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Abstract

Objective—Patients with chronic stroke have been shown to have failure to release 

interhemispheric inhibition (IHI) from the intact to the damaged hemisphere before movement 

execution (premovement IHI). This inhibitory imbalance was found to correlate with poor motor 

performance in the chronic stage after stroke and has since become a target for therapeutic 

interventions. The logic of this approach, however, implies that abnormal premovement IHI is 

causal to poor behavioral outcome and should therefore be present early after stroke when motor 

impairment is at its worst. To test this idea, in a longitudinal study, we investigated 

interhemispheric interactions by tracking patients’ premovement IHI for one year following stroke.

Methods—We assessed premovement IHI and motor behavior five times over a 1-year period 

after ischemic stroke in 22 patients and 11 healthy participants.
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Results—We found that premovement IHI was normal during the acute/subacute period and only 

became abnormal at the chronic stage; specifically, release of IHI in movement preparation 

worsened as motor behavior improved. In addition, premovement IHI did not correlate with 

behavioral measures cross-sectionally, whereas the longitudinal emergence of abnormal 

premovement IHI from the acute to the chronic stage was inversely correlated with recovery of 

finger individuation.

Interpretation—These results suggest that interhemispheric imbalance is not a cause of poor 

motor recovery, but instead might be the consequence of underlying recovery processes. These 

findings call into question the rehabilitation strategy of attempting to rebalance interhemispheric 

interactions in order to improve motor recovery after stroke.

It has been proposed that one contributor to chronic hemiparesis is an imbalanced inhibitory 

interaction between the lesioned and intact hemispheres via transcallosal connections. This 

interhemispheric-competition model proposes that the two hemispheres, which normally 

exert mutual inhibition in healthy individuals, become imbalanced after stroke, and that 

unopposed inhibition from the healthy to the damaged side impedes recovery.1 This 

framework is largely based on a seminal study that showed persistent premovement 

interhemispheric inhibition (IHI) from the contra- to ipsilesional motor cortex before 

movement execution in patients with chronic stroke.2 This failure to release IHI before 

movement onset (abnormal premovement IHI) correlated with weakness and impaired finger 

tapping performance.2 Influenced by this stroke-recovery model, numerous studies in the 

neurorehabilitation field have used different approaches (e.g. brain stimulation, peripheral 

stimulation, and transient deafferentation) in an attempt to downregulate excitability in the 

unaffected hemisphere and thus rebalance putative abnormal IHI (see recent studies3,4 and 

reviews5–7).

The problem with the interhemispheric-competition model is that abnormal premovement 

IHI has only been described in patients with chronic stroke and relatively mild impairment. 

Stinear and colleagues,8 using an indirect measure of IHI, recently found no evidence for 

interhemispheric imbalance in the first 3 months after stroke. To date, it remains unclear 

whether imbalanced interhemispheric interactions are present in the context of movement 

early after stroke, whether they evolve over time, and whether they have any predictive value 

for motor recovery. If interhemispheric interactions are normal early after stroke, then 

designing rehabilitation strategies based on the interhemispheric-competition model is 

questionable. Here, in a longitudinal observational study of patients with mild-to-moderate 

hemiparesis, we investigated the evolution of premovement IHI over the first year after 

stroke and related it to motor recovery of the hand. To this end, we followed the same 

inclusion-exclusion criteria and procedures as the seminal study of Murase and colleagues.2

Participants and Methods

Participants

Twenty-two patients with hemiparesis from first-time ischemic stroke (7 female; mean age, 

57.5 ± 16 years; 15 righthanded according to the Edinburgh Handedness Inventory9) were 

recruited from three centers (The Johns Hopkins Hospital and Affiliates [JHM], Columbia 
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University Medical Center [CU], and The University Hospital of Zurich & Cereneo Center 

for Neurology and Rehabilitation [UZ]) for a prospective cohort study over the course of 

four years. All patients met the following inclusion criteria: (1) first-ever ischemic stroke 

confirmed by magnetic resonance imaging within the previous two weeks; (2) one-sided 

upper extremity weakness (Medical Research Council <5). We excluded patients with the 

following criteria: contraindications to magnetic stimulation, age <21 years, hemorrhagic 

stroke, space-occupying hemorrhagic transformation, bilateral hemiparesis, traumatic brain 

injury, encephalopathy, global inattention, visual-field cut larger than a quadrantanopia, 

receptive aphasia, inability to give informed consent or understand the tasks, major 

neurological or psychiatric illness that could confound performance/recovery, or a physical 

or other neurological condition that would interfere with arm, wrist, or hand function 

recovery. See Table 1 for details of patient characteristics.

We also recruited 11 age-matched healthy control participants (4 female; mean age, 64 ± 9 

years; all right-handed) at the three centers. All participants gave written consent and the 

respective institutional research board at each study center approved all procedures. All 

procedures were in compliance with the Declaration of Helsinki. All patients were tested at 

five time points over a 1-year period (Table 2).

Assessment of Interhemispheric Inhibition with Transcranial Magnetic Stimulation

Transcranial Magnetic Stimulation Procedures And IHI Assessments—
Participants were comfortably seated in an armchair, arms resting on a pillow, and faced a 

computer monitor. IHI was assessed by a double-pulse paradigm2,10 (Fig 1A), with two 

figure-of-eight coils (diameters of wings 70 and 50 mm), each connected to a Magstim-200 

magnetic stimulator (Magstim Co Ltd, Whitland, UK). The larger coil was placed 

tangentially over the lesioned Ml (for testing stimulus [TS]), with the handle oriented toward 

the back of the head and laterally at a 45-degree angle from the midsagittal line. The smaller 

coil was oriented perpendicular to midsagittal line over the unaffected Ml (for conditioning 

stimulus [CS]). For healthy age-matched controls, the CS was always applied to the right 

M1 and the TS to the left M1, contralateral to the moving right hand. The positions of the 

coils on the skull were adjusted to produce a maximal response in the contralateral first 

dorsal interosseus (FDI) muscles (the hotspots). A frameless stereotactic neuronavigation 

device (Brainsight; Rogue Research Inc, Montreal, QC, Canada) was used to track coil 

positions within and across sessions.

Two stimulation conditions were used to calculate IHI: nonconditioned (NC) trials (NC: TS-

only), where only a TS pulse was delivered, and conditioned (C) trials (C: CS + TS), where 

a CS pulse was delivered before a TS pulse with an interstimulus interval (ISI) of 10 ms. 

Conditioned and unconditioned trials were intermixed and randomized throughout the 

testing session.

IHI was assessed in two contexts: at rest (resting) and during movement preparation 

(premovement). Following a previous study, IHI at rest was obtained in order to determine 

the stimulation parameters for premovement IHI.2 For resting IHI, intensities of TS and CS 

were first set at the minimum level of maximal stimulator output (MSO) that produced a 

contralateral motor-evoked potential (MEP) with amplitude 0.5 to 1.0 mV. CS intensity was 
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then adjusted to produce a ~50% reduction in TS-MEP amplitude. The resting-IHI 

assessment consisted of a block of 36 trials with 18 each for NC and C stimulation.

During the premovement IHI task, while the participant performed a simple reaction-time 

(RT) task, a transcranial magnetic stimulation (TMS) pulse was then delivered on each trial 

at four possible epochs: 20, 50, 80, and 95% of each participant’s RT (see the section below, 

Fig. 1B). TS intensity was determined in the same way as for resting IHI. To assess CS 

intensity in the context of movement execution, participants were asked to perform the same 

RT task when double-TMS pulses were delivered at an estimated 50% of RT on each trial, 

and CS intensity was adjusted to the level approximating 50% of the TS-MEP. This 

adjustment was to probe the largest possible dynamic range of CS modulation during 

premovement IHI testing. As described previously,2 when probed at different times during 

the RT, a healthy control’s typical IHI curve shows an initial reduction, followed by 

increases of MEP when stimulation is delivered closer to movement onset, that is, IHI 

switches to facilitation (release of inhibition).

A total of six blocks, with 24 premovement IHI trials per block, were run in each testing 

session, with 18 pulses per stimulation/time-epoch condition. Sessions were not run if 

patients could not abduct their index finger or if the stimulation intensity was too high to 

obtain both resting and premovement IHI (required >90% MSO to elicit an MEP >0.5 mV). 

These patients were still included in the study if IHI could be obtained in subsequent visits.

Resting motor threshold (rMT) for both FDIs were determined as the minimal TMS intensity 

required to evoke MEPs of ~50 μV (peak-to-peak amplitude) in the targeted muscle on five 

of ten consecutive trials.

Because MEP amplitudes increase in the moving effector immediately before movement 

onset, leading to large MEP that can mask the true size of release of inhibition (or 

contralateral facilitation), we compared MEP amplitudes recorded during the premovement 

IHI procedure with maximal amplitudes obtained in each participant using assessment of 

active corticospinal tract (aCST). This was done with 18 single pulses delivered at 100% 

MSO with an ISI of 5 to 7 seconds, while the participant was actively contracting the 

contralateral FDI at a constant level of 20% of their maximum voluntary contraction force.

EMG Recording—Electromyogram (EMG) activity was monitored from surface 

electrodes placed over the FDI in both hands. Three EMG systems were used at the three 

sites: SX230–100 and K800, Biometrics Ltd. (CU); AMT-8; Bortec Biomedical Ltd. (JHM); 

and Telemyo desk receiver, Noraxon (UZ). The Biometrics EMG signal was sampled at 

1,000 Hz, amplified 1,000×, band-pass filtered at 15 to 450 Hz; the AMT-8 EMG signal was 

sampled at 1,000 Hz, amplified 1000×, band-pass filtered at 10 to 1,000 Hz; and the 

Noraxon EMG was sampled at 1,500 Hz, amplified 500×, band-pass filtered at 15 to 450 Hz. 

EMG signals were used to determine RTs and MEP amplitudes (see below the Measures of 

Premovement IHI section).
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Simple Reaction-Time Task for Premovement IHI Assessment

Premovement IHI was assessed while participants performed a simple RT task. The 

participants were instructed to make a voluntary index-finger abduction in response to a GO-

cue (green dot). Patients used their paretic hand, whereas healthy volunteers always 

performed the task with their right hand. The GO-cue was displayed on the monitor for 2 

seconds and disappeared at the end of the trial. The intertrial interval was 5 seconds plus 0 to 

2 seconds of jitter to prevent anticipation.

Before the IHI procedure, each participant performed the simple reaction task for 30 trials to 

determine their average RT. The last 15 trials were used to calculate the RT.

Stroke-Related Behavioral Assessments

All patients’ and controls’ upper-extremity motor impairment was determined with the Fugl-

Meyer Assessment (FMA),11 following the same schedule as premovement IHI. Hand 

function was also tested within ±4.6 days from the TMS experiment, as previously 

described.12 Briefly, participants were instructed to move each finger in isolation on an 

ergonomic device that measures the isometric force generated by each digit. A strength 

index was calculated from the maximum voluntary force (MVF) of individual finger flexion, 

normalized to the MVFs on the nonparetic side at the 1-year time point. An individuation 

index was derived from the activation in the noninstructed fingers as a function of force 

produced by the instructed finger pressing to four levels of target forces.

Measures of Premovement IHI

EMG was used to measure RT and peak-to-peak amplitudes of the MEPs elicited in FDI of 

both hands. Both RTs and MEPs were identified using custom-made MATLAB scripts (The 

MathWorks, Inc., Natick, MA) from the EMG recordings. The RT was manually identified 

with the following criteria: peak-to-peak waveforms of EMG activity >100 μV and lasting 

longer than 50 ms following the GO-cue.

The following trial types were excluded from further analysis: (1) trials with any background 

EMG activity >20 μV in the 150-ms window preceding the TMS pulse in either FDI; (2) 

MEP size <50 μV; (3) MEP occurrence after movement onset; and (4) RT >1,000 ms. An 

analysis of the background pretrigger EMG across different TMS epochs was also conducted 

to rule out the potential influence of systematic differences in background EMG on the 

premovement IHI results.

Resting and premovement IHI was computed as the ratio C/NC. An IHI ratio of 1 indicates 

no IHI. To prevent averaging epochs with too few MEP observations, a minimum of nine 

good MEPs (one-half of the total count) was required to compute the ratio. A good TS-MEP 

was defined as: (1) no background EMG activity in the 150-ms window before the TMS 

pulse; (2) the MEP occurred before movement onset; (3) peak-to-peak amplitude was >50 

μV; and (4) distinct movement is detectable (EMG >100 μV for >50 ms) within 1,000 ms 

after the GO-cue. TMS timing epochs with less than nine good MEPs were counted as 

missing values. To evaluate the reproducibility of the IHI ratio as the main dependent 
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variable in this study, we computed its Cronbach’s alpha.13,1 Mathematically, alpha is 

equivalent to the averaged split-half correlation of all possible splits of the existing data:

a = 1
Nall splits ∑

i = 1

Nall splits
ri .

To assess the evolution of IHI during movement preparation, we derived three other 

measures: IHIEARlY-EPOch = mean (IHI20 % RT IHI50 % RT), IHILATE-EPOCH = mean 
(IHI80 % RT IHI95 % RT), and ΔIHI = IHIlate-epoch – IHIearly-epoch ΔIHI therefore reflects the 

amount of release of IHI during movement preparation. A value of ΔIHI = 0 indicates no 

modulation of inhibition,15 whereas a positive value implies a release of inhibition during 

movement preparation. Hereinafter, we will use ΔIHI as an operational definition of 

premovement IHI to refer to the level of release of inhibition preceding movement onset.

Statistical Analysis

Data analysis was done with custom-written MATLAB and R (R Core Team, 2017) routines. 

Given that there were missing sessions (on average, each patient completed 3.4 sessions and 

each healthy control completed 3.5 sessions, out of a total of 5), we used two analysis 

approaches: (1) For the primary analysis, we assumed missing ΔIHI values arose at random 

(MAR) and used linear mixed-effects models implemented in the lme4 package in R16 to 

test for changes in the neurophysiology and behavioral measures over time, with a random 

factor of Subject, and fixed factors of Time-Point (five time points from W1 to W52, or 

acute/subacute versus chronic), Hand-Condition (paretic, nonparetic, and/or control), and/or 

TMS-Epoch (early versus late TMS timing). (2) Because there are cases where data were 

missing due to severity of impairment, specifically when there was no reliable finger 

abduction and/or MEP at a given assessment session (Table 2), there was a concern about the 

possibility of a systematic relationship between premovement IHI and missingness. We 

therefore conducted a sensitivity analysis by imputing missing values under different data-

generating mechanisms. Specifically, for all missing values belong to the category of 

severity dependent (Table 2) we implemented the assumptions of either no dependency or 

strong dependency between premovement IHI and the severity of initial impairment (Fig 

3D,E). No dependency mimics the MAR assumption of the mixed model, with imputed 

samples drawn from N~(μ(t,patient), σ(t,patient)), Where μ(t,patient) and σ(t,patient) are estimated 

from patient data at each time point; whereas strong dependency represents a scenario in 

which severely affected patients have ΔIHI values centered at 0, with imputed samples from 

N~(0, σpatient), where σpatient is estimated from all patients’ data. For each data set 

containing imputed values, we fit the linear mixed model as specified above to account for 

other missingness. Analysis of variance (ANOVA) tests for sensitivity analyses were 

conducted by pooling significance tests of multiply-imputed data sets.17

For behavioral results, we included all available behavioral data, including the sessions in 

which we could not obtain IHI.
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Results

We tested a total of 22 patients from the acute to chronic stages after stroke and 11 healthy 

controls. Each participant was expected to undergo five testing sessions over the course of a 

1-year period. One patient appeared to meet initial inclusion criteria, but was later found to 

have bilateral strokes and was excluded from further analysis. The final analysis included a 

total of 110 premovement IHI sessions from 21 patients and 11 controls. Thirteen patients 

and eight controls completed ≥3 sessions. The distributions of assessment time and missing 

data are presented in Table 2. Nontested sessions were treated as missing data, and all 

available data were used in the statistical analyses. The data showed good reliability for the 

major dependent variable, IHI ratio (α = 0.74 and 0.79 for patients and controls, 

respectively; Participants and Methods). Figure 2 shows the distribution of lesions defined 

using diffusion tensor images (details reported in our earlier publication12).

Premovement IHI Changed from Normal to Abnormal as Paresis Improved from the Acute 
to the Chronic Stage

Our main goal was to determine how IHI before movement onset evolves over the first year 

after stroke and how this relates to motor recovery. Figure 3A shows a representative 

patient’s IHI curves at the acute/subacute and chronic stages, as compared to a healthy age-

matched control. Figure 3B,C shows the group data for controls and patients. Visual 

inspection of these curves suggests that, consistent with the previous report by Murase and 

colleagues,2 patients in the chronic stage had an abnormal IHI pattern, characterized by the 

absence of release of inhibition at movement onset. Crucially, however, in the acute/subacute 

period (W1–12) release of IHI at movement onset in patients did not appear to differ from 

controls. Specifically, the IHI ratio at weeks 1 to 12 poststroke increased over the 

movement-preparation interval, approaching a ratio of 1 at later stimulation epochs (80–95% 

RT), indicating a level of release of inhibition before movement onset similar to healthy 

controls.

Given that in previous reports, and corroborated here, the poststroke abnormality in 

premovement IHI is most apparent at movement onset, our statistical analyses focused on 

ΔIHI, as in earlier studies.15,18 ΔIHI is the difference between IHIlate-epoch and IHIearly-epoch, 

which captures the level of release of IHI immediately preceding movement onset 

(Participants and Methods). An ANOVA using a mixed-effects model for ΔIHI yielded a 

significant Week × Group (patients versus controls) interaction (χ2 = 4.59; p = 0.03). The 

evolution of ΔIHI from the acute/subacute to the chronic stage after stroke clearly showed 

that at earlier stages (W1–12), patients and controls were similar (t(21) = 0.50; p = 0.62), 

whereas the two groups started to diverge from W24 onward (t((31)= 3.30, p = 0.0025; Fig. 

3D). Our sensitivity tests also indicate that this trend is robust to the differences in the data-

generating mechanisms considered (p = 0.028 for MAR and p = 0.10 for informed 

missingness; Fig. 3D,E, Participants and Methods). To directly compare ΔIHI in the acute 

versus the chronic stage, we pooled data into two Time-periods: mean (W1–12; acute/

subacute for patients) and mean (W24–52; chronic for patients). This data pooling was 

further supported by our observation that there was no difference in patients’ ΔIHI from W1 

to W12 (p = 0.17) or from W24 to 52 (p = 0.70). The mixed-effects model with Time-period 
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and Group (patients versus controls) as fixed factors showed a significant interaction (χ2 = 

6.68; p = 0.01). These results show that patients’ premovement IHI progressed from normal 

in the acute/subacute period to abnormal in the chronic stage in the case of mild-to-moderate 

paresis (Fig. 3F).

The Development of Abnormal Premovement IHI Was Inversely Correlated with the Extent 
of Finger Individuation Recovery

Our cohort of patients was mild to moderately impaired in the acute stage (FMAinitIal Mean 

= 41 ± 22; Table 1). Motor recovery was quantified using three behavioral measures: FMA, 

Strength and an Individuation Index for finger (ability to move digits independently; 

Participants and Methods).12 All three measures showed good early recovery (Strength: χ2 = 

28.07; p < 0.001, Individuation: χ2 = 13.64; p < 0.001, and FMA: χ2 = 28.07; p < 0.001), 

but then plateaued after the subacute stage (Fig 4).

We then sought to determine whether there was any correlation between abnormal 

premovement IHI and motor behavior. To address this question, we first examined the cross-

sectional correlation between ΔIHI and all three behavioral measures at both the acute/

subacute and chronic stages; none of the correlations were significant with the null value (0) 

lying within 95% confidence intervals (CIs; Table 3). Thus, there was no clear relationship 

between abnormal premovement IHI with strength, individuation, or motor impairment at 

any time point.

Both the opposite longitudinal time courses for motor recovery and development of 

abnormal premovement IHI and the lack of significant cross-sectional correlation between 

the two suggest that the premovement IHI abnormality was not causally related to behavioral 

impairment. Instead, the emergence of abnormal premovement IHI (failure-to-release 

inhibition during movement preparation) may be a marker for underlying recovery processes 

(see Discussion). To address this alternative possibility, we examined the correlation 

between longitudinal motor-function recovery (change in behavior) and the emergence of 

the failure-to-release IHI (reduction in ΔIHI) from the acute/subacute to the chronic stages. 

We found a strong negative correlation between the reduction of ΔIHI and the amount of 

improvement in the individuation index (r = −0.73; p = 0.003; 95% CI, [−0.91, −0.33]). This 

suggests that the emergence of failure-to-release IHI during movement preparation and poor 

finger-individuation recovery share a latent cause. We did not find a significant correlation 

between changes in ΔIHI and changes in the Strength Index (r = 0.22; p = 0.44; 95% CI, 

[−0.35, 0.67]; Fig. 5). This observation is consistent with the fact that by week 52 at the 

group level, patients’ strength was not far from healthy levels (t (26) = 1.43; p = 0.16), but 

finger individuation was (t (26) = 2.43; p = 0.02).

Other TMS and Behavioral Measures

In addition to premovement IHI, we also measured the participants’ rMT, aCST, and resting-

IHI for the FDI muscle (Participants and Methods). Results from these measures are 

reported in Table 4. Consistent with the previous literature,2,19 IHiREST in patients and 

controls did not differ. Patients and controls had comparable TS- and CS-stimulation 

intensities for both resting and premovement IHI. For rMT, we included sessions when 
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premovement IHI was not obtainable, and consistent with earlier reports,8,20 the results 

showed higher rMT on the lesioned hemsphere, reflecting lower level of Ml output at acute-

subacute stages in severely impaired patients.

To ensure our premovement IHI results were not attributed to high MEP amplitudes, 

especially during the later TMS epochs, we compared the MEP sizes obtained from aCST 

with the single-pulse TS at late TMS epochs (80 and 95% RT; Participants and Methods). If 

TS-MEPs approach the MEP amplitudes of the aCST, when MEP amplitudes are expected to 

be near maximal, the amount of IHI modulation during movement preparation could lack 

sufficient dynamic range or be masked. We found, however, that most late-epoch MEP 

amplitudes were lower than those obtained during the aCST assessment (see statistics in 

Table 4).

It might be posited that one way that failure-to-release inhibition might influence behavior is 

to prolong the RT. We therefore examined the relationship between the RT and premovement 

IHI in the simple RT task. RTs in patients were prolonged compared to controls (Fig 6A,B; 

χ2 = 9.19; p = 0.002), but this prolongation was not linked to changes in premovement IHI: 

There was no interaction with ΔIHI and RT (χ2 = 0.31;p = 0.58).

To rule out the possibility of background EMG influencing the observed premovement IHI 

patterns, we also performed a mixed-effect model analyses on pretrigger EMG (Participants 

and Methods). Results showed that background EMG was higher in healthy controls (χ2 = 

5.46; p = 0.019) and decreased over time in both groups (χ2 = 45.23; p = 1.77 X e−11), 

possibly attributed to participants becoming more acquainted with the testing procedure (Fig 

6C,D). Critically, there was no main effect of conditioned (C) versus nonconditioned (NC) 

trials, nor any interaction between group and any other factor. Thus, differences in 

background EMG cannot explain the premovement IHI findings.

Finally, age did not influence the main dependent variable ΔIHI (χ2 = 0.53; p = 0.47), nor 

did it interact with Week (χ2 = 4.73; p = 0.09). Similarly, age also did not modulate the 

behavioral outcome variables in our cohort: Strength, Individuation, FMA, and ARAT.

Discussion

In a longitudinal multicenter study, we tracked the evolution of premovement IHI from 

stroke onset up to 1 year. We used a double-pulse TMS paradigm to test patients and healthy 

controls at five time points: week 1, 4, 12, 24, and 52. We also tracked patients’ finger 

strength and individuation, and overall motor impairment (FMA). We found that release of 

IHI before movement onset was normal in the acute/subacute period and became abnormal 

in the chronic stage. Conversely, behavioral outcomes were most impaired in the acute/

subacute period and improved over time to reach plateau in the chronic stage. In addition to 

these opposite longitudinal trends for the physiological and behavioral measures, we found 

no significant cross-sectional correlations between premovement IHI and behavioral 

measures in the patients (strength and individuation). The only significant correlation was an 

inverse relationship between the development of abnormal premovement IHI from the acute/

subacute to the chronic stage after stroke (i.e. the emergence of the failure-to-release IHI 
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before movement onset) and the amount of recovery in finger individuation across the same 

period.

In the seminal study by Murase and colleagues,2 impaired premovement IHI was found in 

nine patients with chronic stroke. This study has become highly influential and, in our view, 

was prematurely interpreted by the overall neurorehabilitation field as suggesting a possible 

causal relationship between IHI and recovery of motor impairment. This interpretation is 

problematic because: (1) premovement IHI is only one kind of interhemispheric measure; it 

is possible to assess IHI at other ISIs or interhemispheric facilitation.21 (2) Premovement IHI 

is only obtainable in patients with detectable MEPs and finger movements; it cannot be 

assessed in patients with more severe motor deficits. (3) The study by Murase and 

colleagues had a small sample of patients at only one time point in the chronic stage, which 

makes inference about changes over time, or recovery, impossible. The overinterpretation of 

the Murase and colleagues results led, in turn, to a large number of studies that attempted, or 

claimed, to rebalance IHI using noninvasive brain stimulation (NIBS) in the acute and 

chronic stages after stroke.22–26 What should have been established first, in our view, is the 

time course of the development of premovement IHI abnormality from the acute/subacute 

period to the chronic stage.

The critical finding reported here is that in the acute/subacute period, in those patients that 

could be assessed with this TMS technique, we found normal modulation of premovement 

IHI despite their motor deficits. Failure-to-release premovement IHI only emerged in the 

chronic stage, whereas the behavioral measures all improved over the same time period. This 

diametric contrast makes any claim to a causal relationship between abnormal premovement 

IHI and the motor deficit implausible. Adding to this, we found no significant cross-

sectional correlations between premovement IHI and severity of paresis, assessed by FMA, 

Strength, or Individuation. Admittedly, given the limited statistical power, we cannot 

definitively rule out the possibility of an association between premovement IHI and a 

clinical measure. Interestingly, though, a recent meta-analysis27 of 112 TMS studies 

concluded that “there is no clear evidence for hyper-excitability of the unaffected 

hemisphere” in either the acute or chronic phases after stroke. Nevertheless, it is important 

to note that the interpretation of our results, as well as of previous investigations, should be 

limited to those patients for whom it is possible to assess premovement IHI and/or obtain 

MEPs (i.e. those with mild-to-moderate motor deficits). Therefore, it remains unclear what 

the interhemispheric interaction would be for patients with more severe motor deficits.

It would be puzzling, however, if premovement IHI were to be abnormal in the acute period 

in severe patients given that our mild-to-moderate patients showed improvement from 

paresis as IHI became worse. Thus, from parsimony, it would seem that the interhemispheric 

competition model would not be a satisfactory causal explanation even in patients with 

severe motor deficits. Unfortunately, methodological limitations prevent us from going 

beyond this speculation.

The inverse correlation between the emergence of abnormal premovement IHI from the 

acute/subacute to chronic stages and recovery of individuation suggests that, rather than any 

direct causal relationship between them, the development of an abnormal pattern of ΔIHI 
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over time might provide an indirect measure of the state of longitudinal recovery. This 

would mean that the amount of reduction in ΔIHI might reflect a less-optimal form of 

reorganization, such as a reliance on contralesional corticoreticular projections28,29 or, 

possibly, the consequence of decreasing use of the paretic hand in dexterity-requiring tasks. 

Both possibilities are consistent with the finding that finger individuation did not fully 

recover even at 1 year after stroke (Fig 4B). We cannot disambiguate these two possibilities 

in this study. However, here we show: (1) There is no cross-sectional correlation between 

premovement IHI and behavior; (2) behavior gets better as premovement IHI gets worse; 

and (3) the emergence of abnormal premovement IHI is correlated with poor finger-

individuation recovery. These results together suggest that the abnormal interhemispheric 

interaction in the chronic stage might be the consequence of, and a marker for, the state of 

recovery of the brain rather than the cause of impairment. Therefore, it is questionable that 

interhemispheric imbalance should be a therapeutic target.

The results presented here challenge the validity of the interhemispheric-competition 

recovery model. This is important given that in the past decade, numerous studies have used 

NIBS in an attempt to downregulate the contralesional hemisphere to promote recovery: 

From 2005 to 2016, there were 45 published clinical trials using cathodal transcranial direct 

current stimulation25 and 25 trials up to May 2014 using rTMS.26 The lasting impact of the 

model is apparent in a recent influential perspective by Di Pino et al,7 in which they 

introduce a hybrid recovery model that combines vicariation in the ipsilesional hemisphere 

with interhemispheric-competition. Of note, our results do not negate the fact that on 

occasions, NIBS over the ipsi-, contra-, or bilateral hemisphere have shown beneficial 

effects.3,4 What our results do indicate, however, is that any beneficial effect of NIBS is not 

likely operating by an IHI mechanism, at least for patients with mild-to-moderate 

hemiparesis.

In conclusion, the results reported here cast doubt on the validity of the interhemispheric-

competition model. Future investigations using noninvasive brain stimulation, or other 

interventions, such as peripheral nerve stimulation, to improve recovery following stroke 

will require alternative mechanistic justification.
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FIGURE 1: 
Schematic illustration of the premovement Interhemispheric Inhibition (IHI) paradigm. (A) 

A test stimulus (TS) was delivered over the lesioned hemisphere, and a conditioning 

stimulus (CS) was applied over the intact hemisphere before index finger abduction of the 

paretic hand (or right hand in healthy age-matched controls). In nonconditioned (NC) trials, 

only the TS was delivered, whereas in conditioned (C) trials, the CS preceded TS by 10 ms. 

EMG signals were recorded from the first dorsal interosseous muscle (FDI) of the moving 
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hand. (B) TMS pulses were delivered at four timing epochs relative to the individual’s mean 

reaction time, estimated from a simple-reaction task. EMG = electromyography.
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FIGURE 2: 
Lesion distribution of patients (N = 21). Averaged lesion distribution mapped to JHU-MNI 

space,30 with lesion flipped to one hemisphere. Color bar indicates patient count.

Xu et al. Page 16

Ann Neurol. Author manuscript; available in PMC 2020 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3: 
Release of IHI before movement onset. (A) IHI curves for a representative patient and a 

healthy control. These exemplar IHI profiles illustrate the normal release of IHI in patients at 

the acute/subacute stage, comparable to control subjects, and the lack of normal release of 

IHI during the chronic period. (B) Overall mean IHI curves for healthy controls. Because 

there were no differences over time in premovement IHI in controls (mixed-effects model 

with Week and TMS-Timing as fixed factors showed no significant effect of Week, χ2 = 

0.067, p = 0.80, but significant main effect of TMS-Timing, χ2 = 22.28, p < 0.001), we 

averaged control data across weeks. (C) IHI curves for each time point over the 1-year 

period for patients. (D) Evolution of ΔIHI for patients and controls over the 1-year period. 

Patients showed close to control level of ΔIHI in the acute/subacute periods (W1–12), but 

their ΔIHIs became abnormal at the chronic stage. Shaded plots in gray and red are 

sensitivity analysis with two imputation schemes with MAR and informed-missingness 

cases, respectively, where missing not at random (MNAR) cases are imputed with 1,000 

samples from N~(μ(t,patient), σ(t,patient)) or N~(0, σpatient). (μ(t,patient) and σ(t,patient)) are 

estimated from patients data at each time point and σpatient is estimated from all patients’ 

data. (E) Distribution of p values from sensitivity analysis with multiple imputation for the 

MAR and informed-missingness cases. (F) Change of IHI level at different movement 

preparation epochs in patients from the acute/subacute to chronic stage after stroke. There 

was a significant interaction of IHIEARLY-EPOCH vs IHILATE-EPOCH or acute/subacute and 

chronic stages (χ2 = 4.34, p = 0.037), but no differences when comparing across acute/

subacute vs chronic stages for IHIEARLY-EPOCH (t(14) = 0.75; p = 0.47) or IHILATE-EPOCH 
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(t(14) = 1.69; p = 0.11). Means and variances in all plots were estimated by mixed models. 

IHI = interhemispheric inhibition; TMS = transcranial magnetic stimulation.
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FIGURE 4: 
Recovery curves for behavior measures of hand function over 1-year period, from week 1 to 

52. (A) Strength indices. (B) Individuation indices. (C) FMA. Means and variances are 

estimated by mixed model. FMA = Fugl-Meyer Assessment.
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FIGURE 5: 
Correlations between the reduction of premovement IHI (ΔIHI) from acute/subacute to 

chronic stages and the amount of behavioral recovery: (A) Strength; (B) Individuation. x- 

and y-axes are the mean differences between chronic and acute/subacute behavior measures 

and ΔIHI, respectively.
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FIGURE 6: 
Other behavioral and physiological measures in premovement experiments. Reaction time 

(RT) for patients (A) and controls (B) at different TMS timing during movement preparation 

across the 1-year period. RTs for controls were overall faster than patients. Background 

EMG for patients (C) was overall lower than that in controls (D), but was at a similar level 

for conditioned vs nonconditioned TMS stimulation. RMS = root mean square; TMS = 

transcranial magnetic stimulation.
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