Skip to main content
. 2020 Jul 6;20(13):3790. doi: 10.3390/s20133790

Table 6.

Performance comparison of SVM using different feature sets for multiclass experiments. Bold font indicates the best result obtained against each feature set.

Feature Set Classifier Accuracy(%) Sensitivity(%) Specificity(%) PPV(%) NPV(%) Error(%)
MFCC SVM-L 83.93 92.86 85.71 68.42 97.3 16.07
SVM-Q 86.9 90.48 90.48 76 96.61 13.1
SVM-C 88.69 90.48 94.44 84.44 96.75 11.31
SVM-G 83.33 97.62 81.75 64.06 99.04 16.67
1D-LTP SVM-L 94.64 97.62 93.65 83.67 99.16 5.36
SVM-Q 94.05 90.48 95.24 86.36 96.77 5.95
SVM-C 94.64 90.48 96.03 88.37 96.8 5.36
SVM-G 93.45 92.86 93.65 82.98 97.52 6.55
MFCC+1D-LTP SVM-L 93.45 97.62 92.06 80.39 99.15 6.55
SVM-Q 94.43 95.05 94.41 85.06 98.28 5.57
SVM-C 95.24 95.24 95.24 86.96 98.36 4.76
SVM-G 93.45 100 91.27 79.25 100 6.55