Skip to main content
. 2020 Jun 30;20(13):3669. doi: 10.3390/s20133669
Algorithm 1. Cognitive Radar Tracking Recursion Based on PF
Initialization
 1.    x^0(i)p(x0), ωk(i)=1/Ns, i=1,,Ns
Controller Optimization
 2.    x^k(i)q(xk(i)|x^k1(i),zk), the mean Epk(xk|x^k1(i))[x^k]=fx(x^k1(i)), i=1,,Ns
 3.    ωk(i)(θ)p(zk|x^k(i))p(x^k(i)|xk1(i))/q(xk(i)|x0:k(i),z1:k) , i=1,,Ns , normalize ω˜k(i)(θ)=ωk(x0:k(i))/i=1Nsωk(x0:k(i))
 4.    If Neff=1/i=1Ns(ω˜k(i))2<Nth(empirical) , then [{x^k(i),ω^k(i)(θ)}i=1Ns]=RESAMPLE[{xk(i),ω˜k(i)(θ)}i=1Ns]
 5.    Pk(θ)=i=1Nsωk(i)(θ)(x^k(i)x^k)(x^k(i)x^k)T
 6.    θk*=argminθkP[Tr(P¯k+1|k+1(θk))] . Select the optimal θk=θk*
Motion Update and Measurement
 7.    f(x^k1(i))=q(xk(i)|xk1(i);θk)f(x^k1(i))dxk1, x^k1(i)=μk=Ek[x^k]
 8.    y^k=argminylnf(zk|y;θk)
Information Update and State Estimation
 9.    {x^k(i),ωk(i)}={xk(i),ω˜k(i);θk} , i=1,,Ns , x^ki=1Nsωk(i)x^k(i)