View full-text article in PMC Sensors (Basel). 2020 Jun 30;20(13):3669. doi: 10.3390/s20133669 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). PMC Copyright notice Algorithm 2. CRPF algorithm for target tracking problem Initialization 1. x0(i)∼p0(x0) , C0(i)=0 , σ02,(i) , i=1,…,Ns , the weighted-particle set Ξ0={x0(i),C0(i)}i=1Ns PMF Update 2. Rk(i)=λCk−1(i)+‖zk−fy(fx(xk−1(i)))‖q , q=1,2 , π^k(i)∝μ(Rk(i))=1(Rk(i)−min{Rk(i)}i=1Ns+δ)β , i=1,…,Ns. 3. {x^k−1(i),C^k−1(i)}i=1Ns=RESAMPLE[{π^k(i)}i=1Ns] Particle Propagation and Variance Update 4. Epk(xk|x^k−1(i))[xk]=fx(x^k−1(i)) , Covpk(xk|x^k−1(i))[xk]=σk2,(i)I[x] , xk(i)∼pk(xk|x^k−1(i)). 5. σk2,(i)={σk−12,(i)t≤10k−1kσk−12,(i)+‖xk(i)−g(x^k−1(i))‖2k×dim[x]t>10 , i=1,…,Ns State Estimation 6. Ck(i)=λCk−1(i)+‖zk−fy(xk(i))‖q , π^k(i)∝μ2(Ck(i))=1(Ck(i)−min{Ck(i)}i=1Ns+δ)β , δ,β>0 , normalized to πk(i), 7. x^k=xkmean=∑i=1Nsπk(i)xk(i) , i=1,…,Ns