Skip to main content
. 2020 Jul 6;20(13):3790. doi: 10.3390/s20133790

Table 4.

Performance comparison of SVM on different feature sets for binary experiments. Bold font indicates the best result obtained against each feature set.

Feature Set Classifier Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Error (%)
MFCC SVM-L 89.88 76.19 94.44 82.05 92.25 10.12
SVM-Q 89.29 80.95 92.06 77.27 93.55 10.71
SVM-C 92.26 88.1 93.65 82.22 95.93 7.74
SVM-G 75.6 7.14 98.41 60 76.07 24.4
1D-LTP SVM-L 94.05 88.1 96.03 88.1 96.03 5.95
SVM-Q 94.05 83.33 97.62 92.11 94.62 5.95
SVM-C 91.07 76.19 96.03 86.49 92.37 8.93
SVM-G 86.31 47.62 99.21 95.24 85.03 13.69
MFCC+1D-LTP SVM-L 94.05 90.48 95.24 86.36 96.77 5.95
SVM-Q 94.05 88.1 96.03 88.1 96.03 5.95
SVM-C 95.83 92.86 96.83 90.7 97.6 4.17
SVM-G 93.45 88.1 95.24 86.05 96 6.55