Skip to main content
. 2020 Jun 30;20(13):3669. doi: 10.3390/s20133669
Algorithm 3. CCRPF algorithm for maneuvering target tracking problem.
Initialization, (for i=1,,Ns), 
 1.    generate x0(i)p0(x0) , assign the cost C0(i)=0 , and initialize σ02,(i).
PMF Update
 2.    Start with the initial waveform parameter θ. For each θ compute:
 3.      {x^k1(i),ωk1(i)}={xk1(i),ωk1(i)} , i=1,,Ns , zk=fy(xk,wk;θ)
 4.      Rk(i)(θ)=λCk1(i)+zkfy(fx(xk1(i)))q , q=1,2 ; i=1,,Ns , πk(i)μ(Rk(i))=1(Rk(i)min{Rk(i)}i=1Ns+δ)β
 5.      Resampling x^k1={x^k1(i),C^k1(i)}i=1Ns  according to πk(i)
Particle Propagation and Waveform Selection
 6.       xk(i)pk(xk|x^k1(i)) , compute the cost Ck(i)(θ)=λCk1(i)+zkfy(xk(i))q
 7.      Compute the cost function θk*=argminθCΘ(i)(θk|z1:k1;Θk1)+CΘ(θk)
 8.    Select the optimal waveform parameter θk=θk*
Particle and Measurement Recursive Update
 9.      x^k(i)=x^k(i) , zk=fy(xk,wk;θk) , Ck(i)=Ck(i)(θk)
 10.      σk2,(i)(θk)={σk12,(i)t10k1kσk12,(i)+xk(i)fx(x^k1(i))2k×dim[x]t>10, i = 1, …, Ns
Information Update and State Estimation
 11.    π^k(i)μ2(Ck(i);θk)=1(Ck(i)min{Ck(i)}i=1Ns+δ)β, where α,β>0. Normalize the PMF.
 12.       x^k=x^kmean=i=1Nsπ^k(i)x^k(i) . Save the x^k  and P^k(θk).