EBioMedicine 58 (2020) 102899

journal homepage: www.elsevier.com/locate/ebiom

Contents lists available at ScienceDirect

EBioMedicine

Research paper

Development and validation of the first consensus gene-expression N

Check for

signature of operational tolerance in kidney transplantation, KR
incorporating adjustment for immunosuppressive drug therapy

Sofia Christakoudi®"*, Manohursingh Runglall®, Paula Mobillo? Irene Rebollo-Mesa®™!, Tjir-Li Tsui*,
Estefania Nova-Lamperti*, Catharine Taube®, Sonia Norris™*, Yogesh Kamra™*, Rachel Hilton?,
Titus Augustine®>, Sunil Bhandari"”, Richard Baker®®, David Berglund™>, Sue Carr*, David Game®*,

Sian Griffin°, Philip A. Kalra">, Robert Lewis"”, Patrick B. Mark™®, Stephen D. Marks™®°, lain MacPhee”>"°,
William McKane®”, Markus G. Mohaupt"*“°, Estela Paz-Artal*-, Sui Phin Kon""*, Daniel Ser6n",

Manish D. Sinha*®¥-°, Beatriz Tucker'-, Ondrej Viklicky*”, Daniel Stahl”, Robert I. Lechler®”,

Graham M. Lord*“%’, Maria P. Hernandez-Fuentes®"'

2 MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK

b Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AF, UK
€ NIHR Biomedical Research Centre at Guy's & St Thomas’ NHS Foundation Trust and King’s College London, Great Maze Pond, London SE1 9RT, UK

4 Guy’s and St Thomas’ NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
€ Manchester Royal Infirmary, Oxford Rd, Manchester M13 9WL, UK

f Hull University Teaching Hospitals NHS Trust, Anlaby Rd, Hull HU3 2JZ, UK

& St James's University Hospital, Beckett St, Leeds LS9 7TF, UK

" Department of Immunology, Genetics and Pathology, Uppsala University, Rudbecklaboratoriet, 751 85 Uppsala, Sweden

i Leicester General Hospital, Gwendolen Rd, Leicester LE5 4PW, UK

J Cardiff and Vale University Health Board, Cardiff CF14 4XW, UK

X Salford Royal NHS Foundation Trust, Stott Ln, Salford M6 8HD, UK

'Queen Alexandra Hospital, Southwick Hill Rd, Cosham, Portsmouth PO6 3LY, UK
™ University of Glasgow, University Avenue, Glasgow G12 8QQ, UK

" Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WCIN 3JH, UK
© University College London Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London WCIN 1EH, UK
P St George’s Hospital, Blackshaw Rd, London SW17 0QT, UK & Institute of Medical and Biomedical Education, St George's, University of London, Cranmer Terrace, London SW17 ORE

9 Northern General Hospital, Herries Rd, Sheffield S5 7AU, UK

" Internal Medicine, Lindenhofgruppe Berne, Switzerland

* University of Bern, Berne, Switzerland

t School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK

Y Department of Immunology and imas12 Research Institute, University Hospital 12 de Octubre, Madrid, Spain

v King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK

W Hospital Universitario Vall d’Hebron, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain

* Evelina London Children’s Hospital, Westminster Bridge Rd, Lambeth, London SE1 7EH, UK

Y King's Health Partners, Guy's Hospital, London SE1 9RT, UK

% Transplantacni laborator, Institut klinické a experimentalni mediciny (IKEM), Videriska 1958/9, 140 21 Praha 4, Czech Republic

Abbreviations: AP, anti-proliferative agent; AUC, area under the receiver operating
characteristics curve; AZA, azathioprine; CNI, calcineurin inhibitor; CR, chronic rejec-
tion; CYC, cyclosporin; DSA, donor specific antibodies; eGFR, estimated glomerular fil-
tration rate; GAMBIT, Genetic Analysis and Monitoring of Biomarkers of
Immunological Tolerance study; HC, healthy control; HLA, human leucocyte antigens;
IS, immunosuppression / immunosuppressive; KTR, kidney transplant recipient; MMF,
mycophenolate-mofetil; mTOR, mammalian target of rapamycin; Non-TOL, non-toler-
ant, i.e. either a stable KTR or one with CR; OT, operational tolerance; PBMC, peripheral
blood mononuclear cells; PRED, prednisolone; RNA, Ribonucleic acid; RT-qPCR, real
time quantitative polymerase chain reaction; ST, stable, i.e. a KTR with stable kidney
function; TAC, tacrolimus; TOL, tolerant, i.e. a KTR with established operational toler-
ance; TOL-positive, a KTR with predicted probability of tolerance above a defined cut-
off

* Correspondence to: Present address. Epidemiology and Biostatistics Department,
Imperial College London, Norfolk Place, St Mary’s Campus, London W2 1PG, UK.

https://doi.org/10.1016/j.ebiom.2020.102899

E-mail addresses: s.christakoudi@imperial.ac.uk, sofia.christakoudi@kcl.ac.uk
(S. Christakoudi).

! Present address: UCB Celltech, UCB Pharma S.A.

2 Present address: Laboratory of Molecular & Translational Immunology, Depart-
ment of Clinical Biochemistry & Immunology, Pharmacy Faculty, University of Concep-
cion, Concepcion, Chile.

3 Present address: Modis, Avenue Edison 19C, 1300 Wavre, Belgium.

4 Present address: Peter Gorer Department of Immunobiology, King's College
London, London, UK.

5 Authors (in alphabetical order) involved in the GAMBIT study (Genetic Analysis
and Monitoring of Biomarkers of Immunological Tolerance) coordinated by King's Col-
lege London, London, UK.

5 Present address: AstraZeneca, UK.

7 Present address: Faculty of Biology, Medicine and Health, University of Manchester,
UK.

2352-3964/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2020.102899&domain=pdf
mailto:s.christakoudi@imperial.ac.uk
mailto:sofia.christakoudi@kcl.ac.uk
https://doi.org/10.1016/j.ebiom.2020.102899
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ebiom.2020.102899
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ebiom

S. Christakoudi et al. / EBioMedicine 58 (2020) 102899

ARTICLE INFO

Article History:
Received 16 May 2020
Revised 1 July 2020
Accepted 2 July 2020
Available online xxx

Keywords:

Kidney

Transplantation
Operational Tolerance
Biomarkers
Immunosuppressive Drugs
RT-qPCR

ABSTRACT

Background: Kidney transplant recipients (KTRs) with “operational tolerance” (OT) maintain a functioning
graft without immunosuppressive (IS) drugs, thus avoiding treatment complications. Nevertheless, IS drugs
can influence gene-expression signatures aiming to identify OT among treated KTRs.

Methods: We compared five published signatures of OT in peripheral blood samples from 18 tolerant, 183
stable, and 34 chronic rejector KTRs, using gene-expression levels with and without adjustment for IS drugs
and regularised logistic regression.

Findings: IS drugs explained up to 50% of the variability in gene-expression and 20—30% of the variability in
the probability of OT predicted by signatures without drug adjustment. We present a parsimonious consen-
sus gene-set to identify OT, derived from joint analysis of IS-drug-adjusted expression of five published sig-
nature gene-sets. This signature, including CD40, CTLA4, HSD11B1, IGKV4—1, MZB1, NR3C2, and RAB40C genes,
showed an area under the curve 0-92 (95% confidence interval 0-88—-0-94) in cross-validation and 0-97
(0-93—-1-00) in six months follow-up samples.

Interpretation: We advocate including adjustment for IS drug therapy in the development stage of gene-
expression signatures of OT to reduce the risk of capturing features of treatment, which could be lost follow-
ing IS drug minimisation or withdrawal. Our signature, however, would require further validation in an inde-
pendent dataset and a biomarker-led trial.

Funding: FP7-HEALTH-2012-INNOVATION-1 [305147:BIO-DrIM] (SC,IR-M,PM,DSt); MRC [G0801537/1D:88245]
(MPH-F); MRC [MR/J006742/1] (IR-M); Guy's&StThomas’ Charity [R080530]&[R090782]; CONICYT-Bicenten-
nial-Becas-Chile (EN-L); EU:FP7/2007—2013 [HEALTH-F5-2010—260687: The ONE Study] (MPH-F); Czech
Ministry of Health [NV19-06—-00031] (OV); NIHR-BRC Guy's&StThomas' NHS Foundation Trust and KCL (SC);

UK Clinical Research Networks [portfolio:7521].
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.

(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Kidney transplantation increases survival of end-stage kidney disease
but requires lifelong immunosuppression (IS) with one or a combination
of IS drugs. Use of IS drugs, however, is associated with nephrotoxicity,
metabolic changes, increased risk of type 2 diabetes mellitus, infections,
and cancers. There is, therefore, a pressing need to safely minimise the
dose and use of IS drugs without this leading to rejection.

Developing a status of “operational tolerance” (OT) is an attractive
possibility, as it would enable transplant recipients to maintain a viable
graft without the need for IS therapy, thus avoiding undesirable side
effects. OT develops spontaneously and considerably more often in
liver compared to kidney transplantation [1,2]. Nevertheless, there is a
scientific interest in identifying those patients, among clinically stable
kidney transplant recipients (KTRs), who have developed OT and in
whom it would be appropriate to reduce or, potentially, completely
withdraw IS drugs [3,4].

One approach to identifying patients with particular immunologi-
cal characteristics is performing gene-expression analysis of peripheral
blood, an easily obtainable biological sample amenable to standardisa-
tion, which avoids the risks of multiple biopsy sampling. Isolation of
peripheral blood mononuclear cells (PBMC) is a laborious alternative
and is more prone to laboratory variation. Consequently, our group
and others have developed gene-expression signatures of OT in
peripheral blood samples of KTRs. These signatures are based on statis-
tical models that discriminate KTRs with already established OT, who
have discontinued treatment for various reasons and lengths of time,
from KTRs receiving IS drugs. However, a key point to consider when
identifying treated KTRs as tolerant is knowing to what extent the fea-
tures that they share with KTRs with already established OT without
treatment are the result of IS drugs and whether their tolerance could
be lost if the drugs were withdrawn. Immunosuppressive drugs are
administered to maintain “pharmacological non-rejection”, which
may, indeed, share molecular features with OT.

To account for the possible influence of IS drugs on gene expression
in peripheral blood, we have used gene-expression levels adjusted for
the most common IS drugs when developing signatures of OT and have
argued that lack of adjustment can lead to confounding of gene-

expression characteristics by IS drugs [5,6]. Although most groups have
acknowledged the influence of drug regimens on gene-expression sig-
natures of tolerance [7,8], they have not accounted for IS drug therapy
during the signature development stage. To illustrate the impact that
the lack of statistical adjustment of gene expression may have on the
identification of potentially tolerant treated KTRs, we set to (1) compare
our two signatures [6,9] with three published signatures of OT devel-
oped by other groups without statistical adjustment for drug therapy
[10-12], and (2) to derive a parsimonious consensus gene-set among all
five signatures using drug-adjusted gene-expression levels and real
time quantitative polymerase chain reaction (RT-qPCR) analysis, an ana-
lytical method already applied in common validated clinical laboratory
tests and, thus, amenable to translation into clinical practice [13].

2. Materials and methods
2.1. Patients and samples

Blood samples originated from KTRs recruited in the GAMBIT study
(Genetic Analysis and Monitoring of Biomarkers of Immunological Tol-
erance), which were used and described previously [G]. Treated KTRs
were either clinically stable or with chronic rejection (CR). A limited
number of KTRs had established OT. Stable KTRs were over four years
post-transplantation, with less than 15% change in the estimated glo-
merular filtration rate (eGFR) during the last 12 months. CR KTRs were
over one year post-transplantation and diagnosed with immunologi-
cally driven chronic allograft nephropathy in graft biopsy (Banff 2007
or higher) in the last 12 months. KTRs with OT were more than 12
months off IS drugs, with less than 10% rise in serum creatinine since
baseline. KTRs were recruited in 14 transplant centres. Samples were
collected between September 2009 and December 2014. Healthy
controls (HC) were also included for comparison.

For the purpose of this study, gene expression was measured in a
total of 238 KTRs, providing two sets of samples. Time point one (T1-
cohort) comprised samples from 18 tolerant (TOL), 186 stable, and 34
CR KTRs, and 12 HC. Time point two (T2-cohort) comprised follow-up
samples collected approximately six months after the first sample
from 70 of the KTRs in T1-cohort: 12 TOL, 43 stable, and 15 CR KTRs.
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Research in context

Evidence before this study

A limited number of kidney transplant recipients (KTRs) can
develop a state of “operational tolerance” (OT), in which they
maintain their functioning graft after years of immunosuppressive
(IS) drug withdrawal. Successfully identifying such patients
remains a highly desirable clinical objective. This would allow for
personalisation of therapy and reduction of the IS burden, thus
avoiding the undesirable side effects of IS drugs, while maintain-
ing graft function. Five gene-expression signatures have previ-
ously been published, which have all shown strong associations
with OT. A major problem with identifying OT among treated sta-
ble KTRs, however, is that the features they share with untreated
KTRs with established OT may be the result of IS drug exposure
and could be lost once the drugs are changed, reduced, or with-
drawn. Although some groups have acknowledged associations
between their signatures and IS drugs, only our group, as far as
we know, has used drug-adjusted gene-expression levels prior to
applying a statistical algorithm for gene selection.

Added value of this study

We compared all five published signatures of OT using gene
expression measured in peripheral blood samples from KTRs,
collected in our previous signature development studies. We
obtained gene-expression levels with real time quantitative
polymerase chain reaction (RT-qPCR), which is a general ana-
lytical method widely available to clinical laboratories in and
out of hospital environment, unlike microarray measurements.
We showed that IS drugs could explain up to 32% of the vari-
ability observed in the predicted probability of OT based on sig-
natures using unadjusted gene-expression levels and up to 50%
of the variability in the expression of individual genes. More-
over, the predictive performance of signature gene-sets origi-
nally designed to use unadjusted gene expression deteriorated
when a drug-adjustment step was introduced. To our knowl-
edge, this is the first comparison of gene-expression signatures
using adjustment for IS drugs and a “point of care” assay.
Finally, we derived a consensus gene-set to identify OT in
treated KTRs, by analysing IS-drug-adjusted expression levels
for all published signature genes.

Implications of all the available evidence

When drug-adjustment is not performed at the signature
development stage, the resultant signatures identify KTRs with
gene-expression characteristics that are determined not only
by OT, but sometimes by the pharmacological effects of the IS
drug regimens they receive, or by other unknown reasons.
Withdrawing IS drugs from KTRs dependent on their pharma-
cological effects would most likely put the survival of grafts at
considerable risk. Our consensus signature validates genes pre-
viously identified in different datasets and uses drug-adjusted
gene expression, thus minimising the risk of pharmacological
influences. Nevertheless, a further validation in an independent
external dataset would be required prior to a prospective bio-
marker-led clinical trial.

2.2. Ethics statement

Ethical approval was obtained from the National Research Ethics
Service Committee London — Bloomsbury on 29 April 2009 (refer-
ence: 09/H0713/12). Written informed consent was obtained from all
study participants.

2.3. Gene-expression analysis

Peripheral vein blood for gene-expression analysis was collected
using Tempus™ Blood RNA Tubes (Life-Technologies). We measured
gene-expression levels by RT-qPCR (Applied Biosystems), as previ-
ously described [6]. A list of full gene names and assay information is
provided in Supplementary Table S1. Relative gene-expression values
were calculated on log2 scale with the comparative —ACt method
[14]. Table 1 specifies the five examined signature gene-sets and the
house-keeping genes used as reference.

2.4. Calibration of published signatures

The term “signature” refers to a multivariable statistical model
based on gene-expression values. In this study we calibrated the pub-
lished signatures, i.e. determined the elastic net regression coeffi-
cients, using RT-qPCR gene-expression values for T1-cohort. We
trained the statistical models to discriminate KTRs with established
OT “off treatment” (TOL) from the joint group of stable and CR KTRs
receiving treatment (Non-TOL). We calibrated and compared two
versions of each signature: using unadjusted and using drug-adjusted
gene-expression values.

For drug adjustment, we used multivariable linear regression
models in samples from Non-TOL KTRs from T1-cohort. The outcome
variable in each drug adjustment model was gene expression
(—ACtgeng) and the exposure variables were indicators of drug ther-
apy defined as follows: off or on prednisolone (PRED); off a calci-
neurin inhibitor (CNI), or on cyclosporine (CYC), or on tacrolimus
(TAC); off an antiproliferative agent (AP), or on azathioprine (AZA), or
on mycophenolate mofetil (MMF). The equation of the drug-adjust-
ment model was: —ACtgeng ~ PRED + CNI + AP [6]. We calculated
drug-adjusted gene-expression values for all KTRs, including the T2-
cohort and HCs, as the residuals of the drug-adjustment models, i.e.
as the difference between the observed value of —ACtgene and the
value predicted from the drug adjustment model. These residuals
capture the variability in gene expression not explained by IS drugs.
The drug therapy indicators for TOL patients and HCs were set to “off
treatment”. The version of each signature (with or without drug
adjustment) used in the original publication (Table 1) is referred to as
“original”.

We trained the gene-expression signatures using multivariable
regularised logistic regression with elastic net penalty [6,9]. This
includes a mixture of two penalties: ridge, which preserves all genes
in the model, and lasso, which forces gene exclusion by vigorous
shrinkage of the regression coefficients to zero and selects only one
gene among a set of dependent/correlated genes which is most infor-
mative for the discrimination between TOL and Non-TOL KTRs (pack-
age “glmnet”) [15]. We set the parameter defining the proportion of
ridge and lasso close to ridge regression (alpha=0.05), in order to
retain the pre-selected sets of genes in the models, even if they were
dependent/correlated, but also to improve model optimisation by
permitting exclusion of genes with completely negligible contribu-
tion to OT discrimination. We optimised the second penalty parame-
ter (lambda) as the median of 100 repeats of six-fold cross-validation
cycles incorporated within function “cv.glmnet”.

We derived the regression coefficients for each “final” signature
model as the median of all corresponding values from the models
generated during the cross-validation cycles described in section
“Validation strategy”.

2.5. Development of a consensus signature

To determine the most informative genes for OT discrimination
after accounting for IS regimens, we used samples from T1-cohort
and included all genes from the five examined signature gene-sets in
one model (COMBINED-all). We performed statistical gene selection



4 S. Christakoudi et al. / EBioMedicine 58 (2020) 102899

Table 1

Signature gene-sets.
Signature Gene expression  Signature genes House-keeping gene(s) Ref
GAMBIT-g9 drug-adjusted ATXN3, BCL2A1, EEF1A1, GEMIN7A, IGLC1, MS4A4A, NFKBIA, RAB40C, TNFAIP3 ~ HPRT [6]
GAMSTER-g4 drug-adjusted H6PD, HSD11B1, NR3C1, NR3C2* HPRT [9]
ROEDDER-g3 unadjusted BNC2, CYP1B1, KLF6 HPRT® [12]
NEWELL-g2 unadjusted IGKV1D-13, IGKV4—1° GAPDH [11]
DANGER-g6 unadjusted AKR1C3, CD40, CTLA4, ID3, MZB1, TCL1AY ACTB, B2M, GAPDH, HPRT1¢  [10]
COMBINED-all drug-adjusted all the above genes with exclusions’ HPRT -
COMBINED-g7 drug-adjusted CD40, CTLA4, HSD11B1, IGKV4—1, MZB1, NR3C2, RAB40C HPRT —

a

b

c

d

— HSD11B2 from the original signature was excluded, as it was above the conventional threshold of 35Ct in 13% of the samples, i.e. it was not appropriate
for routine real-time quantitative polymerase chain reaction (RT-qPCR) analysis;

— we used HPRT because the original reference gene S18 had very high levels compared to the other genes of interest;

— although the published signature included three genes [11], the authors were unable to validate the IGLL1 gene with RT-qPCR and we found a similarly
unsatisfactory analytical performance for this gene in the Fluidigm platform [6];

— in the original signature the six genes were included in a composite score, together with two age parameters, which we did not consider in the current

analysis for comparability with other signatures and because the enhancement of group discrimination by risk factors would be applicable to all signatures;

e
f

— the geometric mean of the four genes was used and HPRT1 was analysed with a different assay than HPRT, as per the original signature;
— a signature including all genes, but with elastic net penalty favouring gene exclusion (alpha=0.95), such that the median regression coefficients from

600 models (100 repeats of six-fold cross-validation cycles) are non-zero for 14 genes; Ref — reference to the published original signature; Full gene names

are listed in Supplementary Table S1.

by setting the penalty parameter close to lasso (alpha=0-95). We
included in the parsimonious consensus signature those genes which
were preserved (i.e. had a non-zero regression coefficient) in at least
75% of all elastic net models generated in a set of cross-validation
cycles described in section “Validation strategy”. We defined the
drug-adjustment models and the regression coefficients for the final
consensus signature model as described in the previous section.

2.6. Validation strategy

First, we performed a six-fold cross-validation in T1-cohort, in
order to reduce the risk of overfitting. Each cross-validation cycle
included splitting at random (in strata by clinical type) the sam-
ples from T1-cohort into a training and a test subset. All steps of
signature development or calibration were performed in the
training subset. This included the definition of the drug-adjust-
ment models and the estimation of the elastic net regression
coefficients, using in each model the complete gene-set for a
given signature, as listed in Table 1. The model based on the
training subset was used to predict the probability of tolerance
for the left-out samples from the test subset, which had remained
“unseen” during the model training phase. Thus, each cross-vali-
dation cycle, comprising six model training repeats, generated a
single predicted probability of tolerance for each patient. We
repeated the cross-validation cycle 100 times in order to reduce
the influence of extreme random splits generated by chance. This
generated 100 sets of predicted probabilities of OT for T1-cohort,
600 drug-adjustment models for each gene, and 600 elastic net
models for each examined signature. The medians of the regres-
sion coefficients of these cross-validation models were used in the
final model for each signature. A step-by-step explanation of the
cross-validation algorithm is included in Supplementary Methods.

Second, we used the samples in T2-cohort as a longitudinal vali-
dation dataset. We used the final “model” for each signature to derive
the probability of OT for T2-cohort, as well as for HCs.

2.7. Statistical evaluation and comparisons

We used a Wilcoxon-Mann-Witney test for pairwise group com-
parisons not involving IS drugs. We compared groups of patients on
and off a given IS drug using linear regression models based on sam-
ples from Non-TOL KTRs in T1-cohort and including adjustments for
all other examined IS drugs. For genes and signatures showing statisti-
cally significant associations with IS drugs, we additionally examined
dose effect, replacing in the above linear regression models the cate-
gorical variable for the corresponding IS drug with a continuous

variable for dose and retaining the adjustment for all other examined
drugs. We excluded KTRs receiving CYC for models examining the
dose of TAC and vice versa, as these drugs may have comparable influ-
ence on gene expression, and similarly excluded KTRs receiving AZA
from models examining the dose of MMF and vice versa. Models exam-
ining associations of signatures with IS drugs included as an outcome
variable the probability of OT derived from the final model for each
signature transformed to log-odds with log(probability/(1-probabil-
ity)). This transformation enabled conversion from the probability
scale (restricted between 0 and 1) to a continuous scale required in lin-
ear regression.

We evaluated the influence of individual IS drugs with the per-
centage of explained variability (R?). For gene-expression values, R?
originated from the corresponding 600 drug-adjustment models
created during the cross-validation cycles. For the probability of OT,
R? originated from a linear regression model in T1-cohort, including
as explanatory variables indicators of drug therapy and as outcome
variable the probability of OT transformed to log-odds, as described
above.

We used the area under the receiver operating characteristics
(ROC) curve (AUC) with a 95% DeLong confidence interval to evalu-
ate signature performance, i.e. OT discrimination (package “pROC”)
[16]. We compared the AUC of the unadjusted and the drug-
adjusted variants of each signature with DeLong’s test for paired
ROC curves. We calculated sensitivity and specificity using as a con-
servative uniform cut-off for all signatures the median of the pre-
dicted probabilities of OT for the group of TOL KTRs. Other groups
have used more lenient cut-offs to define TOL-positivity, e.g. the
lowest level of gene expression in TOL KTRs [17]. We compared the
identification of TOL-positivity by two signatures with Cohen’s
kappa index for interrater agreement, with kappa=1 indicating com-
plete agreement and kappa=0 indicating complete lack of agreement
(package “irr”) [18].

We summarised the regression coefficients and all statistical indi-
ces derived for the repeats of the cross-validation cycles with the
median and the 2.5-97.5% centile range, and for summaries of elas-
tic net regression coefficients, also the 25™—75™" centile range.

To avoid leverage of extreme values on regression coefficients and
statistical test, we recoded outliers in gene expression to the next
highest or lowest value in all models and excluded from dose
response models KTRs with doses of IS drugs in the top 2-5 centiles.
We imputed missing gene-expression values with the k-nearest
neighbour algorithm from package “impute” [19]. In this study miss-
ingness was negligible, with missing only two out of some 9000 gene
expression values.

We performed all statistical analyses in R version 3.2.2 [20].
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2.8. Data sharing

We have made data supporting this study available within the
main and supplementary sections of our manuscript. According to
UK research councils’ common principles on Data Policy, any further
data related to this study will be available through application to the
Biobank “Transplantation, Immunology and Nephrology Tissue and
Information Nexus” (TIN-TIN) based at King's College London, London
UK. Ethical application reviewed and approved by London - Bromley
Research Ethics Committee in September 2019 Ref: 17/L0/0220.
Applications should be directed to Dr Paramit Chowdhury, Head of
the Biobank. Guys and St Thomas’ NHS Foundation Trust. Renal Unit,
6th floor Borough Wing. Guy’s Hospital. Great Maze Pond. London
SE1 9RT. Paramit.Chowdhury@gstt.nhs.uk

3. Results

The demographic characteristics of all study participants and the
IS drugs they received are summarised in Table 2.

Table 2

3.1. Immunosuppressive drugs influence relevant gene-expression levels

IS drug therapy affected the expression of individual genes from
all signature gene-sets (Supplementary Fig. S1). IS drugs explained as
much as 50% of the variability observed in the expression of the
TCL1A gene from DANGER-g6, and some 20-30% for the IGLC1 and
NFKBIA genes from GAMBIT-g9, the BNC2 gene from ROEDDER-g3,
both IGKV1D-13 and IGKV4—1 genes from NEWELL-g2, and the CD40,
ID3, and MZB1 genes from DANGER-g6.

PRED affected most genes. With PRED therapy, expression was
lower for all genes from NEWELL-g2 and DANGER-g6, the HSD11B1
and NR3(C2 genes from GAMSTER-g4, and the EEF1A1 and IGLC1 genes
from GAMBIT-g9. However, expression was higher with PRED for
the BCL2A1 and NFKBIA genes from GAMBIT-g9, the H6PD gene
from GAMSTER-g4, and the KLF6 gene from ROEDDER-g3
(Supplementary Fig. S1). With CNI therapy, expression was higher for
the IGLC1 gene from GAMBIT-g9, both IGKV1D-13 and IGKV4—1 genes
from NEWELL-g2, and the ID3 gene from DANGER-g6, for CYC and
TAC alike. With AZA therapy, expression was lower for the BNC2

Demographic characteristics and immunosuppressive drug treatment of study participants.

Cohort T1-cohort (total) T1-cohort (T2 match subset) T2-cohort
Patient type CR Stable TOL CR Stable TOL CR Stable TOL
Number 34 186 18 15 43 12 15 43 12
T1-T2 time?® - - - - - - 6-4(3.0) 71(3:2) 54(2-3)
Age® 44.7(144) 507(13-2) 485(14:2) 443(14.7) 489(13.0) 503(151) 44.8(145) 494(131) 509(14.9)
Time from Tx* 9.5(7-1) 14.8(79) 19-0(8:1) 6-3(4-0) 15-1(69) 20-8(87) 6-8(4-0) 156 (6:9) 21-2(8:6)
eGFR* 33.1(12.7)  63.9(229) 604(157) 333(11-4) 61-3(257) 61.7(12:5) 32.2(103) 58:6(20-1) 66:8(21:1)
Female” 11(32-4) 60 (32:3) 4(22-2) 4(26-7) 12(27-9) 2(16-7) 4(26-7) 12 (279) 2(167)
Ethnicity”
White 28(82-4) 162 (87-1) 16 (88-9) 11(73-3) 38(88:4) 11(91.7) 11(73-3) 38(884) 11(91.7)
Asian 1(2-9) 6(32) - - 2(47) - - 2(47) -

Black 3(88) 8(43) - 2(133) 2(47) - 2(133) 2(47) -
Other [ unknown 2 (5-9) 10(5-4) 2(111) 2(133) 1(2-3) 1(8-3) 2(133) 1(2-3) 1(8-3)
Living donor” 12(35-3) 57 (30-6) 8(444) 6(40.0) 11(25-6) 7(58:3) 6 (40.0) 11(25-6) (58-3)
DSAP 15 (44-1) 16 (8-6) 3(16-7) 6(40.-0) 5(11-6) 2(16-7) 6 (40-0) 5(11:6) 2(167)

HLA mismatch”
None - 18(9-7) 5(27-8) - 2(47) 3(25-0) - 2(47) 3(25.0)
HLA A only - 8(43) 1(56) - 2(47) 1(83) - 2(47) 1(83)
HLA B only 2(59) 14(7-5) - - 3(7.0) - - 3(7.0) -
HLA DR only 1(2-9) 1(0-5) - 1(6-7) 1(2-3) - 1(6-7) 1(2-3) -
HLA Aand B 8(235) 39(21.0) 2(111) 6(40.0) 6(14.0) 1(83) 6 (40.0) 6(14.0) 1(83)
HLA A and DR 3(88) 12(6-5) - 1(6-7) 5(11-6) - 1(6-7) 5(11:6) -
HLA B and DR 3(88) 13(7-0) - 2(133) 5(11-6) - 2(133) 5(11-6)
HLA A, B and DR 14 (41-2) 60 (32:3) 7(389) 4(26-7) 11(25-6) 5(41.7) 4(26-7) 11(25-6) (41.7)
Unknown 3(88) 21(113) 3(16-7) 1(6-7) 8(18:6) 2(16-7) 1(6-7) 8(18:6) 2(167)
IS drugs®
On PRED 24(70-6) 78 (41.9) - 10(66-7) 23(53-5) - 11(73-3) 23(53:5) -
Off CNI 2(59) 34(18:3) 18 (100) 1(6-7) 7(16:3) 12 (100) 1(6-7) 7(16:3) 12 (100)
On CYC 4(11-8) 96 (51-6) - 1(6-7) 25(581) - 1(6-7) 25(581) -
On TAC 28(82-4) 56 (30-1) - 13 (86-7) 11(25-6) - 13 (86.7) 11(25-6) -
Off AP 6(17-6) 33(17-7) 18 (100) 3(20:0) 11(25-6) 12 (100) 2(133) 11(25-6) 12 (100)
On AZA 5(14.7) 67 (36:0) - 3(20:0) 15(34.9) - 3(20-0) 15(349) -
On MMF 23(67-6) 86 (46-2) - 9(60-0) 17 (39-5) - 10 (66-7) 17 (39-5) -
IS drug doses®
PRED 5.0(31) 5.0 (0) - 6-9(5-0) 5.0(1-0) - 7-5(5-0) 5.0(2-2) -
CcYC 150 (19) 150 (100) - 125(0) 125(125) - 200 (0) 150 (100) -
TAC 4.5(21) 3.8(3-0) - 5.0(6-0) 4.0(1-5) - 5.0 (4-5) 4.0(20) -
AZA 100 (75) 100 (50) - 150 (25) 75 (62) - 150 (25) 75 (62) -
MMF 1000 (750) 1000 (500)  — 1037(1000) 1000 (500) — 509 (1390) 1000 (500) -

o

— summarised with mean (standard deviation);

> _ summarised with number (percentage from total in group);

c

— summarised with median (interquartile range) for patients receiving the corresponding drug; Age — age at sample collection (years); AP — anti-prolifer-

ative; AZA — azathioprine; CNI — calcineurin inhibitor; CYC — cyclosporin; CR — chronic rejector kidney transplant recipients (KTRs); DSA — donor specific anti-
bodies; eGFR — estimated glomerular filtration rate; HLA — human leucocyte antigens; IS — immunosuppressive; KTRs — kidney transplant recipients; MMF —
mycophenolate-mofetil; PRED — prednisolone; TAC — tacrolimus; TOL — KTRs with operational tolerance; T1-T2 time — time between timepoints 1 and 2
(months); Time from Tx — time from transplantation (years); T1-cohort — participants at baseline; T2-cohort — participants from T1-cohort with a follow-up
sample; T1-cohort (T2 match subset) — the subset of the cohort at time point one that included only the patients providing samples in both time points; Two of
the 12 healthy controls were women and the mean age at sample collection was 493 (standard deviation=12e8) years. eGFR was available for 12 TOL, 173 stable
and 31 CR KTRs from T1-cohort and for 10 TOL, 40 stable and 14 CR KTRs from T2-cohort. KTRs were recruited in 14 transplant centres and samples were col-

lected between September 2009 and December 2014 [6].
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gene from ROEDDER-g3 and the AKR1C3, CD40, and TCL1A genes from
DANGER-g6. With MMF therapy, expression was lower for both
IGKV1D-13 and IGKV4—1 genes from NEWELL-g2 and the MZB1 gene
from DANGER-g6 (Supplementary Fig. S1). Although the variability of
doses was limited for PRED (63% on 5 mg/day) and TAC (77% on
2-6 mg/day), dose response associations were observed between the
genes and IS drugs highlighted above (Supplementary Fig. S2). Dose
response associations were more robust for CYC, AZA and MMF,
which had wider ranging doses.

Adjustment of gene-expression values for IS drug therapy altered
the contribution of some genes to the signatures of OT, but not pro-
portionally to the variability in gene-expression explained by IS drugs
(Fig. 1). For example, after drug adjustment the IGCL1, IGKV4—1, CD40,
and TCLAT genes, all with R?>20%, retained their contribution to the
discrimination of TOL from Non-TOL KTRs (Fig. 1a,d,e). At the same
time, the AKR1C3 and BCN2 genes, also with R?2~20%, completely lost
discriminating ability, as the median of their regression coefficients
became zero (Fig. 1c,e), while the regression coefficient completely
changed sign for the ID3 gene, also with R?>~25% (Fig. 1e).

3.2. Immunosuppressive drugs influence the predicted probability of
tolerance

Drug-adjustment affected, to some extent, the discrimination

(Supplementary Fig. S3). Notably, in T1-cohort, the AUC of the drug-
adjusted version was considerably higher than the unadjusted ver-
sion for GAMSTER-g4 (Table 3). However, the drug-adjusted version
for ROEDDER-g3 effectively lost OT discrimination and the drug-
adjusted version of DANGER-g6 had lower AUC and poor agreement
of the identification of TOL-positivity when compared to the unad-
justed version. The number of Non-TOL KTRs identified as TOL-posi-
tive differed between signatures and between the drug-adjusted and
the unadjusted version of each signature.

The AUCs of all signatures in T2-cohort were comparable to T1-
cohort, but the agreement in the identification of TOL-positivity
between T2-cohort and T1-cohort was considerably better for the
drug-adjusted version of GAMSTER-g4 and DANGER-g6 (kappa~0-75)
compared to the unadjusted version (kappa~0-35) (Table 4). There
was no evidence that any signature preferentially classified KTRs with
higher eGFR as TOL-positive (Supplementary Fig. S4).

The predicted probabilities of tolerance from the original version
of GAMBIT-g9 and GAMSTER-g4, using drug-adjusted gene-expres-
sion levels, were not influenced by IS drugs (Fig. 2a,b). On the con-
trary, IS drugs explained 20—30% of the variability observed in the
probabilities of tolerance predicted with the original version of
ROEDDER-g3, NEWELL-g2, and DANGER-g6, using unadjusted gene-
expression levels (Fig. 2c—e). The predicted probabilities of tolerance
were affected by individual IS drugs as follows: lower with AP ther-

between TOL and Non-TOL KTRs for all signatures apy, especially with AZA, for ROEDDER-g3 (Fig. 2¢); lower with PRED
5 a. - b.
5 5
< 30 g 20
S S
S 1.6
g 24 < o
= 1.8 ol
£ 12 £ o5
T 06 é shes é T o4
g 0 = e T = T o
.06 * = L] g
=12 B -04 $
8 e S
L-18 208
z 24 212
£ 3.0 =
=6
536 5 I
) 5 -2
- 23 T == £% g® 3§ gk 23 g8 ¢ 28 gz& g gs
T d¢ Ee ET By 3T ¥n &Y ¢ €9 D¢ 2= 2o
Z\o B g LL][\ So = Q o N T << u.m I e, e %V %_
m = = 8 I = Z >4 E 3 E’ ~ ~ u::
c. = . .
= g d e €
< fo =
S 14 2 1.8 5 1.6
s 2 5
e 12 e 15 = s
£ 10 $ g = b
5 08 2 12 508 é
0.6 209 =) é
T 04 = 0.6 T 04 & +
g 02 o 0 *
5 o 1 g 03 g
3 02 T S 0 204
! ) =] T
é 0.4 $ S 03 é 08
g 06 £-0.6 s
g 08 509 5
-1.0 2 - e . 5 -1.6
= 58 =me g 23 g = 5% g2 3% [ ZT =%
QN = = = < o - Q [ 0 = N 9 a%
g e &S 23 S < g S g Oy ES = S3 g9
= — MO = ¥ < 0o < < =3
— Q CHA b <~ < — © =y o
I = — S ISl i) ey

Fig. 1. Influence of drug-adjustment of gene-expression values on the regression coefficients for individual genes included in the examined signatures.

(a) — GAMBIT-g9; (b) — GAMSTER-g4; (c) — ROEDDER-g3; (d) — NEWELL-g2; (e) — DANGER-g6; Regression coefficients — the larger the absolute value, the bigger the contri-
bution of the corresponding gene to the signature model, i.e. genes with regression coefficients close to zero had minimal or no contribution to the discrimination of operational tol-
erance; Box and whiskers — summary of regression coefficients from the individual elastic net models (penalty parameter alpha=0-05) in 100 repeats of six-fold cross-validation
cycles (600 models in total) — horizontal line: median, box — 25%"—75™ centile range; whiskers — 2.5"—-97.5™ centile range; White boxes — summary of regression coefficients
from models based on unadjusted gene-expression values, derived with the —ACt method, relative to HPRT as a house-keeping gene for GAMBIT-g9, GAMSTER-g4 and ROEDDER-
23, GAPDH for NEWELL-g2 and the geometric mean of ACTB, B2M, GAPDH and HPRT1 for DANGER-g6 (gene details are included in Supplementary Table S1); Grey boxes — summary
of regression coefficients from models based on drug-adjusted gene expression values, derived as the residuals from linear models regressing gene-expression values for each gene
on drug therapy (prednisolone (PRED) — on/off, calcineurin inhibitors (CNI) — off, or on cyclosporine (CYC), or on tacrolimus (TAC), anti-proliferative agent (AP) — off, or on azathio-
prine (AZA), or on mycophenolate mofetil (MMF); Numbers (x-axis) — summary of the percentage of variability explained by drugs in the drug-adjustment models of the cross-val-
idation cycles: median (2-5™-97.5™ centile range); Signature gene-sets are described in Table 1.
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Table 3
Comparison of the predictive performance of signatures calibrated with unadjusted and drug-adjusted gene-expression values.
Signature Cross-validation T1-cohort
Drugadj.  AUC Specificity AUC p Spec  TOL-posST/CR  Cohen’skappa
GAMBIT-g9 no 0-76 (0-72—0-80)  0-84(0-79-0-89)  0-86(0-77-0-94) 0-12 094 11/3 0-55
yes 0-82(0-78-0-86)  0-91(0-86-0-95)  0-90(0-83-0-96) 096  6/3
GAMSTER-g4 no 0-62 (0-56-0-66)  0-71(0-60-0-76)  0-70(0-58—0-82) 0-0024 079  41/6 0-54
yes 0-80(0-77-0-82)  0-87(0-81-0-92)  0-83(0-75-0-91) 0-90 18/4
ROEDDER-g3 no 0-76 (0-74-0-78)  0-80(0-76-0-83)  0-79(0-72-0-87) 000033 082 35/4 0-10
yes 0-53(0-43-0-60) 0-44(0-23-0-63)  0-58 (0-44-0-72) 0-58 75/18
NEWELL-g2 no 0-72(0-69-0-73)  0-79(0-76-0-83)  0-75(0-62-0-87) 0-19 0-85 30/4 0-54
yes 0-75(0-72-0-77)  0-86(0-81-0-90)  0-77 (0-65-0-89) 0-87 25/4
DANGER-g6 no 0-85(0-84-0-86)  0-92(0-90-0-94)  0-89(0.81-0-96) 0-029 095 10/1 0-29
yes 0-76 (0-74-0-78)  0-90(0-85-0-92)  0-¢79(0-67-0-92) 0-90 17/4
COMBINED-all  yes 0-89(0-84-0-92)  0-95(0-92-0.97)  0-97 (0-94-0-99) 0-066 098 3/2 092
COMBINED-g7  yes 092 (0-88-0-94)  0-96(0-94-0-98)  0-96 (0-93-0-99) 097 5/1 0-88

COMBINED-all — a signature including all genes from the five examined signature gene-sets with elastic net penalty alpha=0-95, enabling gene exclusion
(signature gene-sets are listed in Table 1); Drug Adj — indicates whether drug adjustment of the gene-expression values was used; AUC — area under the
receiver operation characteristics (ROC) curve; Cross-validation — summaries from 100 repeats of six-fold cross-validation cycles: median (2.5%"-97.5t"
centile range); T1-cohort — performance of the final model (95% DeLong confidence interval for AUC); Specificity (Spec) — determined with a cut-off at
the median predicted probability of tolerance among patients with operational tolerance at every cross-validation cycle, ensuring 50% sensitivity for all
signatures; p — p-value from DeLong’s test for comparison of the AUC of paired ROC curves for the drug-adjusted vs. unadjusted versions of each signature,
or the parsimonious seven-genes vs the all-genes COMBINED signature; TOL-pos — stable (ST, out of 186) / chronic rejector (CR, out of 34) patients with
predicted probability of tolerance higher than the cut-off described above, i.e. identified as TOL-positive; Cohen’s kappa —index of interrater agreement,
comparing identification of TOL-positivity by the drug-adjusted and unadjusted version of each signature, or the two COMBINED signatures, with kappa=1
indicating complete agreement and kappa=0 indicating complete lack of agreement.

and MMF therapy, and higher with CNI therapy for NEWELL-g2
(Fig. 2d); and lower with PRED and AZA therapy for DANGER-g6
(Fig. 2e), with some dose effect (Supplementary Fig. S5).

3.3. Development of the consensus drug-adjusted gene-expression
signature

Despite using a vigorous elastic net shrinkage penalty (alpha=0.95),
14 of all 24 genes included in the COMBINED-all signature showed a
non-zero median of the elastic net regression coefficients obtained in
cross-validation, with each of the five original signatures contributing
genes and neither retaining all genes (Fig. 3a). Three genes: HSD11B1,
IGKV1—4, and CD40 stood out as the best candidates for a generalisable
signature, as they were consistently retained in over 97-5% of the

cross-validation elastic net models, followed by RAB40C, NR3C2, CTL4,
and MZB1, which were retained in over 75% of the cross-validation
models (Fig. 3a). OT discrimination was retained when the gene-set
was confined to these seven genes, with some marginal improvement
(Table 3). The probabilities of OT derived from the parsimonious COM-
BINED-g7 signature were not associated with IS drugs (Fig. 3c).
There was good agreement in the identification of TOL-positivity
between T1-cohort and T2-cohort (kappa=0.-65 for COMBINED-all and
COMBINED-g7) (Table 4). COMBINED-g7 identified as TOL-positive
at both timepoints six of the 12 TOL patients and a single stable
patient, receiving PRED, CYC, and MMF (Supplementary Fig. S6).
This stable patient was also identified as TOL-positive by the drug-
adjusted versions of GAMBIT-g9, NEWELL-g2, and DANGER-g6
(Supplementary Table S2).

Table 4
Comparison of the predictive performance of signatures in T1-cohort (development/calibration) and T2-cohort (longitudinal
validation).
Drug  Prob T1-cohort (T2 match subset) T2-cohort Cohen'’s
Signature Adj. Cut-off  AUC Sens  Spec  AUC Sens  Spec  kappa
GAMBIT-g9 no 013 0-89 (0-79-0-98) 0-50 095 0-83(0-73-0-94) 042 0-90 053
yes 0-20 0-89 (0-80-0-98) 0-58 095 0-84(0-73-0-96) 0-50 0-86 0-50
GAMSTER-g4 no 0-09 0-68 (0-52-0-84) 0-42 0-74 0-69 (0-53—-0-84) 033 093 032
yes 0-14 0-81(0-69-092) 050 088 083(0:74-093) 042 091 0-74
ROEDDER-g3 no 012 0-87 (0-79-0-96) 0-50 0-90 0-83(0-73-0-93) 042 0-90 0-64
yes 0-08 0-57 (0-40—-0-75) 0-67 0-50 0-52(0-35-0-69) 0-67 041 0-39
NEWELL-g2 no 0-12 0-83(0-71-096) 058 090 082(069-094) 042 088 046
yes 012 0-85(0-71-0-98) 0-67 091 0-84(0-72-0-96) 0-50 0-84 0-46
DANGER-g6 no 024 0-97 (0-92-1-00) 0-58 1-00 0-93 (0-87-0-99) 0-50 0-98 037
yes 0-15 0-86(0-72-0-99) 058 091  091(0-83-0-98) 058 095 0.78
COMBINED-all yes 030 0-95(0-90—-1-00) 0-58 095 0-97 (0-94-1-00) 0-67 0.97 0-65
COMBINED-g7 yes 032 0-95 (0-90-1-00) 0-58 097 0-97 (0-93—-1-00) 083 0-98 0-65

COMBINED-all — a signature including all genes from the five examined signature gene-sets with elastic net penalty alpha=0-95,
enabling gene exclusion (signature gene-sets are listed in Table 1); Drug Adj. — indicates whether drug adjustment of the gene-
expression values was used; AUC — area under the receiver operation characteristics (ROC) curve (95% DeLong confidence inter-
val); T1-cohort (T2 match subset) — the subset of the cohort at time point one that included only the patients providing samples
at both time points; T2-cohort — 70 patients from T1-cohort providing follow-up samples at time point two (this was used as a
longitudinal validation set); Prob Cut-off — probability cut-off used to calculate specificity and sensitivity, determined as the
median predicted probability of tolerance among all patients with operational tolerance in the complete T1-cohort, i.e. accounts
for 50% sensitivity in the total T1-cohort; Sens | Spec — sensitivity and specificity; Cohen’s kappa —index of interrater agree-
ment, comparing identification of TOL-positivity in T1-cohort and in T2-cohort.
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Fig. 2. Influence of immunosuppressive drugs on the predicted probabilities of tolerance.

(a) — GAMBIT-g9 (R<1%); (b) — GAMBIT-g4 (R><1%); (c) — ROEDDER-g3 (R?>=21%); (d) — NEWELL-g2 (R?>=31%); (e) — DANDER-g6 (R?>=33%); R — percentage of explained var-
iability from linear models regressing the predicted probability of tolerance (log-odds) on immunosuppressive (IS) drugs, i.e. the percentage of variability in the probabilities, which
is explained by IS drugs coded as follows: prednisolone (PRED) — off or on; calcineurin inhibitors (CNI) — off, on cyclosporine (CYC), or on tacrolimus (TAC); anti-proliferative agents
(AP) — off, on azathioprine (AZA), or on mycophenolate mofetil (MMF) (log-odds convert the probability scale, restricted between zero and one, to a continuous scale required for
linear regression); p-values — derived from Wald tests in the linear regression models described above, i.e. adjusted for therapy with other IS drugs (of note, most patients off CNI
received prednisolone and vice versa, which would explain why differences in gene-expression levels observed between off/on CNI are not always reflected in the adjusted p-val-
ues); pail symbols — stable kidney transplant recipients; dark symbols — patients with chronic rejection (CR); horizontal lines per group — mean probability of tolerance for the
group; horizontal reference lines — median probability of tolerance in tolerant patients, i.e. a cut-off ensuring 50% sensitivity.
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Fig. 3. Combined signatures based on drug-adjusted gene-expression values.

(a) COMBINED-all - regression coefficients for a signature including all genes examined in the study, with an elastic net penalty which favours gene exclusion (alpha=0-95); (b)
COMBINED-g7 — regression coefficients for a signature including the seven selected genes, with elastic net penalty which favours gene retention (alpha=0-05); (¢) COMBINED-g7 —
influence of immunosuppressive drugs on the predicted probability of tolerance (percentage of explained variability R><1%); Box and whiskers — summary of regression coeffi-

cients of elastic net models derived from 100 repeats of six-fold cross-validation cycles (600 models in total) —

horizontal line: median, box — 25®—75" centile range; whiskers —

2.51_97.5™" centile range; Genes with values closer to zero contributed less to the discrimination of operational tolerance; White boxes — genes with zero regression coefficients
(i.e. excluded) from the final complete dataset model; Grey boxes — genes with non-zero regression coefficients (i.e. included) in the final complete dataset model; Gene expression
— derived with the —ACt method, relative to hypoxanthine phosphoribosyl-transferase (HPRT) as a house-keeping gene (gene details are shown in Supplementary Table S1), with
drug adjustment in linear models regressing gene-expression values for each gene on indicators of drug therapy: prednisolone (PRED) — off or on; calcineurin inhibitors (CNI) —
off, on cyclosporine (CYC), or on tacrolimus (TAC); anti-proliferative agent (AP) — off, on azathioprine (AZA), or on mycophenolate mofetil (MMF).

Supplementary Table S3 contains the regression coefficients for
all examined signatures. The legend of this table provides detailed
instructions on how to use the regression coefficients to perform
drug-adjustment of gene expression values and to calculate proba-
bilities of OTSupplementary Material file.

4. Discussion

To our knowledge, this is the first direct comparison of gene-expres-
sion signatures of OT in KTRs in the laboratory, using a relatively large
cohort of patients. We demonstrated that IS drugs considerably influ-
ence gene-expression and the probability of OT predicted with signa-
tures based on gene-expression unadjusted for IS drugs. We developed
the first parsimonious consensus signature based on drug-adjusted
gene-expression values, which includes the strongest predictors among
24 genes from five previously published signatures.

The influence of IS drugs was particularly notable for ROEDDER-
g3, for which the statistical selection of the signature gene-set, com-
prising genes related to monocyte-derived dendritic cells, did not
account for the effect of IS drugs. Although the authors have consid-
ered the possibility of IS drug regimens influencing their signature,
they could not find statistically significant differences between the
drug regimens of 11 treated KTRs identified as TOL-positive [12].
Nevertheless, we have now demonstrated that the probability of OT

based on ROEDDER-g3 is lower with AZA therapy and that OT dis-
crimination was essentially lost when using drug-adjusted gene-
expression values. Lee et al. have also failed to find differential
expression of the three signature genes in Korean KTRs, in a dataset
including eight TOL KTRs [21].

The development of DANGER-g6, a signature dominated by B-
cell genes, has similarly relied on a statistical procedure using
unadjusted gene-expression values [10]. Although the authors
concluded that their signature is independent of IS drugs, we have
now shown that PRED and AZA considerably influence the pre-
dicted probabilities of OT. There are several possible explanations
for this discrepancy. First, we have adjusted the association of indi-
vidual IS drugs for other drugs included in the IS regimen, while
Danger et al. compared groups on/off individual drugs [10]. Con-
sidering all IS drugs is important, because patients off one IS drug
would most likely be receiving another. GAMBIT patients off PRED
were, indeed, treated preferentially with CNI, so a simple compari-
son on/off PRED, without adjustment for CNI therapy, would have
been a comparison between PRED and CNI. Furthermore, Danger
et al. [10] grouped AZA and MMF when comparing off/on AP
agents, while we found that AZA was the main drug affecting the
signature, so the proportion of AZA-treated KTRs would influence
the joint effect in a combined AP group. In addition, Danger et al.
used isolated PBMC from blood collected in vacutainers with
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ethylenediamine tetraacetic acid [10], while we collected whole
blood in Tempus™ tubes in GAMBIT.

Another outstanding example illustrating the substantial influ-
ence of IS drugs on gene-expression signatures of OT developed using
statistical algorithms for gene selection is the complete lack of over-
lap between the two signatures derived in our group from the same
microarray data (the RISET study) using initially unadjusted gene-
expression and later using drug-adjusted gene-expression values for
GAMBIT-g9 [6,22]. The former signature was, indeed, influenced by
IS regimens [6,8].

Although the AUC for NEWELL-g2, a signature including B-cell
genes, was not influenced by drug-adjustment, the predicted proba-
bility of OT was considerably lower with PRED and MMF and higher
with CNI therapy, in agreement with the findings of Bottomley et al.
[8]. Moreso et al. had earlier reported higher peripheral expression of
the IGKV1D-13 and IGKV4—1 genes in CNI treated KTRs, especially
with longer treatment (5—10 years) [17]. Although the authors addi-
tionally reported lower expression levels of the two B-cell genes in
AZA treated KTRs, their findings were based only on 8 stable KTRs
and we could not confirm this observation with 67 stable KTRs. Asare
et al. have similarly reported that TOL-positivity was higher with TAC
therapy and was lower with PRED, MMF, thymoglobuline, and
mTOR-inhibitor therapy [23]. The authors additionally reported
increased counts for all B-cell sub-types in KTRs consistently TOL-
positive compared to TOL-negative KTRs, but without the characteris-
tic differential increase in transitional and naive B-cells described in
KTRs with OT [23]. This would support a hypothesis that the observed
differences between TOL-positive and TOL-negative KTRs were partly
determined by IS drugs rather than OT. We and others have previ-
ously shown that transitional B-cells are in fact suppressed by AZA
and PRED, with a dose response effect for PRED and an increase in
transitional B-cell counts after PRED withdrawal [6,8]. We have now
demonstrated that 30% of the variability of the B-cell genes IGKV1D-
13 and IGKV4—1 can be explained by drug therapy, which supports
the concept that the effects of IS drugs on gene expression in periph-
eral blood and on signatures of OT reflect the effect of drugs on circu-
lating immune cells. Furthermore, despite NEWELL-g2 predicting
higher probability of OT for KTRs with TAC therapy and Moreso et al.
concluding that CNI treated KTRs consistently express biomarkers
associated with true tolerance [17], TAC withdrawal in clinical trials
has dramatically failed [24,25]. Therefore, a gene-expression signa-
ture unadjusted for IS drug therapy does not necessarily identify a
drug-independent B-cell pattern which would be maintained after IS
reduction or withdrawal. Accordingly, we argue that drug adjustment
may facilitate a distinction between underlying biological differences
and the effects of IS drugs.

We have shown that five completely different gene-sets can all
discriminate untreated TOL KTRs from treated Non-TOL KTRs. This,
however, is not the distinction of interest. To be applicable in clinical
practice, a gene-expression signature of OT should identify molecular
features of OT among treated KTRs. Although Asare et al. have
emphasised that NEWELL-g2 identifies KTRs without donor-specific
antibodies (DSA) and with high and stable eGFR [23], a stable graft
function, and absence of DSA in treated KTRs may be dependent on
maintaining IS therapy [5]. A signature of OT would, therefore, need
to discriminate between stability resulting from IS therapy, which
would be lost, and stability resulting from OT, which could be main-
tained after IS withdrawal. To address this, one would ideally need to
examine molecular features of treated stable KTRs at baseline and
then follow them up after IS drug withdrawal to establish the out-
come. However, while this experimental paradigm has been success-
fully implemented in liver transplantation [26], attempts of complete
IS withdrawal in kidney transplantation have failed [24]. Therefore,
in silico IS drug withdrawal with a statistical adjustment for IS drug
therapy could be used as an approximation to experimental IS with-
drawal in the signature development stage. Although most experts

would accepts that IS drugs influence gene expression [7], the influ-
ence of IS drugs on signatures of OT is often examined only after
selecting the signature gene-set [27]. We have now demonstrated
that adjustment for IS drug therapy prior to gene selection can mini-
mise the drug dependence of signatures of OT. We have also shown
that lack of adjustment can result in the statistical selection of genes
such as the BNC2 gene, which are differentially expressed in TOL
KTRs mainly due to IS drug therapy. Ultimately, a clinically applicable
signature of OT would need to be validated with prospective IS drug
reduction in a clinical trial. An in silico approach is not a substitute for
a rigorous validation. Nevertheless, advancing a signature of OT to a
clinical trial stage in the absence of any mechanism to account for the
influence of IS drugs in the signature development stage, would be a
considerable sacrifice to ask from patients.

Although sceptics may question the future of gene-expression sig-
natures of OT in kidney transplantation, there is a pressing need for
personalisation of IS regimens for precision medicine therapies.
Gene-expression signatures of OT could gain more credibility, if
developed with joint analysis of published signatures in a new data-
set and selection of consensus gene-sets including the strongest pre-
dictors. This could reduce the multiplicity of signatures and improve
their generalisability. Danger et al. have adopted the joint analysis
approach with unadjusted gene-expression levels [10], selecting the
six strongest predictors among 20 consensus genes of OT in kidney
and liver transplantation, previously identified by Baron et al. [28].
We have now extended this approach to drug-adjusted gene expres-
sion. Our COMBINED-g7 signature is a parsimonious consensus gene-
set which captures the strongest predictors of OT after minimising
the influence of IS drugs. A parsimonious gene-set is cost-effective, as
it includes the smallest number of genes, which retain the predictive
performance of an extended gene-set. We have shown that very few
stable patients are identified as tolerant, which would account for the
numerous failures of grafts after IS withdrawal [24], and the scarcity
of patients that have achieved OT. Although we have identified in
this study the genes consistently affected in most examined KTRs, an
external validation of our COMBINED-g7 signature in an independent
dataset would be required prior to considering a further validation in
a clinical trial.

A biological rationale behind the genes included in COMBINED-g7
is supported by laboratory studies. First, transitional B-cells have
been associated with protection from acute rejection and their
involvement in OT [29,30], as well as that of B-cell genes such as
IGKV4—1, is well established [27]. Further, we and others have shown
that KTRs with established OT, in contrast to CRs, display a fully func-
tional CD40/STAT3 (signal transducer and activator of transcription
3) signalling pathway in regulatory B-cells [31,32]. An antibody
blockage of CD40 gene has, indeed, abrogated the development of
tolerance in an experimental mixed-chimerism model of kidney
transplant tolerance induction [33]. In addition, CTLA4 gene plays a
key role in the activation of regulatory T-cells (Tregs) involved in
OT, but also of conventional T-cells. A positive association of CTLA4
gene with acute rejection episodes in humans has been described
[34], matching the higher levels of expression we observed in Non-
TOL compared to TOL KTRs. A deletion of the equivalent mouse gene
Ctla4 during adulthood was associated with expansion of conven-
tional, as well as Tregs, which retained their IS properties [35]. Fur-
thermore, we have previously argued that the downregulation of
the pro-inflammatory mineralocorticoid receptor gene NR3C2 and
the upregulation of the anti-inflammatory cortisol-activating
enzyme gene HSD11B1 in stable and CR KTRs is likely a response to
the immunological challenge presented by the kidney allograft,
which was not observed in KTRs with OT [9]. Moreover, the silenc-
ing of the MZB1 gene with methylation described in hepatocellular
and gastric cancers could be seen as a form of immunological toler-
ance [36,37], while MZB1 protein was increased in B-cells from
patients with the autoimmune condition systemic lupus
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erythematosus [38]. Finally, RAB40C protein regulates, via an ubig-
uitin-proteasome system, the degradation of RACK1 protein, which
is important in tumour growth and T-cell migration [39]. The
RAB40C gene was also among the main genes silenced with methyl-
ation in breast cancer [40], matching the lower expression in TOL
compared to Non-TOL KTRs that we observed. There are, therefore,
sound reasons to believe that the seven consensus genes are biologi-
cally, as well as statistically important for OT.

Our study has several limitations which must be acknowledged.
These, most importantly, include the lack of external validation in an
independent dataset and the smaller number of TOL KTRs (n = 18),
compared to the 46 considered by Danger et al. [10], but also the lack
of KTRs treated with mTOR inhibitors, and the smaller number of fol-
low-up samples in the T2-cohort compared to the T1-cohort.
Although the T2-cohort addresses the stability of the signature, it
comprises the same patients as the T1-cohort and is not a substitute
for an independent dataset. It should further be noted that KTRs from
the GAMBIT study contributed to the development of the GAMBIT-g9
signature and informed the selection of the genes for the new con-
sensus signature COMBINED-g7, as well as the drug-adjustment
models, which may account for a better performance than it would
be observed in an independent dataset. Nevertheless, the GAMBIT
study provides an external validation dataset for the genes included
in the remaining four signatures. Notably, Danger et al. have used the
same patients as Baron et al. [10,28], which would be contributing to
a degree of optimism in the reported predictive performance of their
model-development set, including in the cross-validation that they
have used. A further limitation was the lack of data on protein
expression and enzyme activity, which precluded conclusions on
whether the observed gene expression differences between TOL and
Non-TOL KTRs were translated in downstream effects. Such mecha-
nistic investigations, however, were beyond the scope of the current
study. Furthermore, we did not have data to examine dose response
associations with serum levels of CNI drugs. These, however, may not
be completely reliable as they would depend on the time interval
between drug intake and sample collection and the compliance of
the patients with the recommended protocol. As the majority of KTRs
in our study were white, a follow-up study in a dataset with larger
ethnic diversity would be required for further validation of the gener-
alisability of our newly identified signature. The strength of our study
lies in the relatively large number of KTRs treated with a variety IS
drug regimens, which is comparable to the 266 stable patients used
by Danger et al. [10].

In conclusion, accounting for IS drug therapy prior to developing a
gene-expression signature of OT is paramount and should be imple-
mented before any signature is brought to evaluation in a biomarker-
led clinical trial. Apparent molecular features of OT may otherwise be
determined by treatment.
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