNA Library Prep Kit with Ribo-Zero Gold and bar-coded with individual 

tags following the manufacturer’s instructions (Illumina). Total RNA Libraries were 

prepared on an Agilent Bravo automated liquid handling system. Quality control was 

performed at every step, and the libraries were quantified using a TapeStation system.
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Total RNA Sequencing: Indexed libraries were prepared and run on HiSeq4000 paired-end 

75 base pairs to generate a minimum of 120 million reads per sample library with a target of 

greater than 90% mapped reads. The raw Illumina sequence data were demultiplexed and 

converted to FASTQ files, and adapter and low-quality sequences were trimmed. Samples 

were then assessed for quality by mapping reads to GRCh38/hg38, estimating the total 

number of mapped reads, amount of RNA mapping to coding regions, amount of rRNA in 

the sample, number of genes expressed, and relative expression of housekeeping genes. 

Samples passing this QA/QC were then clustered with other expression data from similar 

and distinct tumor types to confirm expected expression patterns. Atypical samples were 

then SNP typed from the RNA data to confirm source analyte. FASTQ files of all reads were 

then uploaded to the GDC repository.

miRNA-seq Library Construction: miRNA-seq library construction was performed from 

the RNA samples using the NEXTflex Small RNA-Seq Kit (v3, PerkinElmer, Waltham, 

MA) and barcoded with individual tags following the manufacturer’s instructions. Libraries 

were prepared on a Sciclone Liquid Handling Workstation. Quality control was performed at 

every step, and the libraries were quantified using a TapeStation system and an Agilent 

Bioanalyzer using the Small RNA analysis kit. Pooled libraries were then size selected 

according to NEXTflex kit specifications using a Pippin Prep system (Sage Science, 

Beverly, MA).

miRNA Sequencing: Indexed libraries were loaded on the HiSeq4000 to generate a 

minimum of 10 million reads per library with a minimum of 90% reads mapped. The raw 

Illumina sequence data were demultiplexed and converted to FASTQ files for downstream 

analysis. Resultant data were analyzed using a variant of the small RNA quantification 

pipeline developed for TCGA (Chu et al., 2016). Data from samples were assessed for the 

number of miRNAs called, species diversity, and total abundance before uploading to the 

GDC repository.

Mass Spectrometry methods—The protocols below for protein extraction, tryptic 

digestion, TMT-10 labeling of peptides, peptide fractionation by basic reversed-phase liquid 

chromatography, phosphopeptide enrichment using immobilized metal affinity 

chromatography, and LC-MS/MS were performed as previously described in depth (Mertins 

et al., 2018). Acetyl-enrichment was performed as described before (Svinkina et al., 2015; 

Udeshi et al., 2020) with modifications as indicated below.

Protein Extraction and Tryptic Digestion: Fifty milligrams (wet weight) of 

cryopulverized human LUAD and NAT samples were homogenized in lysis buffer at a ratio 

of about 200 uL lysis buffer for every 50 mg wet weight tissue. The lysis buffer consisted of 

8 M urea, 75 mM NaCl, 1 mM EDTA, 50 mM Tris HCl (pH 8), 10 mM NaF, phosphatase 

inhibitor cocktail 2 (1:100; Sigma, P5726) and cocktail 3 (1:100; Sigma, P0044), 2 μg/mL 

aprotinin (Sigma, A6103), 10 μg/mL leupeptin (Roche, 11017101001), and 1 mM PMSF 

(Sigma, 78830). Lysates were centrifuged at 20,000 g for 10 minutes and protein 

concentrations of the clarified lysates were measured by BCA assay (Pierce). Protein lysates 

were subsequently reduced with 5 mM dithiothreitol (Thermo Scientific, 20291) for an hour 
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at 37C and alkylated with 10 mM iodoacetamide (Sigma, A3221) for 45 minutes in the dark 

at room temperature. Prior to digestion, samples were diluted 4-fold to achieve 2 M urea 

with 50mM Tris HCl (pH 8). Digestion was performed with LysC (Wako, 100369–826) for 2 

hours and with trypsin (Promega, V511X) overnight, both at a 1:50 enzyme-to-protein ratio 

and at room temperature. Digested samples were acidified with formic acid (FA; Fluka, 

56302) to achieve a final volumetric concentration of 1 % (final pH of ~3), and centrifuged 

at 1,500 g for 15 minutes to clear precipitated urea from peptide lysates. Samples were 

desalted on C18 SepPak columns (Waters, 100mg, WAT036820) and dried down using a 

SpeedVac apparatus.

Construction of the Common Reference Pool: The proteomic and phosphoproteomic 

analyses of lung cancer samples were structured as TMT-10 plex experiments. To facilitate 

quantitative comparison between all samples across experiments, a common reference (CR) 

sample was included in each 10-plex. A common physical, rather than in silico reference 

was used for this purpose for optimal quantitative precision between TMT10-plex 

experiments. Considerations prior to creating the reference sample were that this sample 

needed to be of adequate quantity to cover all planned experiments for both the current 

“discovery” and future “confirmatory” sets with overhead for additional possible 

experiments. The CR includes nearly all the samples analyzed in the TMT experiments, 

yielding an internal reference that is representative of all the samples in the study. Making 

the CR as representative of the study as a whole was particularly important since, by 

definition, only analytes represented in the reference sample would be included in the final 

ratio-based data analyses.

111 unique tumor samples with 102 paired NAT samples were distributed amongst 25 10-

plex experiments, with 9 individual samples occupying the first 9 channels of each 

experiment and the 10th channel being reserved for the CR sample. The first 8 channels of 

each experiment contained 4 tumor/NAT pairs, with each pair of patient samples adjacent to 

each other. All the tumors were in the C channels and all the NAT samples were in the N 

channels. Of the 25 130C channels, 9 contained unpaired tumors, 4 contained tumor-only 

CRs, 4 had NAT-only CRs, 2 were LUAD-derived CRs from a seperate study (unpublished, 

Taiwan LUAD study), 2 were replicate tumor samples, and 4 samples were 2 tumor/NAT 

paired patients, split for the purpose of confirming high-fidelity replication in the project.

To ensure capacity for additional experiments given a target input of 300 μg protein per 

channel per experiment, 30 mg total was targeted for reference material. To meet these 

collective requirements, after reserving 300 μg peptide / sample for individual sample 

analysis, an additional 150 μg for each sample with adequate remaining quantity was used 

for pooled CR generation. In total, 203 samples were selected for the combined tumor/NAT 

CR. To make the CR, tumor-only and NAT-only CRs were first created separately. 103 

tumor samples and 100 NAT samples contributed to their respective pooled reference 

samples. After creating individual CRs, a pool of combined CR was made, consisting of 4.8 

mg tumor-only reference and 4.8 mg NAT-only reference. The 9.6 mg pooled reference 

material was divided into 300 μg aliquots and frozen at −80°C until use. 3.9 mg of tumor-

only and 3.9 mg of NAT-only reference pools were set aside for future combined tumor/NAT 
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CR generation. The remaining tumor-only and NAT-only references were aliquoted into 300 

pg amounts, dried down, and stored at −80C for future use.

Construction and utilization of the CR Sample: As a quality control measure, two 

“comparative reference” (“CompRef”) samples were generated as previously described (Li 

et al., 2013; Mertins et al., 2018) and used to monitor the longitudinal performance of the 

proteome, phosphoproteome, and acetylproteome workflows throughout the course of the 

project. Briefly, patient-derived xenograft tumors from established basal (WHIM2) and 

luminal-B (WHIM16) breast cancer intrinsic subtypes (Li et al., 2013) were raised 

subcutaneously in 8 week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (Jackson 

Laboratories, Bar Harbor, ME) using procedures reviewed and approved by the institutional 

animal care and use committee at Washington University in St. Louis. All PDX models are 

available through the application to the Human and Mouse-Linked Evaluation of Tumors 

core at http://digitalcommons.wustl.edu/hamlet/. Xenografts were grown in multiple mice, 

pooled, and cryopulverized to provide a sufficient amount of material for the duration of the 

project. Using the same analysis protocol as for the patient samples, four proteome, 

phosphoproteome, and acetylproteome process replicates of each of the two xenografts were 

prepared as described below and run as TMT 10-plex experiments (5 aliquots of each PDX 

model/plex) at the beginning and end of the 25 patient plexes and interposed after patient 

plexes 8 and 16. Interstitial samples were evaluated for depth of coverage and for 

consistency in quantitative comparison between the basal and luminal models.

TMT-10 Labeling of Peptides: Desalted peptides, 300 μg per sample (based on peptide-

level BCA after digestion), were labeled with 10-plex TMT reagents according to the 

manufacturer’s instructions (Thermo Scientific; Pierce Biotechnology, Germany). For each 

300 μg peptide aliquot of an individual tumor sample, 2.4 mg of labeling reagent was used. 

Peptides were dissolved in 300 μL of 50 mM HEPES (pH 8.5) solution and labeling reagent 

was added in 123 μL of acetonitrile. After 1 h incubation with shaking and after confirming 

good label incorporation, 24 μL of 5% hydroxylamine was added to quench the unreacted 

TMT reagents. Good label incorporation was defined as having a minimum of 95% fully 

labeled MS/MS spectra in each sample, as measured by LC-MS/MS after taking out a 2.8 μg 

aliquot from each sample and analyzing 1.25 μg. If a sample did not have sufficient label 

incorporation, additional TMT was added to the sample and another 1 h incubation was 

performed with shaking. At the time that the labeling efficiency quality control samples 

were taken, an additional 4 μg of material from each sample was removed and combined as a 

mixing control. After analyzing the mixing control sample by LC-MS/MS, intensity values 

of the individual TMT reporter ions were summed across all peptide-spectrum matches and 

compared to ensure that the total reporter ion intensity of each sample met a threshold of +/− 

15% of the common reference. If necessary, adjustments were made by either labeling 

additional material or reducing an individual sample’s contribution to the mixture, and 

analyzing a subsequent mixing control, until all samples met the threshold and were thus 

approximately 1:1:1. Differentially labeled peptides were then mixed (10 × 300 μg), dried 

down via vacuum centrifuge, and quenched, prior to desalting on a 200 mg C18 SepPak 

column.
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Peptide Fractionation: To reduce sample complexity, peptide samples were separated by 

high-pH reversed-phase (RP) separation as described previously (Mertins et al., 2018). A 

desalted 3 mg, 10-plex TMT-labeled experiment (based on protein-level BCA prior to 

digestion) was reconstituted in 900 μL 5mM ammonium formate (pH 10) and 2% 

acetonitrile, loaded on a 4.6 mm x 250 mm RP Zorbax 300 A Extend-C18 column (Agilent, 

3.5 μm bead size), and separated on an Agilent 1260 Series HPLC instrument using basic 

reversed-phase chromatography. Solvent A (2% acetonitrile, 4.5 mM ammonium formate, 

pH 10) and a nonlinear increasing concentration of solvent B (90% acetonitrile, 4.5 mM 

ammonium formate, pH 10) were used to separate peptides. The 4.5 mM ammonium 

formate solvents were made by 40-fold dilution of a stock solution of 180 mM ammonium 

formate, pH 10. To make 1L of stock solution, 25 mL of 28% (wt/vol) ammonium hydroxide 

(28%, density 0.9 g/ml, Sigma-Aldrich) was added to ~850ml of HPLC grade water, then 

~35 mL of 10 % (vol/vol) formic acid (>95% Sigma-Aldrich) was added to titrate the pH to 

10.0 before bringing the final volume to 1 liter with HPLC-grade water. The 96-minute 

separation LC gradient followed this profile: (min: %B) 0:0; 7:0; 13:16; 73:40; 77:44; 82:60; 

96:60. The flow rate was 1 mL/min. Per 3 mg separation, 82 fractions were collected into a 

96 deep-well x 2mL plate (Whatman, #7701– 5200), with fractions combined in a stepwise 

non-contiguous concatenation strategy and acidified to a final concentration of 0.1% FA as 

reported previously. An additional 14 fractions were collected from the 96 deep-well plate 

for fraction A, consisting of early-eluting fractions that tend to contain multi-phosphorylated 

peptides. 5% of the volume of each of the 24+A proteome fractions was allocated for 

proteome analysis, dried down, and re-suspended in 3% MeCN/0.1% FA (MeCN; 

acetonitrile) to a peptide concentration of 0.25 μg/μL for LC-MS/MS analysis. The 

remaining 95% of 24 concatenated fractions were further combined into 12 fractions, with 

fraction A as a separate fraction. These 13 fractions were then enriched for phosphopeptides 

as described below.

Phosphopeptide Enrichment: Ni-NTA agarose beads were used to prepare Fe3+-NTA 

agarose beads. In each phosphoproteome fraction, ~237.5 μg peptides (based on peptide-

level BCA after digestion with uniformly distributed fractionation presumed) were 

reconstituted in 475 μL 80% MeCN/0.1% TFA (trifluoroacetic acid) solvent and incubated 

with 10 μL of the IMAC beads for 30 minutes on a shaker at RT. After incubation, samples 

were briefly spun down on a tabletop centrifuge; clarified peptide flow-throughs were 

separated from the beads; and the beads were reconstituted in 200 μL IMAC binding/wash 

buffer (80 MeCN/0.1% TFA) and loaded onto equilibrated Empore C18 silica-packed stage 

tips (3M, 2315). Samples were then washed twice with 50 μL of IMAC binding/wash buffer 

and once with 50 uL 1% FA, and were eluted from the IMAC beads to the stage tips with 3 × 

70 uL washes of 500 mM dibasic sodium phosphate (pH 7.0, Sigma S9763). Stage tips were 

then washed once with 100 μL 1% FA and phosphopeptides were eluted from the stage tips 

with 60 μL 50% MeCN/0.1% FA. Phosphopeptides were dried down and re-suspended in 9 

μL 50% MeCN/0.1%FA for LC-MS/MS analysis, where 4 μL was injected per run.

Acetylpeptide Enrichment: Acetylated lysine peptides were enriched using an antibody 

against the acetyl-lysine motif (CST PTM-SCAN Catalogue No. 13416). IMAC eluents 

were concatenated into 4 fractions (~750 μg peptides per fraction) and dried down using a 
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SpeedVac apparatus. Peptides were reconstituted with 1.4ml of IAP buffer (5 mM MOPS pH 

7.2, 1 mM Sodium Phosphate (dibasic), 5 mM NaCl) per fraction and incubated for 2 hours 

at 4°C with pre-washed (4 times with IAP buffer) agarose beads bound to acetyl-lysine motif 

antibody. Peptide-bound beads were washed 4 times with ice-cold PBS followed by elution 

with 100ul of 0.15% TFA. Eluents were desalted using C18 stage tips, eluted with 50% 

ACN and dried down. Acetylpeptides were suspended in 7ul of 0.1% FA and 3% ACN and 

4ul were injected per run.

LC-MS/MS for Proteomics Analyses: Online separation was done with a nanoflow 

Proxeon EASY-nLC 1200 UHPLC system (Thermo Fisher Scientific). In this set up, the LC 

system, column, and platinum wire used to deliver electrospray source voltage were 

connected via a stainless steel cross (360μm, IDEX Health & Science, UH-906x). The 

column was heated to 50°C using a column heater sleeve (Phoenix-ST) to prevent over-

pressuring of columns during UHPLC separation. From each peptide fraction, ~1ug (based 

on protein-level BCA prior to digestion with uniformly-distributed fractionation presumed), 

the equivalent of 12% of each global proteome sample in a 2 ul injection volume or 50% of 

each phosphoproteome sample in a 4 ul injection volume, was injected onto an in-house 

packed 22cm x 75um internal diameter C18 silica picofrit capillary column (1.9 μm 

ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH, r119.aq; Picofrit 10um tip opening, New 

Objective, PF360–75-10-N-5). Mobile phase flow rate was 200 nL/min, comprised of 3% 

acetonitrile/0.1% formic acid (Solvent A) and 90% acetonitrile /0.1% formic acid (Solvent 

B). The 110-minute LC-MS/MS method consisted of a 10-min column-equilibration 

procedure; a 20-min sample-loading procedure; and the following gradient profile: 

(min:%B) 0:2; 1:6; 85:30; 94:60; 95;90; 100:90; 101:50; 110:50 (the last two steps at 500 

nL/min flow rate). For acetylproteome analysis, the same LC and column setup was used, 

but the gradient was extended to 260 minutes with the following gradient profile: (min:%B) 

0:2; 1:6; 235:30; 244:60; 245;90; 250:90; 251:50; 260:50 (the last two steps at 500 nL/min 

flow rate).

For proteome analysis, samples were analyzed with a benchtop Q Exactive HF-X mass 

spectrometer (Thermo Fisher Scientific) equipped with a nanoflow ionization source (James 

A. Hill Instrument Services, Arlington, MA). Data-dependent acquisition was performed 

using Q Exactive HF-X Orbitrap v 2.9 software in positive ion mode at a spray voltage of 

1.5 kV. MS1 Spectra were measured with a resolution of 60,000, an AGC target of 3e6 and a 

mass range from 350 to 1800 m/z. The data-dependent mode cycle was set to trigger MS/MS 

on up to the top 20 most abundant precursors per cycle at an MS2 resolution of 45,000, an 

AGC target of 5e4, an isolation window of 0.7 m/z, a maximum injection time of 105 msec, 

and an HCD collision energy of 31%. Peptides that triggered MS/MS scans were 

dynamically excluded from further MS/MS scans for 45 sec. Peptide match was set to 

preferred for monoisotopic peak determination, and charge state screening was enabled to 

only include precursor charge states 2–6, with an intensity threshold of 9.5e4. Advanced 

precursor determination feature (APD) (Myers et al., 2018) was turned off using a software 

patch provided to us by Thermo Fisher Scientific allowing us to turn APD off in the tune 

file, Tune version 2.9.0.2926 (later versions of Exactive Tune 2.9 sp2 for the HFX have this 

option as standard).
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For phosphoproteome and acetylproteome analysis, samples were analyzed with a benchtop 

Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) equipped with a 

NanoSpray Flex NG ion source. Data-dependent acquisition was performed using Xcalibur 

Orbitrap Fusion Lumos v3.0 software in positive ion mode at a spray voltage of 1.8 kV. MS1 

Spectra were measured with a resolution of 60,000, an AGC target of 4e5 and a mass range 

from 350 to 1800 m/z. The data-dependent mode cycle time was set at 2 seconds with a MS2 

resolution of 50,000, an AGC target of 6e4, an isolation window of 0.7 m/z, a maximum 

injection time of 105 msec, and an HCD collision energy of 36%. Peptide mode was 

selected for monoisotopic peak determination, and charge state screening was enabled to 

only include precursor charge states 2–6, with an intensity threshold of 1e4. Peptides that 

triggered MS/MS scans were dynamically excluded from further MS/MS scans for 45 sec, 

with a +/− 10 ppm mass tolerance. “Perform dependent scan on single charge state per 

precursor only” was enabled for phosphoproteome analysis and disabled for acetylproteome 

analysis.

Immunohistochemistry—Total ALK and phospho-ALK (Y1507) immunostainings were 

performed on representative tumor and matched NATs from the available cases that 

contained ALK, ROS1 or RET gene fusions. The antibodies used included anti-ALK 

primary rabbit monoclonal antibody (ALK(D5F3) XP, Cell Signaling Technology, cat #3633 

at 1 in 250 dilution) and anti-phospho ALK rabbit monoclonal antibody (D6F1V, Cell 

Signaling Technology, cat#14678 at 1:500 dilution). Briefly, 5-micron formalin fixed, 

paraffin sections were rehydrated and a heat-induced epitope retrieval was performed with 

citrate buffer (pH 6). Incubations with the respective antibodies were carried out overnight at 

4 degrees C followed by buffer washes. For total-ALK, post-incubation with secondary 

antibody was done for 30 minutes and for phospho-ALK (Y1507), post-incubation was done 

initially with amplifier antibody (goat anti-rabbit IgG) for 15 minutes followed by secondary 

for 30 minutes. After buffer washes for total-ALK the signal was developed using DAB 

Peroxidase Substrate Kit (SK-4100; Vector laboratories) and for phospho-ALK using equal 

volumes of ImmPACT DAB EqV Reagent 1 (chromogen) and ImmPACT DAB EqV 

Reagent 2 (Diluent) for 5 minutes. Slides were counterstained with 50% Hematoxylin for 2 

minutes, dehydrated, and cover-slipped. IHC was assessed for nuclear and cytoplasmic 

expression on tumor cells and the background was assessed in NATs (R.M. and R.M.).

Genomic Data Analysis

Copy Number Calling: Copy-number analysis was performed jointly leveraging both 

whole-genome sequencing (WGS) and whole-exome sequencing (WES) data of the tumor 

and germline DNA, using CNVEX (https://github.com/mctp/cnvex). CNVEX uses whole-

genome aligned reads to estimate coverage within fixed genomic intervals, and whole-

genome and whole-exome variant calls to compute B-allele frequencies at variable positions 

(we used TNScope germline calls). Coverages were computed in 10kb bins, and the 

resulting log coverage ratios between tumor and normal samples were adjusted for GC bias 

using weighted LOESS smoothing across mappable and non-blacklisted genomic intervals 

within the GC range 0.3–0.7, with a span of 0.5 (the target, blacklist, and configuration files 

are provided with CNVEX). The adjusted log coverage ratios (LR) and B-allele frequencies 

(BAF) were jointly segmented by custom algorithm based on Circular Binary Segmentation 
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(CBS). Alternative probabilistic algorithms were implemented in CNVEX, including 

algorithms based on recursive binary segmentation (RBS) (Gey and Lebarbier, 2008), and 

dynamic programming (Bellman, 1961), as implemented in the R-package jointseg (Pierre-

Jean et al., 2014). For the CBS-based algorithm, first LR and mirrored BAF were 

independently segmented using CBS (parameters alpha=0.01, trim=0.025) and all candidate 

breakpoints collected. The resulting segmentation track was iteratively “pruned” by merging 

segments that had similar LR, BAFs and short lengths. For the RBS- and DP-based 

algorithms, joint-breakpoints were “pruned” using a statistical model selection method 

(Lebarbier, 2005). For the final set of CNV segments, we chose the CBS-based results as 

they did not require specifying a prior on the number of expected segments (K) per 

chromosome arm, were robust to unequal variances between the LR and BAF tracks, and 

provided empirically the best fit to the underlying data.

Somatic Variant Calling: We called somatic variants for GDC-aligned WES BAMs by 

using the SomaticWrapper pipeline (https://github.com/ding-lab/somaticwrapper), which 

includes four different callers, i.e., Strelka v.2 (Saunders et al., 2012), MUTECT v1.7 

(Cibulskis et al., 2013), VarScan v.2.3.8 (Koboldt et al., 2012), and Pindel v.0.2.5 (Ye et al., 

2009). We kept SNVs called by any 2 callers among MUTECT v1.7, VarScan v.2.3.8, and 

Strelka v.2 and indels called by any 2 callers among VarScan v.2.3.8, Strelka v.2, and Pindel 

v.0.2.5. For the merged SNVs and indels, we applied a 14X and 8X coverage cutoff for 

tumor and normal, separately. We also filtered SNVs and indels by a minimal variant allele 

frequency (VAF) of 0.05 in tumors and a maximal VAF of 0.02 in normal samples. Finally, 

we filtered any SNV that was within 10bp of an indel found in the same tumor sample.

In step 13 of the SomaticWrapper pipeline, it combined adjacent SNVs into DNP (di-

nucleotide polymorphisms) by using COCOON: As input, COCOON takes a MAF file from 

standard variant calling pipeline. First, it extracts variants within a 2bp window as DNP 

candidate sets. Next, if the corresponding BAM files used for variant calling are available, it 

extracts the reads (denoted as n_t) spanning all candidate DNP locations in each variant set, 

and then counts the number of reads with all the co-occurring variants (denoted as n_c) to 

calculate co-occurrence rate (r_c=n_c/n_t); If r_c ≥ 0.8, the nearby SNVs will be combined 

into DNP and annotation updated for the DNPs from the same codon based on the transcript 

and coordinates information in the MAF file. Among a total 32,250 somatic variants 

identified from the SomaticWrapper pipeline, there were 437 DNPs, in which 228 fell in the 

dominant smoking-related DNP type (CC->AA or GG->TT).

GISTIC and MutSig analysis: The Genomic Identification of Significant Targets in Cancer 

(GISTIC2.0) algorithm (Mermel et al., 2011) was used to identify significantly amplified or 

deleted focal-level and arm-level events, with Q value <0.25 considered significant. The 

following parameters were used:

• Amplification Threshold = 0.1

• Deletion Threshold = 0.1

• Cap Values = 1.5

• Broad Length Cutoff = 0.98
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• Remove X-Chromosome = 0

• Confidence Level = 0.99

• Join Segment Size = 4

• Arm Level Peel Off = 1

• Maximum Sample Segments = 2000

• Gene GISTIC = 1

Each gene of every sample is assigned a thresholded copy number level that reflects the 

magnitude of its deletion or amplification. These are integer values ranging from −2 to 2, 

where 0 means no amplification or deletion of magnitude greater than the threshold 

parameters described above. Amplifications are represented by positive numbers: 1 means 

amplification above the amplification threshold; 2 means amplification larger than the arm 

level amplifications observed in the sample. Deletions are represented by negative numbers: 

−1 means deletion beyond the threshold; −2 means deletions greater than the minimum arm-

level copy number observed in the sample.

The somatic variants were filtered through a panel of normals to remove potential 

sequencing artifacts and undetected germline variants. MutSig2CV (Lawrence et al. 2014) 

was run on these filtered results to evaluate the significance of mutated genes and estimate 

mutation densities of samples. These results were constrained to genes in the Cancer Gene 

Census (Sondka et al. 2018), with false discovery rates (q values) recalculated. Genes of q 

value < 0.1 were declared significant.

RNAseq and miRNAseq Quantification

RNAseq Quantification: Transcriptome data have been analyzed as described previously 

(Robinson et al., 2017), using the Clinical RNA-seq Pipeline (CRISP) developed at the 

University of Michigan (https://github.com/mcieslik-mctp/crisp-build). Briefly, raw 

sequencing data was trimmed, merged using BBMap, and aligned to GRCh38/hg38 using 

STAR. The resulting BAM files were analyzed for expression using feature counts against a 

transcriptomic reference based on Gencode 26. The resulting gene-level counts for protein-

coding genes were upper-quartile normalized, transformed into RPKMs using edgeR, and 

log2 transformed. Genes quantified in fewer than 30% of all samples were removed from the 

data matrix. Data rows of redundant gene symbols were aggregated by calculating the 

average log2(RPKM).

For integrative multi-omics subtyping we normalized each gene by the median log2(RPKM) 

across all tumors (gene-centering) and applied the same per-sample normalization strategy 

used to normalize proteomics data tables (see below: Two-component normalization of TMT 

ratio distributions).

miRNA-Seq Data Analysis: miRNA-seq FASTQ files were downloaded from the CPTAC 

GDC API (https://docs.gdc.cancer.gov). TPM (Transcripts per million) values of mature 

miRNA and precursor miRNA were reported after adapter trimming, quality check, 

alignment, annotation, and reads counting (https://github.com/ding-lab/CPTAC_miRNA/
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blob/master/cptac_mirna_analysis.md). The mature miRNA expression was calculated 

irrespective of its gene of origin by summing the expression from its precursor miRNAs.

Unsupervised miRNA expression subtype identification was performed on mature miRNAs 

expression (log2 TPM) from 106 LUAD patients using Louvain clustering. (https://doi.org/

10.5281/zenodo.595481). The expression of top 50 differentially expressed miRNAs from 

each miRNA-based subtype was shown in the heatmap (Figure S3J). For consistency, 

miRNA expression, RNA expression and protein expression were scaled to 0–1.

Proteomics Data Analysis

Spectrum quality filtering and searching: All MS data were interpreted using the 

Spectrum Mill software package v7.0 pre-release (Agilent Technologies, Santa Clara, CA) 

co-developed by Karl Clauser of the Carr laboratory (https://www.broadinstitute.org/

proteomics). Similar MS/MS spectra acquired on the same precursor m/z within +/− 45 sec 

were merged. MS/MS spectra were excluded from searching if they failed the quality filter 

by not having a sequence tag length > 0 (i.e., minimum of two masses separated by the in-

chain mass of an amino acid) or did not have a precursor MH+ in the range of 800–6000. 

MS/MS spectra were searched against a RefSeq-based sequence database containing 41,457 

proteins mapped to the human reference genome (GRCh38/hg38) obtained via the UCSC 

Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables) on June 29, 2018, with the 

addition of 13 proteins encoded in the human mitochondrial genome, 264 common 

laboratory contaminant proteins, and 553 non-canonical small open reading frames. Scoring 

parameters were ESI-QEXACTIVE-HCD-v2, for whole proteome datasets, and ESI-

QEXACTIVE-HCD-v3, for phosphoproteome and acetylproteome datasets. All spectra were 

allowed +/− 20 ppm mass tolerance for precursor and product ions, 30% minimum matched 

peak intensity, and “trypsin allow P” enzyme specificity with up to 4 missed cleavages. 

Allowed fixed modifications included carbamidomethylation of cysteine and selenocysteine. 

TMT labeling was required at lysine, but peptide N-termini were allowed to be either labeled 

or unlabeled. Allowed variable modifications for whole proteome datasets were acetylation 

of protein N-termini, oxidized methionine, deamidation of asparagine, hydroxylation of 

proline in PG motifs, pyro-glutamic acid at peptide N-terminal glutamine, and pyro-

carbamidomethylation at peptide N-terminal cysteine with a precursor MH+ shift range of 

−18 to 97 Da. For the phosphoproteome dataset the allowed variable modifications were 

revised to allow phosphorylation of serine, threonine, and tyrosine, allow deamidation only 

in NG motifs, and disallow hydroxylation of proline with a precursor MH+ shift range of 

−18 to 272 Da. For the acetylproteome dataset the allowed variable modifications were 

revised to allow acetylation of lysine, allow deamidation only in NG motifs, and disallow 

hydroxylation of proline with a precursor MH+ shift range of −400 to 70 Da.

Protein grouping, and localization of PTMs: Identities interpreted for individual spectra 

were automatically designated as confidently assigned using the Spectrum Mill 

autovalidation module to use target-decoy based false discovery rate (FDR) estimates to 

apply score threshold criteria. For the whole proteome dataset thresholding was done in 3 

steps: at the peptide spectrum match (PSM) level, the protein level for each TMT-plex, and 

the protein level for all 25 TMT-plexes. For the phosphoproteome and acetylproteome 
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datasets thresholding was done in two steps: at the PSM and variable modification (VM) site 

levels.

In step 1 for all datasets, PSM-level autovalidation was done first and separately for each 

TMT-plex experiment consisting of either 25 LC-MS/MS runs (whole proteome), 13 LC-

MS/MS runs (phosphoproteome), or 4 LC-MS/MS runs (acetylproteome) using an auto-

thresholds strategy with a minimum sequence length of 7; automatic variable range 

precursor mass filtering; and score and delta Rankl - Rank2 score thresholds optimized to 

yield a PSM-level FDR estimate for precursor charges 2 through 4 of <0.8% for each 

precursor charge state in each LC-MS/MS run. To achieve reasonable statistics for precursor 

charges 5–6, thresholds were optimized to yield a PSM-level FDR estimate of <0.4% across 

all runs per TMT-plex experiment (instead of per each run), since many fewer spectra are 

generated for the higher charge states.

In step 2 for the whole proteome dataset, protein-polishing autovalidation was applied 

separately to each TMTplex experiment to further filter the PSMs using a target protein-level 

FDR threshold of zero. The primary goal of this step was to eliminate peptides identified 

with low scoring PSMs that represent proteins identified by a single peptide, so-called “one-

hit wonders”. After assembling protein groups from the autovalidated PSMs, protein 

polishing determined the maximum protein level score of a protein group that consisted 

entirely of distinct peptides estimated to be false-positive identifications (PSMs with 

negative delta forward-reverse scores). PSMs were removed from the set obtained in the 

initial peptide-level autovalidation step if they contributed to protein groups that had protein 

scores below the maximum false-positive protein score. Step 3 was then applied, consisting 

of protein-polishing autovalidation across all TMT plexes together using the protein 

grouping method “expand subgroups, top uses shared” to retain protein subgroups with 

either a minimum protein score of 25 or observation in at least 4 TMT plexes. The primary 

goal of this step was to eliminate low scoring proteins that were infrequently detected in the 

sample cohort. As a consequence of these two protein-polishing steps, each identified 

protein reported in the study was comprised of multiple peptides, unless a single excellent 

scoring peptide was the sole match and that peptide was observed in at least 4 TMT-plexes. 

In calculating scores at the protein level and reporting the identified proteins, peptide 

redundancy was addressed in Spectrum Mill as follows: The protein score was the sum of 

the scores of distinct peptides. A distinct peptide was the single highest scoring instance of a 

peptide detected through an MS/MS spectrum. MS/MS spectra for a particular peptide may 

have been recorded multiple times (e.g. as different precursor charge states, in adjacent bRP 

fractions, modified by deamidation at Asn or oxidation of Met, or with different phosphosite 

localization), but were still counted as a single distinct peptide. When a peptide sequence of 

>8 residues was contained in multiple protein entries in the sequence database, the proteins 

were grouped together and the highest scoring one and its accession number were reported. 

In some cases when the protein sequences were grouped in this manner, there were distinct 

peptides that uniquely represent a lower scoring member of the group (isoforms, family 

members, and different species). Each of these instances spawned a subgroup. Multiple 

subgroups were reported, counted towards the total number of proteins, and given related 

protein subgroup numbers (e.g. 3.1 and 3.2 for group 3, subgroups 1 and 2). For the whole 

proteome datasets the above criteria yielded false discovery rates (FDR) for each TMT-plex 
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experiment of <0.6% at the peptide-spectrum match level and <0.8% at the distinct peptide 

level. After assembling proteins with all the PSMs from all the TMT-plex experiments 

together, the aggregate FDR estimates were 0.57% at the peptide-spectrum match level, 

2.6% at the distinct peptide level, and <0.01% (1/11,015) at the protein group level. Since 

the protein level FDR estimate neither explicitly required a minimum number of distinct 

peptides per protein nor adjusted for the number of possible tryptic peptides per protein, it 

may underestimate false positive protein identifications for large proteins observed only on 

the basis of multiple low scoring PSMs.

In step 2 for the phosphoproteome and acetylproteome datasets, variable modification (VM) 

site polishing autovalidation was applied across all 25 TMT plexes to retain all VM-site 

identifications with either a minimum id score of 8.0 or observation in at least 4 TMT 

plexes. The intention of the VM site polishing step is to control FDR by eliminating 

unreliable VM site-level identifications, particularly low scoring VM sites that are only 

detected as low scoring peptides that are also infrequently detected across all of the TMT 

plexes in the study. In calculating scores at the VM-site level and reporting the identified 

VM sites, redundancy was addressed in Spectrum Mill as follows: A VM-site table was 

assembled with columns for individual TMT-plex experiments and rows for individual VM-

sites. PSMs were combined into a single row for all non-conflicting observations of a 

particular VM-site (e.g. different missed cleavage forms, different precursor charges, 

confident and ambiguous localizations, and different sample-handling modifications). For 

related peptides, neither observations with a different number of VM-sites nor different 

confident localizations were allowed to be combined. Selecting the representative peptide 

from the combined observations was done such that once confident VM-site localization was 

established, higher identification scores and longer peptide lengths were preferred. While a 

Spectrum Mill identification score was based on the number of matching peaks, their ion 

type assignment, and the relative height of unmatched peaks, the VM site localization score 

was the difference in identification score between the top two localizations. The score 

threshold for confident localization, >1.1, essentially corresponded to at least 1 b or y ion 

located between two candidate sites that has a peak height >10% of the tallest fragment ion 

(neutral losses of phosphate from the precursor and related ions as well as immonium and 

TMT reporter ions were excluded from the relative height calculation). The ion type scores 

for b-H3PO4, y-H3PO4, b-H2O, and y-H2O ion types were all set to 0.5. This prevented 

inappropriate confident localization assignment when a spectrum lacked primary b or y ions 

between two possible sites but contained ions that could be assigned as either phosphate-loss 

ions for one localization or water loss ions for another localization. VM-site polishing 

yielded 65,103 phosphosites with an aggregate FDR of 0.74% at the phosphosite level. In 

aggregate, 71% of the reported phosphosites in this study were fully localized to a particular 

serine, threonine, or tyrosine residue. VM-site polishing yielded 13,480 acetylsites with an 

aggregate FDR of 0.89% at the acetylsite level. In aggregate, 99% of the reported acetylsites 

in this study were fully localized to a particular lysine residue.

Quantitation using TMT ratios: Using the Spectrum Mill Protein/Peptide Summary 

module, a protein comparison report was generated for the proteome dataset using the 

protein grouping method “expand subgroups, top uses shared” (SGT). For the 
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phosphoproteome and acetylproteome datasets a Variable Modification site comparison 

report limited to either phospho or acetyl sites, respectively, was generated using the protein 

grouping method “unexpand subgroups”. Relative abundances of proteins and VM-sites 

were determined in Spectrum Mill using TMT reporter ion intensity ratios from each PSM. 

TMT reporter ion intensities were corrected for isotopic impurities in the Spectrum Mill 

Protein/Peptide summary module using the afRICA correction method, which implements 

determinant calculations according to Cramer’s Rule (Shadforth et al., 2005) and correction 

factors obtained from the reagent manufacturer’s certificate of analysis (https://

www.thermofisher.com/order/catalog/product/90406) for TMT10_lot number SE240163. A 

protein-level, phosphosite-level, or acetylsite-level TMT ratio is calculated as the median of 

all PSM-level ratios contributing to a protein subgroup, phosphosite, or acetylsite. PSMs 

were excluded from the calculation if they lacked a TMT label, had a precursor ion purity < 

50% (MS/MS has significant precursor isolation contamination from co-eluting peptides), or 

had a negative delta forward-reverse identification score (half of all false-positive 

identifications). Lack of TMT label led to exclusion of PSMs per TMT plex with a range of 

1.4 to 3.3% for the proteome, 1.2 to 3.9% for the phosphoproteome, and 1.3 to 6.6% for the 

acetylproteome datasets. Low precursor ion purity led to exclusion of PSMs per TMT plex 

with a range of 1.2 to 1.6% for the proteome, 2.0 to 2.9% for the phosphoproteome, and 4.6 

to 7.5% for the acetylproteome datasets.

Two-component normalization of TMT ratios: It was assumed that for every sample there 

would be a set of unregulated proteins or phosphosites that have abundance comparable to 

the common reference (CR) sample. In the normalized sample, these proteins, phosphosites, 

or acetylsites should have a log TMT ratio centered at zero. In addition, there were proteins, 

phosphosites, and acetylsites that were either up- or down-regulated compared to the CR. A 

normalization scheme was employed that attempted to identify the unregulated proteins 

phosphosites or acetylsites, and centered the distribution of these log-ratios around zero in 

order to nullify the effect of differential protein loading and/or systematic MS variation. A 2-

component Gaussian mixture model-based normalization algorithm was used to achieve this 

effect. The two Gaussians N(μi1,δi1) and N(μi2,δi2) for a sample i were fitted and used in the 

normalization process as follows: the mode mi of the log-ratio distribution was determined 

for each sample using kernel density estimation with a Gaussian kernel and Shafer-Jones 

bandwidth. A two-component Gaussian mixture model was then fit with the mean of both 
Gaussians constrained to be mi, i.e., μi1=μi2=mi. The Gaussian with the smaller estimated 

standard deviation σi = min σi1, σi2  was assumed to represent the unregulated component 

of proteins/phosphosites/acetylsites, and was used to normalize the sample. The sample was 

standardized using (mi), by subtracting the mean mi from each protein/phosphosite/acetylsite 

and dividing by the standard deviation δi.

Comparative reference sample: To better dissect the tumor/stroma (human/mouse) origin 

of orthologous proteins in the CompRef xenograft samples, a few divergences were made in 

the data analysis described above. The sequence database used for searching MS/MS spectra 

was expanded to include 30,608 mouse proteins, mapped to the mouse reference genome 

(mm10) obtained via the UCSC Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables) 

on the same date as the corresponding human reference genome June 29, 2018, along with 
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the addition of 13 proteins encoded in the mouse mitochondrial genome. For the proteome 

dataset, autovalidation step 3 consisted of protein-polishing autovalidation across all 4 TMT 

plexes together using the protein grouping method “unexpand subgroups”, to retain protein 

groups with either a minimum protein score of 25 or observation in at least 2 TMT plexes. 

The subsequent protein comparison report generated for the proteome dataset employed the 

subgroup-specific (SGS) protein grouping option, which omitted peptides that are shared 

between subgroups, and included only subgroup specific peptide sequences toward each 

subgroup’s count of distinct peptides and protein level TMT quantitation. If evidence for 

both human and mouse peptides from an orthologous protein were observed, then peptides 

that cannot distinguish the two (shared) were ignored. However, the peptides shared between 

species were retained if there was specific evidence for only one of the species, thus yielding 

a single subgroup attributed to only the single species consistent with the specific peptides. 

Furthermore, if all peptides observed for a protein group were shared between species, thus 

yielding a single subgroup composed of indistinguishable species, then all peptides were 

retained. For the proteome dataset, only PSMs from subgroup-specific peptide sequences 

contributed to the protein level quantification. A protein detected with all contributing PSMs 

shared between human and mouse was considered to be human. For the phosphoproteome 

and acetylproteome datasets, a phosphosite or acetylsite was considered to be mouse if the 

contributing PSMs were distinctly mouse and human if they were either distinctly human or 

shared between human and mouse.

Systems Biology analysis

Sample exclusion: To ensure that poor quality or questionable samples were not included in 

the final dataset, we performed principal component analysis (PCA) on the RNA-seq, global 

proteome and phosphosite expression data. In the input to PCA (Figure 7A), we excluded 

any genes, proteins and phosphosites (in the respective datasets) missing in 50% or more of 

the samples. For each dataset, we plotted the 95% confidence ellipse in the PC1 vs PC2 plot 

for the tumor and normal groups. Any samples falling outside these ellipses were deemed to 

be outliers. Samples that were outliers in all three datasets (RNA-seq, proteome and 

phosphosite) and had inconsistent pathology reviews were excluded. Only sample 

C3N.00545 satisfied all exclusion criteria and was removed from the final dataset.

Dataset filtering: Genes (RNA-seq), proteins (global proteome), phosphosites and 

acetylsites present in fewer than 30% of samples (i.e., missing in >70% of samples) were 

removed from the respective datasets. Furthermore:

• Proteins were required to have at least two observed TMT ratios in >25% of 

samples in order to be included in the proteome dataset. Phosphosites and 

acetylsites were required to have at least one observed TMT ratio in >25% of 

samples.

• Proteins, phosphosites and acetylsites were required to have TMT ratios with an 

overall standard deviation >0.5 across all the samples where they were observed. 

This ensured that a small number of proteins, phosphosites and acetylsites that 

did not vary much over the set of samples were excluded to minimize noise.
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Replicate samples in the dataset were merged by taking the mean of the respective 

expression values or ratios.

Some of the filtering steps were modified for specific analyses in the study. For many of the 

marker selection and gene set enrichment analyses, at least 50% of samples were required to 

have non-missing values for proteins/phosphosites/acetyl sites, since missing values were 

imputed, and excessive missing values can result in poor imputation. Alternate filtering has 

been noted in descriptions of the relevant methods.

Unsupervised multi-omics clustering using NMF: We used non-negative matrix 

factorization (NMF) implemented in the NMF R-package (Gaujoux and Seoighe, 2010) to 

perform unsupervised clustering of tumor samples and to identify proteogenomic features 

(proteins, phosphosites, acetylsites and RNA transcripts) that show characteristic expression 

patterns for each cluster. Briefly, given a factorization rank k (where k is the number of 

clusters), NMF decomposes a p x n data matrix V into two matrices W and H such that 

multiplication of W and H approximates V. Matrix H is a k x n matrix whose entries 

represent weights for each sample (1 to N) to contribute to each cluster (1 to k), whereas 

matrix W is a p x k matrix representing weights for each feature (1 to p) to contribute to 

each cluster (1 to k). Matrix H was used to assign samples to clusters by choosing the k with 

maximum score in each column of H. For each sample we calculated a cluster membership 

score as the maximal fractional score of the corresponding column in matrix H. We defined 

a “cluster core” as the set of samples with cluster membership score > 0.5. Matrix W 
containing the weights of each feature to a certain cluster was used to derive a list of 

representative features separating the clusters using the method proposed in (Kim and Park, 

2007).

To enable integrative multi-omics clustering we enforced all data types (and converted if 

necessary) to represent ratios to either a common reference measured in each TMT plex 

(proteome, phosphoproteome, acetylproteome) or an in silico common reference calculated 

as the median abundance across all samples (mRNA, see “RNA Quantification”). All data 

tables were then concatenated and filtered to contain a maximum of 30% missing values 

across all tumors. The remaining missing values were imputed via k-nearest neighbor (kNN) 

imputation implemented in the impute R-package (DOI: 10.18129/B9.bioc.impute) using the 

5 nearest neighbors. To remove uninformative features from the dataset prior to NMF 

clustering we removed features with the lowest standard deviation (bottom 5th percentile) 

across all samples. Each row in the data matrix was further scaled and standardized such that 

all features from different data types were represented as z-scores.

Since NMF requires a non-negative input matrix we converted the z-scores in the data 

matrix into a non-negative matrix as follows:

1. Create one data matrix with all negative numbers zeroed.

2. Create another data matrix with all positive numbers zeroed and the signs of all 

negative numbers removed.
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3. Concatenate both matrices resulting in a data matrix twice as large as the 

original, but containing only positive values and zeros and hence appropriate for 

NMF.

The resulting matrix was then subjected to NMF analysis leveraging the NMF R-package 

(Gaujoux and Seoighe, 2010) and using the factorization method described in (Brunet et al., 

2004). To determine the optimal factorization rank k (number of clusters) for the multi-omic 

data matrix we tested a range of clusters between k=2 and 8. For each k we factorized matrix 

V using 50 iterations with random initializations of W and H. To determine the optimal 

factorization rank we calculated cophenetic correlation coefficients measuring how well the 

intrinsic structure of the data was recapitulated after clustering and chose the k with 

maximal cophenetic correlation for cluster numbers between k=3 and 8. (Figure S1G).

Having determined the optimal factorization rank k, in order to achieve robust factorization 

of the multi-omics data matrix V, we repeated the NMF analysis using 200 iterations with 

random initializations of W and H and performed the partitioning of samples into clusters as 

described above. Due to the non-negative transformation applied to the z-scored data matrix 

as described above, matrix W of feature weights contained two separate weights for positive 

and negative z-scores of each feature, respectively. In order to revert the non-negative 

transformation and to derive a single signed weight for each feature, we first normalized 

each row in matrix W by dividing by the sum of feature weights in each row, aggregated 

both weights per feature and cluster by keeping the maximal normalized weight and 

multiplication with the sign of the z-score in the initial data matrix. Thus, the resulting 

transformed version of matrix Wsigned contained signed cluster weights for each feature in 

the input matrix.

For Functional characterization of clustering results by single sample Gene Set Enrichment 

Analysis (ssGSEA), we calculated normalized enrichment scores (NES) of cancer-relevant 

gene sets by projecting the matrix of signed multi-omic feature weights (Wsigned) onto 

Hallmark pathway gene sets (Liberzon et al., 2015) using ssGSEA (Barbie et al., 2009). To 

derive a single weight for each gene measured across multiple omics data types (protein, 

RNA, phosphorylation site, acetylation site) we retained the weight with maximal absolute 

amplitude. We used the ssGSEA implementation available on https://github.com/

broadinstitute/ssGSEA2.0 using the following parameters:

• gene.set.database-’h.all.v6.2.symbols.gmt”

• sample.norm.type-’rank”

• weight=1

• statistic=“area.under.RES”

• output.score.type=“NES”

• nperm=1000

• global.fdr=TRUE

• min.overlap=5
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• correl.type-’z.score”

To test the association of the resulting clusters to clinical variables we used Fisher’s exact 

test (R function fisher.tesf) to test for overrepresentation in the set of samples defining the 

cluster core as described above. The following variables were included in the analysis: 

RNA.Expression.Subtype.TCGA, Region.of.Origin, Stage, Gender, Smoking.Status (self 
reported), TP53.mutation.status, KRAS.mutation.status, STK11.mutation.status, 
EGFR.mutation.status, KEAP1.mutation.status, ALK.fusion, CIMP.status.

In order to adjust for tumor purity, for each omic data type (i.e., gene expression, global 

protein, phosphoproteome and acetylproteome abundance), each marker was modeled as a 

function of tumor purity from TSNet (Petralia et al., 2018) via a linear regression. Then, 

residuals from linear regression were considered to perform multi-omic clustering.

The entire workflow described above has been implemented as a module for Broad’s Cloud 

platform Terra (https://app.terra.bio/). The docker containers encapsulating the source code 

and required R-packages for NMF clustering and ssGSEA have been submitted to 

Dockerhub (broadcptac/pgdac_mo_nmf:9, broadcptac/pgdac_ssgsea:5). The source code for 

ssGSEA is available on GitHub: https://github.com/broadinstitute/ssGSEA2.0.

RNA subtvping: Starting with RNA expression data for the CPTAC LUAD cohort, the top 

5,000 most variable genes were subjected to clustering using ConsensusClusterPlus 

(Wilkerson and Hayes, 2010). The resulting three clusters were mapped to TCGA RNA 

expression subtypes (Cancer Genome Atlas Research Network, 2014; Wilkerson et al., 

2012) by associating enriched clinical features and gene mutations. The association of 

subtype and features were compared using Fisher’s exact test.

Pathway over-representation analysis: To designate the representative pathways of multi-

omics subtypes, we used the Wilcoxon rank sum test to select the top 250 differentially 

expressed features (mRNA, proteins and phosphosites), or features with p-value less than 

0.05 (acetylsites) for each subtype. We then performed hierarchical clustering on these 1000 

features and 573 acetylsites. Each set of clustered features underwent pathway enrichment 

analysis using Reactome (Fabregat et al., 2017). Pathways with p-value smaller than 0.05 

were manually reviewed and highlighted in Figure 1E. For visualization purposes, only the 

top 50 differentially expressed features for each subtype were displayed. In total, 200 

features were shown for each data type in the heatmap.

Fusion detection and analysis: Structural variants in WGS samples were called with Manta 

1.3.2, retaining variants where sample site depth was less than 3x the median chromosome 

depth near one or both variant breakends, somatic score was greater than 30, and for small 

variants (<1000 bases) in the normal sample, the fraction of reads with MAPQ0 around 

either breakend did not exceed 0.4.

Fusions in RNA-Seq samples were called using three callers: STAR-Fusion, EricScript, and 

Integrate, with fusions reported by at least 2 callers or reported by STAR-Fusion being 

retained. Fusions present in the following databases were then excluded: 1) uncharacterized 

genes, immunoglobulin genes, mitochondrial genes, etc., 2) fusions from the same gene or 
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paralog genes, and 3) fusions reported in TCGA normal samples, GTEx tissues, and non-

cancer cell studies. Finally, normal fusions were filtered out from the tumor fusions.

mRNA and Protein correlation: To compare mRNA expression and protein abundance 

across samples we focused on the RNAseq data with 18,099 genes, and global proteome 

with 10,316 quantified proteins. Only genes or proteins with <50% NAs (missing values) 

were considered for the analysis, and protein IDs were mapped to gene names. In total, 

9,616 genes common to both RNAseq and proteome data spanning 110 tumor samples were 

used in the analysis. The analyses were carried out on normalized data - RNAseq data were 

log2 transformed, upper quartile normalized RPKM values, which were median-centered by 

row (i.e. gene); proteome data was two-component normalized as described earlier. 

Correlation was calculated by Spearman’s correlation method using cor.test (Bioconductor, 

version 3.5.2) function in R. Both correlation coefficient and p-value were computed. 

Further, adjusted p-value was calculated using the Benjamini-Hochberg procedure. 

Similarly, mRNA-protein correlation among NAT samples was carried out with overlapping 

genes over the 101 NAT samples.

To identify genes that reverse their direction in tumors relative to NATs, we selected 

significant (Benjamini-Hochberg multiple test, FDR <0.1) mRNA-protein pairs in NATs and 

Tumors, respectively, that changed from negative correlation to positive correlation or vice-

versa. Significant genes identified in the global tumor-NAT comparison and individual 

mutant categories were merged together and are shown in Figure 3A with corresponding 

correlation coefficients. For paired tumor-NAT analysis, we considered 101 out of 110 

samples for which we have paired NATs, out of which 52, 36, 29, and 17 samples had TP53, 

EGFR, KRAS and STK11 mutations, respectively.

CNA-driven cis and trans effects: Correlations between copy number alterations (CNA) 

and RNA, proteome, phosphoproteome and acetylproteome (with proteome and PTM data 

mapped to genes, by choosing the most variable protein isoform/PTM site as the gene-level 

representative) were determined using Pearson correlation of common genes present in 

CNA-RNA-proteome (9,341 genes), CNA-RNA-phosphoproteome (5,244 genes) and CNA-

RNA-acetylproteome (1,313 genes). In addition, p-values (corrected for multiple testing 

using Benjamini-Hochberg FDR) for assessing the statistical significance of the correlation 

values were also calculated. CNA trans-effects for a given gene were determined by 

identifying genes with statistically significant (FDR < 0.05) positive or negative correlations.

CMAP analysis: Candidate genes driving response to copy number alterations were 

identified using large-scale Connectivity Map (CMAP) queries. The CMAP (Lamb et al., 

2006; Subramanian et al., 2017) is a collection of about 1.3 million gene expression profiles 

from cell lines treated with bioactive small molecules (~20,000 drug perturbagens), shRNA 

gene knockdowns (~4,300) and ectopic expression of genes. The CMAP dataset is available 

on GEO (Series GSE92742). For this analysis, we use the Level 5 (signatures from 

aggregating replicates) TouchStone dataset with 473,647 total profiles, containing 36,720 

gene knock-down profiles, with measurements for 12,328 genes. See https://clue.io/GEO-

guide for more information.
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To identify candidate driver genes, proteome profiles of copy number-altered samples were 

correlated with gene knockdown mRNA profiles in the above CMAP dataset, and 

enrichment of up/down-regulated genes was evaluated. Normalized log2 copy number 

values less than −0.3 defined deletion (loss), and values greater than +0.3 defined copy 

number amplifications (gains). In the copy number-altered samples (separately for CNA 

amplification and CNA deletion), the trans-genes (identified by significant correlation in 

“CNA driven cis and trans effects” above) were grouped into UP and DOWN categories by 

comparing the protein ratios of these genes to their ratios in the copy number neutral 

samples (normalized log2 copy number between −0.3 and +0.3). The lists of UP and DOWN 

trans-genes were then used as queries to interrogate CMAP signatures and calculate 

weighted connectivity scores (WTCS) using the single-sample GSEA algorithm (Krug et al., 

2018). The weighted connectivity scores were then normalized for each perturbation type 

and cell line to obtain normalized connectivity scores (NCS). See (Subramanian et al., 2017) 

for details on WTCS and NCS. For each query we then identified outlier NCS scores, where 

a score was considered an outlier if it lay beyond 1.5 times the interquartile range of score 

distribution for the query. The query gene was designated a candidate driver if (i) the score 

outliers were statistically cis-enriched (Fisher test with BH-FDR multiple testing correction) 

and (ii) the gene had statistically significant and positive cis-correlation.

For a gene to be considered for inclusion in a CMAP query it needed to i) have a copy 

number change (amplification or deletion) in at least 15 samples; ii) have at least 20 

significant trans genes; and iii) be on the list of shRNA knockdowns in the CMAP. 501 

genes satisfied these conditions and resulted in 737 queries (CNA amplification and deletion 

combined) that were tested for enrichment. Twelve (12) candidate driver genes were 

identified with Fisher’s test FDR < 0.1, using this process.

In order to ensure that the identified candidate driver genes were not a random occurrence, 

we performed a permutation test to determine how many candidate driver genes would be 

identified with random input (Mertins et al., 2016). For the 737 queries used, we substituted 

the bona-fide trans-genes with randomly chosen genes, and repeated the CMAP enrichment 

process. To determine FDR, each permutation run was treated as a Poisson sample with rate 

λ, counting the number of identified candidate driver genes. Given the small n (=10) and λ, 

a Score confidence interval was calculated (Barker, 2002) and the midpoint of the 

confidence interval used to estimate the expected number of false positives. Using 10 

random permutations, we determined the overall false discovery rate to be FDR=0.13, with a 

95% CI of (0.06, 0.19).

To identify how many trans-correlated genes for all candidate regulatory genes could be 

directly explained by gene expression changes measured in the CMAP shRNA perturbation 

experiments, knockdown gene expression consensus signature z-scores (knockdown/control) 

were used to identify regulated genes with α = 0.05, followed by counting the number of 

trans-genes in this list of regulated genes.

To obtain biological insight into the list of candidate driver genes, we performed (i) 

enrichment analysis on samples with extreme CNA values (amplification or deletion) to 

Gillette et al. Page 38

Cell. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identify statistically enriched sample annotation subgroups; and (ii) GSEA on cis/trans-

correlation values to find enriched pathways.

Defining cancer-associated genes: Cancer-associated genes (CAG) were compiled from 

genes defined by Bailey et al. (Bailey et al., 2018) and cancer-associated genes listed in 

Mertins et. al (Mertins et al., 2016) and adapted from Vogelstein et al.(Vogelstein et al., 

2013). The list of genes is provided in Table S4.

DNA methylation data preprocessing: Raw methylation image files were downloaded 

from the CPTAC DCC (See data availability). We calculated and analyzed methylated (M) 

and unmethylated (U) intensities for LUAD samples as described previously (Fortin et al., 

2014). We flagged locus as NA where probes did not meet a detection p-value of 0.01. 

Probes with MAF more than 0.1 were removed, and samples with more than 85% NA values 

were removed. Resulting beta values of methylation were utilized for subsequent analysis.

Gene-level methylation scores were generated by taking the mean beta values of probes in 

the CpG islands of promoters and 5’ UTR regions of the gene. Methylation profiles (i.e., 

density plots) of some samples had unexpectedly skewed distributions of methylation beta 

values, in addition to significantly more missing values. To systematically determine the 

subset of methylation samples with these evident data QC issues, we subjected all the 

samples to model-based clustering using the Mclust package (Scrucca et al., 2016) in R, 

using the median beta value over all the genes as the representative metric. The clustering 

automatically determined the optimal number of clusters, and identified 3 clusters. Two of 

these clusters (with centroids at 0.036 and 0.045) captured the bulk of the samples (187). 

The third cluster (centroid at 0.211, significantly higher than the other two clusters) 

consisted of 19 samples, each of which had a skewed distribution of beta values with a mean 

of 5,704 missing values per sample (in contrast to 2.7 missing values per sample for clusters 

1 and 2 combined). Based on this analysis, we concluded that the 19 samples in cluster 3 

represent samples with poor data quality. These have been excluded from all methylation 

analysis.

CpG Island Methylator Phenotype: To classify the 100 tumor samples with high-quality 

DNA methylation data into the CpG island methylator phenotypes (CIMP), we performed 

consensus clustering of the methylation data. Specifically, we first generated the gene-level 

methylation score, by taking the average beta values of all probes harboring in the CpG 

islands of promoter or 5’ UTR regions of the gene. Then, we considered all genes that were 

hypermethylated in tumor, i.e. had gene-level methylation scores >0.2, transformed the score 

into M-values (Du et al. 2010), normalized the transformed score, and then imputed the 

missing values as zero (mean of normalized data). We then performed consensus clustering 

1000 times, each time taking 80% of the samples and all genes, and calculated the consensus 

matrix (probabilities of two samples clustering together) for each predetermined number of 

clusters K. For each value of K, we visualized the consensus matrix using hierarchical 

clustering with Pearson correlation as the distance metric. Finally, we determined the 

optimal number of clusters by considering the relative change in area under the consensus 

cumulative density function (CDF) curve. In the end, three distinct clusters were identified: 

One was hypermethylated with mean M value 0.3, and two were hypomethylated with mean 
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M value −0.17 and −0.18, respectively. We labeled these three clusters as CIMP-high, 

CIMP-intermediate, and CIMP-low groups.

iProFun Based Cis Association Analysis: We used iProFun, an integrative analysis tool to 

identify multi-omic molecular quantitative traits (QT) perturbed by DNA-level variations 

(Song et al., 2019). In comparison with analyzing each molecular trait separately, the joint 

modeling of multi-omics data via iProFun provided enhanced power for detecting significant 

cis-associations shared across different omics data types, and achieved better accuracy in 

inferring cis-associations unique to certain type(s) of molecular trait(s). Specifically, we 

considered three functional molecular quantitative traits (mRNA expression levels, global 

protein abundances, and phosphopeptide abundances) for their associations with DNA 

methylation. We also adjusted for cis somatic mutations, cis CNAs measured by log ratio 

and b-allele frequency, age, gender, smoking status, country of origin and tumor purity when 

assessing the associations.

We analyzed the tumor sample data from 100 cases with high quality of methylation data in 

the current cohort collected by CPTAC. The mRNA expression levels measured with RNA-

seq were available for 19,267 genes, the global protein abundance measurements were 

available for 10,699 isoforms of 10,316 genes, and the phosphopeptide abundance was 

available for 41,188 peptides from 7650 genes. The log ratio and b-allele frequency of CNAs 

using a segmentation method combining whole genome sequencing and whole exome 

sequencing was obtained for 19,267 genes. The DNA methylation levels (beta values) 

averaging the CpG islands located in the promoter and 5’ UTR regions were available for 

16,479 genes. Somatic mutations were called using whole exome sequencing (See Somatic 

variant calling section above).

Proteomics and phosphoproteomics data were preprocessed with TMT outlier filtering and 

missing data imputation to increase number of features in the Cis Association Analysis. Due 

to the quantification of extremely small values on the spectrum level, some extreme values 

with either positive or negative sign were generated after log2 transform of the TMT ratios. 

We were concerned those extreme values would lead to instability in imputation of the data 

set since missing values are dependent on the observed values of the same samples or same 

protein/phosphosite. To identify TMT ratio outliers with extreme values, we performed an 

inter-TMT-plex t-test for each individual protein/phosphosite. For each protein/phosphosite, 

the TMT ratios of samples within a single TMT-plex were compared against the TMT ratios 

of samples in all the other 24 TMT-plexes using a Spearman two-sample t-test assuming 

equal variance. In the proteomics data, 344 TMT ratios were identified as outliers with inter-

TMT t-test p values lower than 10e-6; 3053 data points (0.122% of all observations) were 

removed from the data sets. And in phosphoproteomics 729 TMT ratios were identified as 

outliers with inter TMT t-test p value lower than 10e-7; 6458 data points (0.088% of all 

observations) were removed from the data sets. Imputation was performed after outlier 

filtering. We selected proteins/phosphosites with missing rates less than 50%, and imputed 

with an algorithm tailored for proteomics data using the DreamAI tool (https://github.com/

WangLab-MSSM/DreamAI).
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The mRNA expression levels, global protein and phosphoprotein abundances were also 

normalized on each gene/phosphosite, to align the mean to 0 and standard deviation to 1. 

Tumor purity was determined using ESTIMATE (Yoshihara et al., 2013) from RNA-seq 

data.

The iProFun procedure was applied to a total of 4992 genes, including 12 genes measured 

across all seven data types (mRNA, global protein, phosphoprotein, CNA – lr, CNA – baf, 

mutation, DNA methylation) and the rest 4980 genes measured across all six data types 

(without mutation data due to mutation rate <5%) for their cis regulatory patterns in tumors. 

Specifically, for each gene, we considered the following regressions:

mRNA ∼ CNA lr + CNA baf + (mutation) + methylation + covariates,
protein ∼ CNA lr + CNA baf + (mutation) + methylation + covariates, and
phosphoprotein ∼ CNA lr + CNA baf + (mutation) + methylation + covariates .

When multiple isoform data was available for a protein or multiple peptide level data was 

available for a phosphoprotein, we selected one with the most significant test statistics 

across all DNA-level alterations (mutation, CNA and methylation) to denote the gene. The 

association summary statistics of methylation was applied to iProFun to call posterior 

probabilities of belonging to each of the eight possible configurations (“None”, “mRNA 

only” “global only”, “phospho only” “mRNA & global”, “mRNA & phospho”, “global & 

phospho” and “all three”) and to determine the significance of associations (Table S4). The 

significant genes needed to pass three criteria: (1) the satisfaction of biological filtering 

procedures, (2) posterior probabilities > 75%, and (3) empirical false discovery rates 

(eFDR)<10%. Specifically, the biological filtering criterion for DNA methylations was that 

only DNA methylations with negative associations with all the types of molecular QTs were 

considered for a significance call. Secondly, significance was called only for posterior 

probabilities > 75% of a predictor being associated with a molecular QT, by summing over 

all configurations consistent with the association of interest. For example, the posterior 

probability of a DNA methylation being associated with mRNA expression levels was 

obtained by summing up the posterior probabilities in the following four association patterns 

– “mRNA only”, “mRNA & global”, “mRNA & phospho” and “all three”, all of which were 

consistent with DNA methylation being associated with mRNA expression. Lastly, we 

calculated eFDR by considering 100 permutations per molecular QT. In each permutation, 

we shuffled the label of the molecular QTs and re-calculated the posterior probabilities of 

associations via iProFun. For any pre-selected posterior probability cutoff alpha, eFDR 

could be calculated by: eFDR= (Averaged no. of genes with posterior probabilities > alpha 

in permuted data) / (Averaged no. of genes with posterior probabilities > alpha in original 

data). We considered a grid of potential alpha values in the range of 75%−100%, and 

selected the minimal alpha that satisfied eFDR<10%. Associations with posterior 

probabilities > alpha were thus significant at eFDR 10%.

Among all the genes whose methylation levels were significantly associated with all three 

molecular traits, Figure 3E annotated those whose protein abundances significantly differed 

between tumor and NAT, protein clusters, and immune clusters.
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Differential marker analysis: RNA, protein, and PTM abundance were compared between 

mutated and WT tumor samples using the Wilcoxon rank-sum test. P-values were adjusted 

within a data type using the Benjamini-Hochberg method. Signed −log10 (p-value) was used 

to indicate quantitative differences between mutated and WT tumors where signs “+” and 

“−” indicated upregulated and downregulated mRNA, proteins, phosphosites, and 

acetylsites, respectively.

We developed linear models to identify differential markers between several key variables, 

such as gender, tumor stage and histological subtype, accounting for major covariates such 

as smoking status, region of origin, and mutational status (EGFR, KRAS, STK11, TP53 and 

ALK fusions). The 22 differentially expressed gender-specific proteins (FDR <0.05, Table 

S3) showed no coherent functional annotations, while tumor stage, whether examined at the 

individual level or aggregated into stages 1, 2 and 3, revealed no significant markers (FDR 

<0.05). Most tumors had typical glandular/acinar morphology; of the remaining six 

dominant histologic subtypes, solid and true papillary had numbers permitting statistical 

comparison. Twelve RNA species, some with established relevance to cancer, were 

differential between these subtypes, including elevation of Krebs cycle enzyme IDH3A in 

the solid and tyrosine kinase PTK7 in the papillary subtype, but no proteins were differential 

after adjustment for confounding variables.

Deriving mutation based signatures: Non-negative matrix factorization (NMF) was used 

in deciphering mutation signatures in cancer somatic mutations stratified by 96 base 

substitutions in tri-nucleotide sequence contexts. To obtain a reliable signature profile, we 

used SomaticWrapper to call mutations from WGS data. SignatureAnalyzer exploited the 

Bayesian variant of the NMF algorithm and enabled an inference for the optimal number of 

signatures from the data itself at a balance between the data fidelity (likelihood) and the 

model complexity (regularization) (Kasar et al., 2015; Kim et al., 2016; Tan and Fevotte, 

2013). After decomposing into three signatures, signatures were compared against known 

signatures derived from COSMIC (Tate et al., 2019) and cosine similarity was calculated to 

identify the best match.

Continuous Smoking Score: We also sought to integrate count of total mutations, t, 
percentage that are signature mutations, c, and count of DNPs, n, into a continuous score, 0 

< S < 1, to quantify the degree of confidence that a sample was associated with smoking 

signature. We referred to these quantities as the data, namely D = C ∩ T ∩ N, and used A 
and A’ to indicate smoking signature or lack thereof, respectively. In a Bayesian framework, 

it is readily shown that a suitable form is S = 1 / (1 + R), where R is the ratio of the joint 

probability of A’ and D to the joint probability of A and D. For example, the latter can be 

written P(A) ・ P(C|A) ・ P(T|A) ・ P(N|A) and the former similarly, where each term of the 

former is the complement of its respective term in this expression. Common risk statistics 

are invoked as priors, i.e. P(A) = 0.9 (Walser et al., 2008).

We consider S to be a score because rigorous conditioned probabilities are difficult to 

establish. (For example, the data types themselves are not independent of one another and 

models using common distributions like the Poisson do not recapitulate realistic variances.) 

Instead, we adopted a data-driven approach of estimating contributions of each data type 

Gillette et al. Page 42

Cell. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based on 2-point fitting of the extremes using shape functions based on the Gaussian error 

function, erf. The general model for the data type G is P(G|A) = [x・erf (g/y) + 1] /(x + 2), 

with the resulting fitted values being the following: for total mutations G = T and (x,y) = 

(4028, 1000) when g = t; for percentage that are signature mutations G = C and (x,y) = (200, 

50) when g = c; and for number of DNPs G = N and (x,y) = (30, 4) when g = n. Each of 

these parametric combinations adds significant weight above a linear contribution as the 

count for its respective data type increases above the average. For example, for g/y ≈ 0.6, 

weights for each data type are around 50% higher than their corresponding linear values 

would be.

The shape function for T includes an expected-value correction for purity, u. (Correction for 

C is implicit, as it is a percentage of T.) Namely, assuming mutation-calling does not capture 

all mutations because of impurities, t is taken as the observed number of mutations divided 

by a purity shape function, f, where f ≤ 1. Although one might model f according to 

common characteristics of mutation callers, e.g. close to 100% sensitivity for pure samples 

and very low calling rate for low variant allele fractions (VAFs), the purity estimates for 

these data are based on RNA-seq and are not highly correlated with total mutation counts. 

Consequently, we use a weaker, linear shape function, f = 0.3 ・ u + 0.7, which does not 

strongly impact the adjustment of low-purity samples.

Determination of Sternness score: Stemness scores were calculated as previously 

described (Malta et al., 2018). To calculate the stemness scores based on mRNA expression, 

we built a predictive model using one-class logistic regression (OCLR) (Sokolov et al., 

2016) on the pluripotent stem cell samples (ESC and iPSC) from the Progenitor Cell 

Biology Consortium (PCBC) dataset (Daily et al., 2017; Salomonis et al., 2016). For mRNA 

expression-based signatures, to ensure compatibility with the CPTAC LUAD cohort, we first 

mapped the gene names from Ensembl IDs to Human Genome Organization (HUGO), 

dropping any genes that had no such mapping. The resulting training matrix contained 

12,945 mRNA expression values measured across all available PCBC samples. To calculate 

the mRNA-based stemness index (mRNASi) we used RPKM mRNA expression values for 

all CPTAC LUAD and NAT samples (uq-rpkm-log2-NArm-row-norm.gct). We used the 

function TCGAanalyze_Stemness from the package TCGAbiolinks (Colaprico et al., 2016) 

and followed our previously-described workflow (Ho et al., 1987), with “stemSig” argument 

set to PCBC_stemSig.

Immune Subtyping and downstream analysis: The abundances of 64 different cell types 

for lung tumors and NAT samples were computed via xCell (Aran et al., 2017; (http://

xCell.ucsf.edu/) using log2 (UQ) RPKM expression values. Table S5 contains the final score 

computed by xCell of different cell types for all tumor and NAT samples. Consensus 

clustering on xCell signatures performed in order to identify groups of samples with the 

same immune/stromal characteristics. Only cells that were detected in at least 5 patients 

(FDR < 1%) were utilized. Consensus clustering was performed using the R package 

ConsensusClusterPlus (Monti et al., 2003; Wilkerson and Hayes, 2010). Specifically, 80% of 

the original samples were randomly subsampled without replacement and partitioned into 3 

major clusters using the K-Means algorithm.
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For estimating Tumor Purity, Stromal and Immune Scores, in addition toXcell, we utilized 

ESTIMATE (Yoshihara et al., 2013) on RNA-seq to infer immune and stromal scores and 

TSNet for tumor purity (Petralia et al., 2018).

ssGSEA (Barbie et al., 2009) was utilized to obtain pathway scores based on RNA-seq and 

global proteomics data using the R package GSVA (Hänzelmann et al., 2013). A Wilcoxon 

test was performed subsequently to find pathways differentially expressed between cold-

tumor-enriched and hot-tumor-enriched subgroups. P-values were adjusted via the 

Benjamini-Hochberg procedure. Table S5 shows genes/proteins and pathways differentially 

expressed based on RNA-seq and global proteomics abundance.

To determine mutations that are associated with xCell signatures, raw xCells signatures were 

modeled as a linear function of mutation status. For this analysis, only mutations that occur 

in more than 15 samples across all tumor samples were considered (i.e., 66 genes). P-values 

were adjusted for multiple comparisons using Benjamini-Hochberg correction and the 

association test results are listed in Table S5.

In addition to exploring the effect of STK11 mutation itself, we assessed whether any other 

mutation was associated with immune infiltration given STK11 status. A linear model was 

developed in which the immune score from ESTIMATE was modeled as a function of 

STK11 mutation and the mutation status of the 66 genes carrying more than 15 mutations 

each. P-values were corrected using the Benjamini-Hochberg adjustment. The only mutation 

significantly associated (positively) with immune score given STK11 mutation status was 

KRAS mutation at FDR 10%.

Determining Immune evasive mechanisms: Immune evasion is a process wherein tumor 

cells employ multiple mechanisms to evade anti-tumor immune response, facilitating tumor 

cell survival and evolution. Immune checkpoint blockade therapy has emerged as a treatment 

strategy for cancer patients, based on harnessing the anti-tumor immune response genes 

(Abril-Rodriguez and Ribas, 2017). However, a significant number of patients have failed to 

respond to immunomodulation strategies such as checkpoint inhibitors, likely due to tumor-

specific immunosuppressive mechanisms and incomplete restoration of adaptive immunity 

(Achyut and Arbab, 2016; Allard et al., 2016b; Jerby-Arnon et al., 2018; Kozuma et al., 

2018b). We postulate that two main factors contribute to the failure of immune therapy: (i) 

the insufficient activation of the immune response, and (ii) the evolutionarily selected 

mechanisms of immune evasion. We also hypothesized that activation of the adaptive 

immune system and sensitivity to checkpoint therapy principally depends on upregulation or 

downregulation of IFNG axis – a pathways of 15 genes, which is composed of proteins 

expressed primarily in cancer cells: IFNG receptors (IFNGR1, IFNGR2); JAK/STAT-

signaling component (JAK1, JAK2, STAT1, STAT3, IRF1); antigen presenting (HLA-A, 

HLA-B, HLA-C, HLA-E, HLA-F, HLA-G); and checkpoint proteins (PD-L1/PD1). Thus, 

non-responder tumors are either those that are invisible to immune cells because of a 

suppressed IFNG axis, or those with the IFNG axis activated along with activated immune 

evasion that prevents leukocyte-driven cancer cell death. Following this idea, we arrived at a 

general protocol to reveal proteins involved in immune evasion and determine potential 

targets for combination therapy. First, we inferred relative activation of the IFNG axis 
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pathway across tumors. We ranked tumor proteins in descending order of abundance, then 

determined for each IFNG pathway protein the probability that it would by random chance 

occupy its observed or a higher position in that list. An individual protein would therefore 

have a smaller probability (be enriched towards the top of the list) the higher it was on the 

list. To assess whether the set of IFNG pathway proteins were significantly overrepresented 

in a sample, the enrichment probabilities for individual constituent proteins were 

geometrically averaged using Fisher’s exact test. The process was then repeated, this time 

combining individual probabilities that a protein was enriched towards the bottom of the 

abundance list to assess for significant underrepresentation of the IFNG pathway in a 

sample. The inferred pathway activation score was defined as the negative log of the ratio of 

these two probabilities. This score is positive when pathway proteins occur in the top half of 

the abundance list, and negative when confined to the bottom. Secondly, we determined 

proteins that are significantly upregulated with inferred activation of the IFNG axis and have 

known immune evasion role (markers of MDSC (Achyut and Arbab, 2016), adenosine 

signaling signature (Allard et al., 2016b), IDO1 pathway (Kozuma et al., 2018b; Liu et al., 

2018; Takada et al., 2019; Zhang et al., 2019b) or have potential therapeutic value as targets 

of drugs from Drug Bank (Frolkis et al., 2010; Jewison et al., 2014).

Identifying histological features: LUAD tissue histopathology slides were first downloaded 

from The Cancer Imaging Archive (TCIA) database. The slides and their corresponding per-

slide level labels were then separated into training (80%), validation (10%), and test sets 

(10%) at the per-patient level. Each slide was then tiled into 299-by-299-pixel pieces with 

overlapping areas of 49 pixels from each edge, omitting those with over 30% background. 

Tiles of each set were packaged into a TFrecord file. Then, the InceptionV3-architectured 

convolutional neural network (CNN) was trained from scratch and the best performing 

model was picked based on validation set performance. The performance of the model was 

evaluated by statistical metrics (area under ROC, area under PRC, and accuracy) on per-slide 

and per-tile levels. Lastly, the trained model was applied to the test set, and the per-tile 

prediction scores were aggregated by slides and shown as heatmaps. 10,000 tiles were 

randomly selected for visualization from the test set of 137,990 tiles cropped from 36 slides 

of 11 individual patients. The test data were propagated through the trained model to obtain 

positive prediction scores, the probability of being a STK11 mutation positive case estimated 

by the deep learning model. Additionally, for each test example, activation scores of the 

fully-connected layer immediately before the output layer, a vector of 2,048 elements, were 

extracted as representation of the input sample in perspective of the predictive model. The 

activation scores of 10,000 sample tiles were further reduced to two-dimensional 

representations by tSNE. Overlay of positive prediction scores on sample points showed 

distinct clusters for predicted positive (orange) and predictive negative (blue) cases. 

Examples of true positive (red outline) and true negative (black outline) tiles exhibited 

different histologic features (Figure 5E), such that the STK11 WT tiles correctly recognized 

by the model harbored abundant inflammatory cells, and STK11 mutant tiles showed typical 

adenocarcinoma characteristics.

Independent component analysis: As previously described (Liu et al., 2019), Independent 

component analysis (ICA) was run 100 times with random initial values on 110 tumor 
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samples. In each run, 110 independent components (equal to the number of samples) were 

extracted to obtain as much information as possible. All components were then pooled and 

grouped into 110 clusters using K-medoids method and Spearman correlation as 

dissimilarity measures. Each independent component (and a sample point submitted to the 

clustering algorithm) was a vector comprising weights of all genes in the original data. 

Genes that contributed heavily to a component were assigned large coefficients that could 

serve as a pathway-level molecular signature. Consistent clusters of independent 

components would exhibit large intra-group homogeneity (average silhouette width>0.8) 

and are composed of members generated in different runs (>90), indicating that similar 

signals were extracted recurrently when the algorithm was initiated from different values. 

The centroids of the clusters were considered as representative of a stable signature, and 

mean mixing scores (activity of each signature over all samples) of each cluster were used to 

represent the activity levels of the corresponding signature in each sample. To investigate the 

correlation between blindly extracted features and known clinical characteristics, the 

corresponding mixing scores for all members of a component cluster were regressed against 

46 clinical variables, and the count of significant correlations (P<10−5, linear regression, P 

value controlled for multiple testing at the 0.01 level) indicated association between the 

particular molecular signature and clinical variable pair. Signatures that showed a high 

percentage of significant correlations for all members and large average -log10(p-value) 

values within the cluster were considered to be associated with the clinical feature. Genes 

heavily weighted in the cluster centroid coefficients vector may thus shed light on molecular 

mechanisms underlying the clinical feature. One highly consistent signature (average cluster 

silhouette width 0.97, 100 members produced by 100 different runs) was found to be 

significantly associated with STK11 mutation status, with an average -logP value of 5.7.

Mutation-based cis- and trans-effects: We examined the cis- and trans-effects of 18 

mutations that were significant in a previous large-scale TCGA LUAD study (Cancer 

Genome Atlas Research Network, 2014) on the RNA, proteome, and phosphoproteome of 

cancer-related genes (Bailey et al., 2018). After excluding silent mutations, samples were 

separated into mutated and WT groups. We used the Wilcoxon rank-sum test to report 

differentially expressed features (RNA, proteins, phosphosites and acetylsites) between the 

two groups. Differentially enriched features passing an FDR <0.05 cut-off were separated 

into two categories based on cis- and trans-effects.

Multi-omic Outlier Analysis: We calculated the median and interquartile range (IQR) 

values for phosphopeptide, protein, gene expression and copy number alterations of known 

kinases (N=701), phosphatases (N=135), E3 ubiquitin ligases (N=377) and de-ubiquitin 

ligases (N=87) using TMT-based global phosphoproteomic and proteomic data, RNA-Seq 

expression data or CNA data. Outliers were defined as any value higher than the median plus 

1.5x IQR. Phosphopeptide data was aggregated into genes by summing outlier and non-

outlier values per sample. Outlier counts were used to determine enriched genes in a group 

of samples at each data level. First, genes without an outlier value in at least 10% of samples 

in the group of interest were filtered out. Additionally, only genes where the frequency of 

outliers in the group of interest was higher than the frequency in the outgroup were 

considered in the analysis. The group of interest was compared to the rest of the samples 

Gillette et al. Page 46

Cell. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using Fisher’s exact test on the count of outlier and non-outlier values per group. Resulting 

p-values were corrected for multiple comparisons using the Benjamini-Hochberg correction. 

Druggability was determined for each gene using the drug-gene interaction database 

(DGIdb)(Cotto et al., 2018).The mean impact of shRNA- or CRISPR-mediated depletion of 

each gene on survival and proliferation in lung cancer cell lines was also visualized based on 

previous studies (Barretina et al., 2012; Tsherniak et al., 2017).

Pathway analysis reported in Figure 6: In the set of tumor samples, the high smoking 

score (HSS) subset consists of 58 samples, while the low smoking score (LSS) subset 

contains 49 samples. There are 52 NAT samples with paired HSS tumor samples, and 46 

NAT samples with paired LSS tumor samples.

We used gene sets of molecular pathways from KEGG (Kanehisa and Goto, 2000), 

Hallmark (Liberzon et al., 2015) and Reactome (Croft et al., 2014) databases to compute 

single sample gene set enrichment scores (Barbie et al., 2009) for each sample. To compute 

pathway HSS vs LSS differential scores for both tumor and NAT, we ran two one-sided 

Wilcoxon rank-sum tests (greater than, and lesser than) on HSS vs LSS sets of samples and 

performed Benjamini-Hochberg correction on computed p-values (FDR). The differential 

score (Q) is obtained as signed -log10(FDR) from the lower of the two p-values derived 

from two one-sided Wilcoxon rank-sum tests. The signs “+” and “−” indicated upregulated 

and downregulated pathways respectively, in HSS. Differential scores were computed for 

both proteome (for the set of 7,136 proteins with no missing values) and transcriptome 

(18,099 genes).

To select the six groups of pathways with characteristic HSS vs LSS proteome behavior in 

tumor and NAT, we used the FDR < 0.05 for differential behavior and FDR > 0.3 for the 

absence of differential behavior. For specific pathway groups, this amounted to the following 

conditions: group 1: Q(Tumor) > 1.301 & Q(NAT) < −1.301; group 2: Q(Tumor) < −1.301 

& Q(NAT) > 1.301; group 3: Q(Tumor) > 1.301 & Q(NAT) > 1.301; group 4: Q(Tumor) < 

−1.301 & Q(NAT) < −1.301; group 5: Q(Tumor) > 1.301 & |Q(NAT)| < 0.523; group 6: 

Q(Tumor) < −1.301 & |Q(NAT)| < 0.523.

Tumor-NAT related analysis: PCA was performed on RNA (18,099), protein (10,165), 

phosphosites (40,845), and acetylsites (6,984) datasets using the factoextra (Bioconductor, 

version 1.0.5) package in R (3.1.2). Features with no variance were removed.

To identify Tumor vs NAT differential markers, a Wilcoxon rank sum test was applied to 

TMT-based global proteomic data to determine differential abundance of proteins between 

tumor and NAT samples. Proteins with log2-fold-change (FC)> 1 in tumors and Benjamini-

Hochberg FDR < 0.01 were considered to be tumor-associated proteins. Biomarker 

candidate selection was more stringent, requiring both protein log2 FC > 2 and 

overexpression at the RNA level (log2FC > 1, FDR < 0.05). Immunohistochemistry-based 

antibody-specific staining scores in lung tumors were obtained from the Human Protein 

Atlas (HPA, https://www.proteinatlas.org), in which tumor-specific staining is reported in 

four levels, i.e. high, medium, low, and not detected. The protein-specific annotations such 

as protein class, found in plasma, or ontology were obtained from HPA, Uniprot and GO. 
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Proteins of specific type or function such as transcription factors, enzymes, transporters, and 

transmembranes were identified. “Plasma proteins” represent proteins found in plasma, 

whereas “secreted” have been annotated as secreted/exported outside the cell. FDA-

approved drugs targeting the protein or drugs under clinical trial were so designated. Given 

the role of epithelial-to-mesenchymal transition (EMT) in metastasis, proteins overlapping 

with hallmarks of EMT gene sets were shown separately. Proteins differentially expressed 

between tumors and NATs (Benjamini-Hochberg FDR < 0.01, Wilcoxon signed rank test) 

and having <50% missing values were used for pathway enrichment analysis with GSEA 

(Subramanian et al., 2005) as implemented in WebGestalt (Wang et al., 2017). Similar 

analyses were performed on the phosphoproteome and acetylproteome to detect tumor-

specific phosphosites and acetylsites, respectively.

To identify, mutant phenotype-specific protein biomarkers, four driver mutant phenotypes 

were considered; TP53 (n=52), EGFR (n=36), KRAS (n=29), and STK11 (n=17). A 

Wilcoxon rank sum test was performed between tumor and paired NAT samples using only 

samples with mutations. Similar analyses were performed on samples with wild type (WT) 

phenotype only (TP53WT=49, EGFRWT=65, KRASWT=72, STK11WT=84). Differentially 

expressed proteins in a given mutant phenotype were selected based on >4-fold difference 

and Benjamini-Hochberg adjusted p-value (FDR) < 0.01. Further, mutant-specific proteins 

were filtered using log2 (median difference between mutant and WT) >1.5 to remove noise 

from corresponding WT samples. The filtered proteins were nominated as mutant-specific 

biomarkers if their expression was upregulated in 80% of tumor samples compared to 

matched normal samples. The fold changes between tumor and matched normal are shown 

in heatmaps for identified protein biomarkers in each mutant phenotype.

Phosphorylation-driven signature analysis: Based on the results of the Tumor-NAT 
related analysis described above, we performed phosphosite-specific signature enrichment 

analysis (PTM-SEA) (Krug et al., 2018) to identify dysregulated phosphorylation-driven 

pathways in tumors compared to paired normal adjacent tissues (NATs). To adequately 

account for both magnitude and variance of measured phosphosite abundance, we used p-

values derived from application of the Wilcoxon rank-sum test to phosphorylation data as 

ranking for PTM-SEA. To that end, p-values were log-transformed and signed according to 

the fold change (signed -log10 (p-value)) such that large positive values indicated tumor-

specific phosphosite abundance and large negative values NAT-specific phosphosite 

abundance.

logPsite = − log10 p−valuesite * sign log2 fold changesite

PTM-SEA relies on site-specific annotation provided by PTMsigDB and thus a single site-

centric data matrix data is required such that each row corresponds to a single phosphosite. 

We note that in this analysis the data matrix comprised a single data column (log 

transformed and signed p-values of the tumor vs. NAT comparison) and each row 

represented a confidently localized phosphosite assigned by Spectrum Mill software.
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We employed the heuristic method introduced by Krug et al. (Krug et al., 2018) to 

deconvolute multiple phosphorylated peptides to separate data points (log-transformed and 

signed p-values). Briefly, phosphosites measured on different phospho-proteoform peptides 

were resolved by using the p-value derived from the least modified version of the peptide. 

For instance, if a site T4 measured on a doubly phosphorylated (T4, S8) peptide 

(PEPtIDEsR) was also measured on a mono-phosphorylated version (PEPtIDESR), we 

assigned the p-value derived from the mono-phosphorylated peptide proteoform to T4, and 

the p-value derived from PEPtIDEsR to S8. If only the doubly phosphorylated proteoform 

was present in the dataset, we assigned the same p-value to both sites T4 and S8.

We queried the PTM signatures database (PTMsigDB) v1.9.0 downloaded from http://prot-

shiny-vm.broadinstitute.org:3838/ptmsigdb-app/ using the flanking amino acid sequence (+/

− 7 aa) as primary identifier. We used the implementation of PTM-SEA available on GitHub 

(https://github.com/broadinstitute/ssGSEA2.0) using the command interface R-script 

(ssgsea-cli.R). The following parameters were used to run PTM-SEA:

weight: 1

statistic: “area.under.RES”

output.score.type: “NES”

nperm:1000

min.overlap: 5

correl.type: “rank”

The sign of the normalized enrichment score (NES) calculated for each signature 

corresponds to the sign of the tumor-NAT log fold change. P-values for each signature were 

derived from 1,000 random permutations and further adjusted for multiple hypothesis testing 

using the method proposed by Benjamini & and Hochberg (Benjamini and Hochberg, 1995). 

Signatures with FDR-corrected p-values < 0.05 were considered to be differential between 

tumor and NAT.

For mutational subtype analysis (EGFR, KRAS, TP53, STK11) we derived a residual 

enrichment score between mutated and WT samples by separately applying PTM-SEA to 

mutated and WT samples to derive signature enrichment scores from which we calculated 

the residuals via linear regression (mut ~ non-mut). From the resulting distribution of 

residual enrichment scores we identified outliers using the +/− 1.5*IQR definition used in 

box and whisker plots.

Variant Peptide Identification: We used NeoFlow (https://github.com/bzhanglab/neoflow) 

for neoantigen prediction (Wen et al., 2020). Specifically, Optitype (Szolek et al., 2014) was 

used to find human leukocyte antigens (HLA) in the WES data. Then we used netMHCpan 

(Jurtz et al., 2017) to predict HLA peptide binding affinity for somatic mutation-derived 

variant peptides with a length between 8–11 amino acids. The cutoff of IC50 binding affinity 

was set to 150 nM. HLA peptides with binding affinity higher than 150 nM were removed. 

Variant identification was also performed at both mRNA and protein levels using RNA-Seq 

data and MS/MS data, respectively. To identify variant peptides, we used a customized 
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protein sequence database approach (Wang et al., 2012). We derived customized protein 

sequence databases from matched WES data and then performed database searching using 

the customized databases for individual TMT experiments. We built a customized database 

for each TMT experiment based on somatic variants from WES data. We used 

Customprodbj (Wen et al., 2020) (https://github.com/bzhanglab/customprodbj) for 

customized database construction. MS-GF+ was used for variant peptide identification for 

all global proteome and phosphorylation data. Results from MS-GF+ were filtered with 1% 

FDR at PSM level. Remaining variant peptides were further filtered using PepQuery (http://

www.pepquery.org) (Wen et al., 2019) with the p-value cutoff <= 0.01. The spectra of 

variant peptides were annotated using PDV (http://www.zhang-lab.org/) (Li et al., 2019).

Cancer/testis Antigen Prediction: Cancer/testis (CT) antigens were downloaded from the 

CTdatabase (Almeida et al., 2009). CT antigens with a 2-fold increase in tumor from NAT in 

at least 10% of the samples were highlighted.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA and Protein quantification—Transciptome and proteome quantification has been 

described under “RNAseq Gene Expression and miRNAseq Quantification and Analysis” 

and “Proteomics Data Analysis: Protein-peptide identification, phosphosite / acetylsite 

localization, and quantification”. The details of statistical analysis are presented within the 

text and the corresponding STAR Method sections.

ADDITIONAL RESOURCES

The CPTAC program website, detailing program initiatives, investigators, and datasets, is 

found at https://proteomics.cancer.gov/programs/cptac.

A website for interactive visualization of the multi-omics dataset is available at: http://prot-

shiny-vm.broadinstitute.org:3838/CPTAC-LUAD2020/. The heatmap depicts somatic copy 

number aberrations, mRNA, protein, phosphosite and acetylsite abundances across 100 

tumor-NAT pairs for which all data types were available. Copy number alterations are 

relative to matched normal blood samples and are on log2(CNA)-1 scale. For other data 

types the heatmap depicts abundances relative to paired normal adjacent tissue (NAT).

All processed data matrices will also be available at LinkedOmics (Vasaikar et al., 2018) 

(http://www.linkedomics.org), where computational tools are available for further 

exploration of this dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Comprehensive LUAD proteogenomics exposes multi-omic clusters and 

immune subtypes

• Phosphoproteomics identifies candidate ALK-fusion diagnostic markers and 

targets

• Candidate drug targets: PTPN11 (EGFR), SOS1 (KRAS), neutrophil 

degranulation (STK11)

• Phospho and acetyl modifications denote tumor-specific markers and 

druggable proteins

Integrated proteomics and genomics analysis of lung adenocarcinoma reveals multi-

layered insights into potential drug targets and tumor markers

Gillette et al. Page 66

Cell. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Genomic and proteomic landscape of lung adenocarcinoma (LUAD).
(A) Pie charts of key demographic and histologic features, along with self-reported smoking 

status of LUAD patient samples characterized in this study.

(B) Patient-centric circos plot representing the multi-platform data generated in this study. 

White gaps in the schematic represent missing data. Numbers to the right indicate samples in 

each of the categories.

(C) Summary of data and metadata generated in this study.
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(D) Oncoplot generated with maftools depicting mutually exclusive driver oncogene somatic 

mutations in KRAS, EGFR, other RAS/RAF pathway genes and receptor tyrosine kinase 

gene fusions in the CPTAC LUAD cohort along with their frequencies. Rows represent 

genes and columns represent samples. Somatic mutations in tumor suppressor genes (NF1, 
KEAP1, STK11 and TP53) are also depicted. The significantly mutated genes with 

Benjamini Hochberg (BH) FDR <0.01 are indicated in red. Percentages of transitions/

transversions noted in each sample are depicted in the bar plots.

(E) Integrative classification of tumor samples into four NMF-derived clusters (multi-omics 

cluster-1 (C1) to cluster-4 (C4)). Within each cluster, tumors are sorted by cluster 

membership scores, decreasing from left to right. “RNA expression subtype” shows 

classification by previously published RNA-seq-based expression subtypes (TCGA LUAD 

analysis). The heatmap shows the top 50 differential mRNA transcripts, proteins, 

phosphoproteins, and acetylated proteins for each multi-omics cluster, annotated for 

representative pathways.

(F) Pie charts show sample distribution of metadata terms that are significantly 

overrepresented (Fisher’s exact test) within the most representative “core” cluster members 

(membership score > 0.5) that define each cluster.

See also Figure S1 and Table S1–3
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Figure 2: Novel phosphoproteomic aberrations associated with ALK gene fusions.
(A) Summary of all kinase gene fusions identified from RNA-seq analysis.

(B) RNA expression, protein abundance and specific phosphosite modifications noted to be 

outliers in the index fusion event sample relative to all other samples.

(C) Boxplot showing outlier expression of ALK RNA, protein and the ALK Y1507 

phosphosite in tumors with ALK fusion. Blue: Normal adjacent tissues (NAT); Pink: Tumor 

samples. Sample IDs of outlier cases are indicated.
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(D) Boxplot showing overexpression of ALK mRNA observed in fusion-positive (Red) 

versus - negative (Blue) tumors. The three 5’ partners show comparably high expression in 

both fusion-positive and -negative tumors, as expected.

(E) Boxplot showing the phosphorylation of two ALK fusion partners, HMBOX1 and 

EML4, in the indicated index cases.

(F) Immunohistochemistry reveals upregulation of both total ALK and the ALK Y1507 

phosphosite specifically in the tumor epithelia of ALK fusion-positive samples. No staining 

was seen in RET or ROS1 fusion samples or in matched NATs (Figure S2C).

(G) Scatterplot of significantly regulated phosphosites and their corresponding protein 

expression in tumors with and without ALK fusion. Phosphosites showing distinct 

upregulation in ALK fusion samples are highlighted in red.

See also Figure S2

Gillette et al. Page 70

Cell. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Impact of copy number alteration (CNA) and DNA methylation on protein and 
phosphoprotein expression.
(A) Correlation between steady-state mRNA and protein abundances in tumors and NATs 

(n=101 pairs) for genes with discrepant tumor/normal mRNA-protein correlations. Bottom 

panel represents enriched biological terms, with -Log10 (p-value) in brackets.

(B) Correlation plots between CNA and RNA expression and between CNA and protein 

abundance. Significant (FDR <0.05) positive and negative correlations are indicated in red 

and green, respectively. CNA-driven cis-effects appear as the red diagonal line; trans-effects 

appear as vertical red and green lines. The accompanying histograms show the number of 
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significant (FDR <0.05) cis- and trans-events corresponding to the indicated genomic loci 

(upward plot) as well as the overlap between CNA-RNA and CNA-protein events 

(downward plot).

(C) Venn diagrams depicting the cascading effects of CNAs. The Venn diagram on the left 

shows the overlap between significant cis-events across the transcriptome, proteome and 

phosphoproteome. The Venn diagram on the right shows the same analysis restricted to 

cancer-associated genes (CAG) with significant cis-effects across multiple data types.

(D) Genes with CNA events that show significant similarity (BH FDR <0.1) between their 

significant trans-effects (FDR <0.05) and the Connectivity Map (CMAP) genomic 

perturbation profiles. Inset shows significant enrichment (Fisher’s exact test, FDR <0.1) for 

specific mutational or demographic features for 4 genes.

(E) Genes whose DNA methylation was associated with cascading cis-regulation of their 

cognate mRNA expression, global protein level and phosphopeptide abundance. Bold type 

highlights a few known cancer genes.

(F) Methylation-driven cis-regulation of selected genes (n = 109 samples). Gene-level 

methylation scores, RNA expression levels and protein/phosphopeptide abundances were 

converted into Z-scores and the tumor samples were ordered by methylation levels.

(G) Coordinated expression of proteins associated with PTPRC (CD45) complex in tumors.

See also Figure S3 and Table S4
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Figure 4: Impact of somatic mutation on the proteogenomic landscape.
(A) Significant (Wilcoxon rank-sum test) cis- and trans-effects of selected mutations (x-axis) 

on the expression of cancer-associated proteins (left) and PTMs (right).

(B) Scatterplots showing the relationship between log2 KEAP1 protein and log2 NFE2L2 

phosphosite (S215 and S433) expression in KEAP1 mutant samples. Only significant sites 

(Wilcoxon rank-sum test) are shown.

(C) Ribbon/Richardson diagram (Protein Data Bank crystal structure 3WN7) representing 

3D protein structure of KEAP1 (Pink) and NFE2L2 DLG motif (green) interaction. 
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Positions of various KEAP1 amino acid residues affected by somatic mutations observed in 

this cohort are indicated.

(D, E) Scatterplots showing significance of RNA, protein (green), phosphorylation site 

(purple), and acetylation site (yellow) abundance changes between KRAS mutant (D) or 

EGFR mutant(E) and WT tumors as determined using the Wilcoxon rank sum test. All 

identified sites are represented, with significant PTMs (FDR < 0.05) specified by triangles. 

Identities of the most extreme outliers are designated.

(F) Heatmap showing phosphorylation of PTPN11 Y62 in EGFR mutant and WT samples.

(G) Heatmap showing the outlier kinases enriched (FDR < 0.2) at the phosphoprotein, 

protein, RNA and CNA levels and their association with mutations in select genes. Cancer 

Dependency Map-supported (https://depmap.org) panels on the left show log2-transformed 

relative survival averaged across all available lung cell lines after depletion of the indicated 

gene (rows) by RNAi or CRISPR. Druggability based on the Drug Gene Interaction 

Database (http://www.dgidb.org/) is indicated alongside the availability of FDA-approved 

drugs. The log-transformed druggability score indicates the sum of PubMed journal articles 

that support the drug-gene relationship.

See also Figure S4 and Table S4
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Figure 5: Immune landscape in LUAD
(A) Heatmaps show three consensus clusters based on immune/stromal signatures identified 

from xCell, together with derived relative abundance of immune and stromal cell types. The 

pathway heatmap panels show some key upregulated pathways in HTE and CTE clusters 

based on multi-omics (“Common”) or global protein abundance only (FDR <0.01, Fisher’s 

exact test). The expression heatmap panel depicts the RNA and protein levels of various 

markers involved in immune evasion mechanisms.

(B) Association between mutation profiles and immune/stromal signatures from xCell. Only 

associations significant at FDR < 0.05 are shown.

(C) xCell scores for conventional dendritic cells (cDC) and macrophages for NAT samples 

(x-axis) and tumor samples (y-axis). Scatterplots indicate if a given sample shows significant 

infiltration by either dendritic cells (left) or macrophages (right) (xCell p-value < 0.05) in 
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both NAT and tumor (black), only in NAT (blue), only in tumor (red), or in neither NAT nor 

tumor (light-gray). Samples with STK11 mutations are displayed with a triangle. STK11 
mutation was found enriched in the subset of samples with infiltration of macrophages and 

dendritic cells only in NATs (Fisher’s exact test, FDR <0.1).

(D) Boxplots show association between STK11 mutation and immune score (ESTIMATE).

(E) t-SNE (t-Distributed Stochastic Neighbor Embedding) plot provides a two-dimensional 

representation of the activation scores of individual STK11 mutated (orange) and WT (blue) 

tumor histopathology tiles submitted to a deep learning algorithm. Examples of true positive 

(red outline) and negative (black outline) tiles exhibit different histologic features. STK11 
WT tiles correctly recognized by the model harbor abundant inflammatory cells, whereas 

STK11 mutant tiles showed typical adenocarcinoma characteristics without inflammation.

(F) Cluster diagram representing pathways significantly associated with STK11 mutation-

enriched cluster IC-068 (Figure S5F) in protein-based unsupervised ICA clustering. The 

Metascape output represents enriched biological concepts as nodes, aggregates those nodes 

into clusters based on the similarity of their protein membership, and names the clusters 

based on their most significant node. Node size represents the number of differentially 

expressed gene products. Amongst the top 20 clusters, the one representing neutrophil 

degranulation showed highest significance (Q value < 10−14). The top 5 clusters by p-value 

are highlighted.

G) Scatterplot shows differentially regulated protein and RNA expression (signed -log 10 p-

value) in tumors with and without STK11 mutation. Proteins associated with neutrophil 

degranulation are highlighted in red.

See also Figure S5 and Table S5
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Figure 6: Environmental and smoking-related molecular signatures
(A) Heatmap showing correlation coefficients between the mutational signatures of LUAD 

tumor samples and 53 signatures of environmental exposure (Kucab et al., 2019). Self-

reported smoking status, derived smoking score, di-nucleotide polymorphism (DNP) status, 

and the fraction of Cosmic signature 4 are shown.

(B) Impact of tumor-derived high or low smoking score (HSS; >0.1; LSS; <0.1) on pathways 

associated with protein expression in tumors and paired NATs. The heatmaps show protein 

expression-derived, differentially regulated (FDR <0.05) pathways associated with LSS and 
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HSS, separately in tumors (left) and NATs (right). Pathway Groups (PG1–6) are defined 

according to the patterns of differential HSS/LSS expression in tumors and NATs. A 

complete list of differentially activated pathways is provided in Table S6.

C. Boxplots showing log2 relative abundance of ARHGEF5 phosphosite Y1370, ARHGEF5 

and SRGAP1 protein expression in tumors and NATs from strict never-smokers (SNS) with 

and without ALK fusion and from strict smokers (SS). None of the SS tumors had ALK 
fusion. ANOVA test was performed on tumor samples only.

See also Figure S6 and Table S6
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Figure 7: Summary of global proteogenomic alterations in tumors and paired NATs
(A) Principal component analysis of protein expression shows distinct separation of tumor 

samples (n=110) and NATs (n=101). The larger rectangle and triangle represent the 

centroids of the distributions.

(B) Scatterplots show the median log2 fold-change between tumors and paired NATs in the 

proteome vs phosphosites (left) and acetylsites (right). The dashed line shows equivalence 

with intercept 0. Red triangles indicate sites with at least log2 4-fold site-level increased 
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abundance compared to associated protein changes between log2, +2 and −2-fold. Blue 

triangles represent downregulated sites using symmetric parameters (Full list in Table S7).

(C) Proteomics-based biomarker candidates (log2 fold change (log2FC) > 2 and FDR <0.01 

in ≥ 80% of tumor-NAT pairs) for tumors with any of 4 frequently mutated genes. Numbers 

in parentheses show candidates displayed / identified. Each dot represents a tumor sample. 

Blue-colored boxplots highlight proteins with overexpression in more than 99% of tumor 

samples with the associated mutation. Protein functional groups and relevant clinical trial 

drug targets of the biomarker candidates are shown in the accompanying schematic.

(D) Volcano plot showing the enrichment score (x-axis) and associated log p-value (y-axis) 

of differentially regulated phosphosite-driven signatures between tumors and matched NATs 

as assessed by PTM Signature Enrichment Analysis (Krug et al., 2018). Significant (FDR 

<0.05) signatures are highlighted in shades of brown. The size of the circles shows the 

overlap between phosphosites detected in our dataset and the phosphosite-specific signatures 

in PTMsigDB (Krug et al., 2018).

(E) Rank plots depicting differential phosphosite-driven signatures (1.5 x interquartile range, 

IQR) between tumor and paired NATs in tumors with mutations in EGFR (N=38) or KRAS 
(N=33). Residual enrichment scores (y-axis) were calculated between mutated tumors 

(EGFR or KRAS) and all other tumors in order to highlight tumor / NAT differences in 

tumors harboring each specific mutation.

(F) Heatmap representing tumor antigens including neoantigens (top panel) and cancer testes 

(CT) antigens (downloaded from CT database (Almeida et al., 2009)). “DNA repair” 

indicates mutation in DNA repair genes (POLE, MLH1, MLH3, MSH3, MSH4, MSH6, 
BRCA1, BRCA2). Displayed CT antigen proteins were overexpressed at least 2-fold in 

tumors compared to paired NATs in more than 10% of samples.

See also Figure S7 and Table S7
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-CD8 (C8/144B) Cellmarque Catalog #108M

Rabbit monoclonal anti-CD4 (SP35) Roche Catalog #790-4423

Liquid Concentrated Monoclonal Antibody 
anti-CD163

Leica Biosystems Catalog #NCL-L-163

PTMScan Acetyl-lysine Kit Cell Signaling 
Technology

Catalog: 13416

Biological Samples

Primary tumor samples See Experimental 
Model and Subject 
Details

N/A

Chemicals and Reagents

HPLC-grade water J.T. Baker Catalog: 4218-03

Urea Sigma Catalog: U0631

Sodium chloride Sigma Catalog: 71376

1M Tris, pH 8.0 Invitrogen Catalog: AM9855G

Ethylenediaminetetraacetic acid Sigma Catalog: E7889

Aprotinin Sigma Catalog: A6103

Leupeptin Roche Catalog: 11017101001

Phenylmethylsulfonyl fluoride Sigma Catalog: 78830

Sodium fluoride Sigma Catalog: S7920

Phosphatase inhibitor cocktail 2 Sigma Catalog: P5726

Phosphatase inhibitor cocktail 3 Sigma Catalog: P0044

Dithiothretiol, No-Weigh Format Fisher Scientific Catalog: 20291

Iodoacetamide Sigma Catalog: A3221

Lysyl endopeptidase Wako Chemicals Catalog: 129-02541

Sequencing-grade modified trypsin Promega Catalog: V511X

Formic acid Sigma Catalog: F0507

Acetonitrile Honeywell Catalog: 34967

Trifluoroacetic acid Sigma Catalog: 302031

Tandem Mass Tag reagent kit – 11plex ThermoFisher Catalog: A34808

0.5M HEPES, pH 8.5 Alfa Aesar Catalog: J63218

Hydroxylamine solution, 50% (vol/vol) in 
H2O

Aldrich Catalog: 467804

Methanol Honeywell Catalog: 34966

Ammonium hydroxide solution, 28% (wt/
vol) in H2O

Sigma Catalog: 338818

Ni-NTA agarose beads Qiagen Catalog: 30410

Iron (III) chloride Sigma Catalog: 451649

Acetic acid, glacial Sigma Catalog: AX0073
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REAGENT or RESOURCE SOURCE IDENTIFIER

Potassium phosphate, monobasic Sigma Catalog: P0662

Potassium phosphate, dibasic Sigma Catalog: P3786

MOPS Sigma Catalog: M5162

Sodium hydroxide VWR Catalog: BDH7225

Sodium phosphate, dibasic Sigma Catalog: S9763

Phosphate-buffered saline Fisher Scientific Catalog: 10010023

iVIEW DAB Detection Kit Roche Catalog: 760-091

Equipment

Reversed-phase tC18 SepPak, 3cc 200mg Waters Catalog: WAT054925

Solid-phase C18 disk, for Stage-tips Empore Catalog: 66883-U

Stage-tip needle Cadence Catalog: 7928

Stage-tip puncher, PEEK tubing Idex Health & 
Science

Catalog: 1581

PicoFrit LC-MS column New Objective Catalog: PF360-75-10-N-5

ReproSil-Pur, 120 Å, C18-AQ, 1.9-μm resin Dr. Maisch Catalog: r119.aq

Nanospray column heater Phoenix S&T Catalog: PST-CH-20U

Column heater controller Phoenix S&T Catalog: PST-CHC

300 μL LC-MS autosampler vial and cap Waters Catalog: 186002639

Offline HPLC column, 3.5-μm particle size, 
4.6 um × 250 mm

Agilent Catalog: Custom order

Offline 96-well fractionation plate Whatman Catalog: 77015200

700 μL bRP fractionation autosampler vial ThermoFisher Catalog: C4010-14

700 μL bRP fractionation autosampler cap ThermoFisher Catalog: C4010-55A

96-well microplate for BCA Greiner Catalog: 655101

Microplate foil cover Corning Catalog: PCR-AS-200

Vacuum centrifuge ThermoFisher Catalog: SPD121P-115

Centrifuge Eppendorf Catalog: 5427 R

Benchtop mini centrifuge Corning Catalog: 6765

Benchtop vortex Scientific Industries Catalog: SI-0236

Incubating shaker VWR Catalog: 12620-942

15 mL centrifuge tube Corning Catalog: 352097

50 mL centrifuge tube Corning Catalog: 352070

1.5 mL microtube w/o cap Sarstedt Catalog: 72.607

2.0 mL microtube w/o cap Sarstedt Catalog: 72.608

Microtube caps Sarstedt Catalog: 72.692

1.5 mL snapcap tube ThermoFisher Catalog: AM12450

2.0 mL snapcap tube ThermoFisher Catalog: AM12475

Instrumentation

Microplate Reader Molecular Devices Catalog: M2

Offline HPLC System for bRP fractionation Agilent 1260 Catalog: G1380-90000
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REAGENT or RESOURCE SOURCE IDENTIFIER

Online LC for LC-MS ThermoFisher Catalog: LC140

Q Exactive Plus Mass Spectrometer ThermoFisher Catalog: IQLAAEGA
APFALGMBDK

Q Exactive HF-X Mass Spectrometer ThermoFisher Catalog: 0726042

Orbitrap Fusion Lumos Tribrid Mass 
Spectrometer

ThermoFisher Catalog: IQLAAEGA
APFADBMBHQ

Critical Commercial Assays

TruSeq Stranded Total RNA Library Prep 
Kit with Ribo-Zero Gold

Illumina Catalog: RS-122-2301

Infinium MethylationEPIC Kit Illumina Catalog: WG-317-1003

Nextera DNA Exosome Kit Illumina Catalog: 20020617

KAPA Hyper Prep Kit, PCR-free Roche Catalog: 07962371001

BCA Protein Assay Kit ThermoFisher Catalog: 23225

Deposited Data

PhosphoSitePlus (Hornbeck et al., 
2012)

https://www.phosphosite.org

Connectivity Map (CMAP) (Lamb et al., 2006; 
Subramanian et al., 
2017)

https://www.broadinstitute.org/connectivity-map-cmap

Human Protein Atlas (HPA) (Uhlén et al., 2005) https://www.proteinatlas.org

CT Antigen database (Almeida et al., 2009) http://www.cta.lncc.br

Software and Algorithms

methylationArrayAnalysis (version 3.9) (Maksimovic et al., 
2016)

https://master.bioconductor.org/packages/release/workflows/html/
methylationArrayAnalysis.html

Illumina EPIC methylation array (3.9) Hansen KD, 2019 https://bioconductor.org/packages/release/data/annotation/html/
IlluminaHumanMethylationEPICanno.ilm10b2.hg19.html

Methylation array analysis pipeline for 
CPTAC

Li Ding Lab https://github.com/ding-lab/cptac_methylation

miRNA-Seq analysis pipeline for CPTAC Li Ding Lab https://github.com/ding-lab/CPTAC_miRNA

Somatic variant calling pipeline for CPTAC Li Ding Lab https://github.com/ding-lab/somaticwrapper

VarDict (Lai et al., 2016) https://github.com/AstraZeneca-NGS/VarDict

Strelka2 (Kim et al., 2018b) https://github.com/Illumina/strelka

MUTECT1.1.7 (Cibulskis et al., 
2013)

https://software.broadinstitute.org/gatk/download/archive

VarScan2.3.8 (Koboldt et al., 2012) http://varscan.sourceforge.net

Pindel0.2.5 (Ye et al., 2009) http://gmt.genome.wustl.edu/packages/pindel/

SignatureAnalyzer (Kim et al., 2016) https://software.broadinstitute.org/cancer/cga/msp

Fusion calling pipeline for CPTAC Li Ding Lab https://github.com/cuidaniel/Fusion_hg38

CNVEX Marcin Cieslik Lab https://github.com/mctp/cnvex

CRISP Marcin Cieslik Lab https://github.com/mcieslik-mctp/crisp-build

Spectrum Mill Karl R. Clauser, 
Steven Carr Lab

https://proteomics.broadinstitute.org/

ComBat (v3.20.0) (Johnson et al., 2007) https://bioconductor.org/packages/release/bioc/html/sva.html

DreamAI Pei Wang Lab https://github.com/WangLab-MSSM/DreamAI
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REAGENT or RESOURCE SOURCE IDENTIFIER

GISTIC2.0 (Mermel et al., 2011) ftp://ftp.broadinstitute.org/pub/GISTIC2.0/GISTIC_2_0_23.tar.gz

iProFun (Song et al., 2019) https://github.com/WangLab-MSSM/iProFun

ESTIMATE (Yoshihara et al., 
2013)

https://bioinformatics.mdanderson.org/public-software/estimate/

WebGestaltR (Wang et al., 2017) http://www.webgestalt.org/

Joint Random Forest (Petralia et al., 2016) https://github.com/WangLab-MSSM/ptmJRF

GSVA (Hänzelmann et al., 
2013)

https://bioconductor.org/packages/release/bioc/html/GSVA.html

TCGAbiolinks (Colaprico et al., 
2016)

http://bioconductor.org/packages/release/bioc/html/
TCGAbiolinks.html

TSNet (Petralia et al., 2018) https://github.com/WangLab-MSSM/TSNet

xCell (Aran et al., 2017) http://xcell.ucsf.edu/

CPTAC LUAD Data Viewer Steven Carr lab http://prot-shiny-vm.broadinstitute.org:3838/CPTAC-LUAD2020/

MODMatcher (Yoo et al., 2014) https://github.com/integrativenetworkbiology/Modmatcher

ConsensusClusterPlus (Wilkerson and 
Hayes, 2010)

http://bioconductor.org/packages/release/bioc/html/
CancerSubtypes.html

pyQUILTS (v1.0) (Ruggles et al., 2016) http://openslice.fenyolab.org/cgi-bin/pyquilts_cgi.pl

MS-GF+ (Kim and Pevzner, 
2014)

https://github.com/MSGFPlus/msgfplus

NeoFlow Bing Zhang lab https://github.com/bzhanglab/neoflow

netMHCpan (Jurtz et al., 2017) http://www.cbs.dtu.dk/services/NetMHCpan/

Optitype (Szolek et al., 2014) https://github.com/FRED-2/OptiType

Customprodbj (Wang and Zhang, 
2013)

https://github.com/bzhanglab/customprodbj

PDV (Li et al., 2019) https://github.com/wenbostar/PDV

PepQuery (Wen et al., 2019) http://pepquery.org

PTM-SEA (Krug et al., 2018) https://github.com/broadinstitute/ssGSEA2.0

Terra Broad Institute data 
science platform.

https://terra.bio/

CMap (Lamb et al., 2006; 
Subramanian et al., 
2017)

https://due.io/cmap

PTM-SEA (Krug et al., 2018) https://github.com/broadinstitute/ssGSEA2.0

LIMMA v3.36 (R Package) (Ritchie et al., 2015) https://bioconductor.org/packages/release/bioc/html/limma.html

FactoMineR v1.41NMF (R - package) (Gaujoux and 
Seoighe, 2010; Lê et 
al., 2008)

https://cran.r-project.org/web/packages/FactoMineR/index.html

MClust v5.4 (R package) (Scrucca, Fop, 
Murphy and Raftery, 
2017)

https://cran.r-project.org/web/packages/mclust/index.html
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