View full-text article in PMC Sensors (Basel). 2020 Jun 30;20(13):3669. doi: 10.3390/s20133669 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). PMC Copyright notice Algorithm 1. Cognitive Radar Tracking Recursion Based on PF Initialization 1. x^0(i)∼p(x0), ωk(i)=1/Ns, i=1,…,Ns Controller Optimization 2. x^k(i)∼q(xk(i)|x^k−1(i),zk), the mean Epk(xk|x^k−1(i))[x^k]=fx(x^k−1(i)), i=1,…,Ns 3. ωk(i)(θ)∝p(zk|x^k(i))p(x^k(i)|xk−1(i))/q(xk(i)|x0:k(i),z1:k) , i=1,…,Ns , normalize ω˜k(i)(θ)=ωk(x0:k(i))/∑i=1Nsωk(x0:k(i)) 4. If Neff=1/∑i=1Ns(ω˜k(i))2<Nth(empirical) , then [{x^k(i),ω^k(i)(θ)}i=1Ns]=RESAMPLE[{xk(i),ω˜k(i)(θ)}i=1Ns] 5. Pk(θ)=∑i=1Nsωk(i)(θ)(x^k(i)−x^k)(x^k(i)−x^k)T 6. θk*=argminθk∈P[Tr(P¯k+1|k+1(θk))] . Select the optimal θk=θk* Motion Update and Measurement 7. f−(x^k−1(i))=∫q(xk(i)|xk−1(i);θk)f(x^k−1(i))dxk−1, x^k−1(i)=μk−=Ek−[x^k] 8. y^k=argminylnf(zk|y;θk) Information Update and State Estimation 9. {x^k(i),ωk(i)}={xk(i),ω˜k(i);θk} , i=1,…,Ns , x^k≈∑i=1Nsωk(i)x^k(i)