Table 6.
Performance comparison of SVM using different feature sets for multiclass experiments. Bold font indicates the best result obtained against each feature set.
| Feature Set | Classifier | Accuracy(%) | Sensitivity(%) | Specificity(%) | PPV(%) | NPV(%) | Error(%) |
|---|---|---|---|---|---|---|---|
| MFCC | SVM-L | 83.93 | 92.86 | 85.71 | 68.42 | 97.3 | 16.07 |
| SVM-Q | 86.9 | 90.48 | 90.48 | 76 | 96.61 | 13.1 | |
| SVM-C | 88.69 | 90.48 | 94.44 | 84.44 | 96.75 | 11.31 | |
| SVM-G | 83.33 | 97.62 | 81.75 | 64.06 | 99.04 | 16.67 | |
| 1D-LTP | SVM-L | 94.64 | 97.62 | 93.65 | 83.67 | 99.16 | 5.36 |
| SVM-Q | 94.05 | 90.48 | 95.24 | 86.36 | 96.77 | 5.95 | |
| SVM-C | 94.64 | 90.48 | 96.03 | 88.37 | 96.8 | 5.36 | |
| SVM-G | 93.45 | 92.86 | 93.65 | 82.98 | 97.52 | 6.55 | |
| MFCC+1D-LTP | SVM-L | 93.45 | 97.62 | 92.06 | 80.39 | 99.15 | 6.55 |
| SVM-Q | 94.43 | 95.05 | 94.41 | 85.06 | 98.28 | 5.57 | |
| SVM-C | 95.24 | 95.24 | 95.24 | 86.96 | 98.36 | 4.76 | |
| SVM-G | 93.45 | 100 | 91.27 | 79.25 | 100 | 6.55 |