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Abstract
In the current study, we report the high-quality draft genome sequence of Neonectria sp. DH2, an endophytic fungus 
isolated from Meconopsis grandis Prain in Tibet. The whole genome is about 45.8 Mbp, with a GC content of 53%. A 
total of 14,163 genes are predicted to encode proteins, and 557 of them are considered as unique, as no matches are 
found in five gene databases. A neighbor-joining phylogenetic tree based on internal transcribed spacer (ITS) region 
sequences shows that Neonectria sp. DH2 was most closely related to Neonectria ramulariae. 47 biosynthetic gene 
clusters (BGC) were identified in Neonectria sp. DH2 genome, and only 5 BGCs shows significant similarities to previ-
ously reported BGCs. The presence of 42 unique BGCs in Neonectria sp. DH2 suggests that it has great potential to 
produce novel secondary metabolites.
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Introduction

The ascomycete fungi genus Neonectria are well-known 
plant pathogens associated with beech and fruit trees bark 
canker (Calic et al. 2017; Wenneker et al. 2017; Ramsfield 
et al. 2013). They are also a common genus of endophytic 
fungal (Zhong et al. 2017; Yang et al. 2015). Some members 
of this genus produce bioactivity secondary metabolites. For 
example, endophytic fungus Neonectria ramulariae Wollenw 
KS-246 produces cytotoxic pyrrocidines and pyrrospirones 
(Shiono et al. 2008). Another Neonectria sp. isolated from a 
soil sample from the Qinghai-Tibetan plateaui produces oxa-
phenalenones and Neonectrolide A–E, which showed cyto-
toxic effects against human tumor cell lines (Ren et al. 2012). 

A fungus isolated from a Nasutitermes corniger nest and 
identified as Neonectria discophora SNB-CN63 displaces a 
potent antibacterial activity (Nirma et al. 2014). In contrast to 
the isolation and bioactivity study of their secondary metab-
olites, the genome information of Neonectria sp. remained 
under-exploited. Currently, only three genome sequences have 
been reported: Neonectria ditissima (Genebank Accession 
LDPL00000000, Deng et al. 2015), Neonectria punicea (Gen-
ebank Accession QGQA00000000), and Neonectria hederae 
(Genebank Accession QGQB00000000). Here, we reported a 
high-quality draft genome sequence of Neonectria sp. DH2 to 
better understand the genome of genus Neonectria and exploit 
its second metabolites production potential.
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article (https​://doi.org/10.1007/s1320​5-020-02345​-8) contains 
supplementary material, which is available to authorized users.
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Materials and methods

Strains and cultivation conditions

Neonectria sp. DH2 was isolated from Meconopsis grandis 
Prain, a rare Tibetan traditional medicinal herb, in Tibet, 
China. The strain grew slowly on PDA medium (200 g/L of 
potato extract, 20 g/L of glucose, and 20 g/L agar) at 20 °C 
and formed white mycelium and spore gradually.

Genome sequencing, assembly and annotation

Neonectria sp. DH2 was inoculated in 300  mL PDB 
medium (300 g/L potato, 20 g/L glucose) and cultivated 
at 20 °C. Mycelium was harvested after 7 days of cul-
tivation. Genomic DNA was extracted by QIAGEN® 
Genomic DNA extraction kit (Cat#13323, QIAGEN) 
according to the standard operating procedure provided 
by the manufacturer. The extracted DNA was quan-
tified by NanoDrop™ One UV–Vis spectrophotom-
eter (Thermo Fisher Scientific, USA) for DNA purity 
(OD260/280 ranging from 1.8 to 2.0 and OD 260/230 
is between 2.0 and 2.2). The genomic DNA was sheared 
into 20-kb fragments by g-TUBEs (Covaris, USA) and 
it was sequenced on Sequel Sequencing Kit 2.1 (Pacific 
Biosciences, USA). The coverage sequencing depth 
was 80×. The Neonectria sp. DH2 sequence gener-
ated 454,780 raw reads consisting of 3,696,611,013 
raw nucleotides. The data were assembly using CANU 
assembler v2.0 (Koren et al. 2017). Repeats were masked 
by RepeatMasker (Tarailo-Graovac and Chen 2009). The 
draft genome was annotated using Augustus v3.2 (Stanke 
et al. 2004) and Genscan v3.0 (Stifanic and Batel 2007). 
BUSCO v3.0 (Simao et al. 2015) (ascomycota single-
copy homologous gene databases) was used to assess 
the completeness of Neonectria sp. DH2 genome. Of the 
assembled nucleotides, 96.2% of complete genetic com-
ponents can be found, and 0.7% of the complete BUSCO 
single-copy orthologues are duplication, indicating that 
it is a high-quality assembly. BLAST analysis was based 
on the non-redundant protein database (Nr), Swiss-Prot, 
gene ontology (GO), cluster of orthologous groups of 
eukaryotic proteins (KOG) and kyoto encyclopedia 
of genes and genomes (KEGG) databases. RNAmmer 

(Lagesen et al. 2007) and tRNAscan-SE (Lowe and Eddy 
1997) were used to identify rRNAs and tRNAs. The 18S 
rRNA gene sequence of Neonectria sp. DH2 and sev-
eral other species were aligned using ClustalW (Oliver 
et al. 2005) and phylogenetic analysis based on the near-
est neighbor-joining method was drawn using MEGA7 
(Kumar et al. 2016). CRISPRs webserver was used to 
identify CRISPR repeats. AntiSMASH 3.0 (Medema 
et al. 2011) was used to predict secondary metabolite 
gene clusters.

Results and discussion

The assembly genome is approximately 45.8 Mbp, 
including 43 contigs. Table 1 shows the detail of the 
genome annotation. The GC content of Neonectria sp. 
DH2 genome is 53.00%. The longest contig is 5.08 
Mbp and the N50 length is 1,899,89 bp. Approximately 
1.18 Mbp repeated regions were found in the genome, 
accounted for 2.57% of the genome size. Gene predic-
tion analysis yielded a total of 14,163 protein-encoding 
genes. Of the 14,163 genes predicted, 13,606 (96.07%) 
were annotated by matching against the non-redundant 
protein database (Nr), Swiss-Prot, gene ontology (GO), 

Table 1   General features of the Neonectria sp. DH2

Attribute Value

Genome size (Mbp) 45
DNA G+C content (%) 53
DNA contigs 43
Contig N50 (bp) 1,899,891
Largest contig (Mbp) 5.08
CRISPR repeats 6
rRNA 72
tRNA 210
Genes with function prediction 13,606
Annotated in Nr 13,597 (96.00%)
Annotated in SwissProt 9369 (66.15%)
Annotated in GO 7329 (51.75%)
Annotated in KOG 4038 (28.51%)
Annotated in KEGG 2756 (19.46%)
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Eukaryotic orthologous groups (KOG) and kyoto ency-
clopedia of genes and genomes (KEGG) databases, 557 
(3.93%) were considered as unique, without any matches 
in five databases mentioned above. In addition, 72 rRNA 
and 210 tRNA genes were identified. Six CRISPR repeats 
were detected. Among the predicted genes, 28.51% were 
assigned to KOG. Table 2 presents the distribution of 
genes into KOGs functional categories. A neighbor-join-
ing phylogenetic tree was build based on 18 s rRNA gene 
sequences of Neonectria sp. DH2 (from RNAmmer) and 
other 33 Hypocreales fungi with outgroup of Aspergil-
lus oryzae (Fig. 1). Neonectria sp. DH2 was clustered 
together with Cylindrocarpon/Neonectria genus and was 
most closely related to Neonectria ramulariae (Deng 
et al. 2015).

Most filamentous fungi produce secondary metabo-
lites with diverse biological activities such as choles-
terol-lowering, anti-tumor, and antibiotic activities. 
Based on domain searching of the putative biosynthetic 
core genes and associated genes, 47 BGCs were predicted 
by antiSMASH (Table 3 and Additional file 1: Table S1): 
16 polyketide synthase (PKS), 15 nonribosomal peptide 
synthetase (NRPS), 6 polyketide–nonribosomal peptide 
hybrid synthase (PKS-NRPS) and 4 terpene synthase 
genes. Of the 47 BGCs, 5 BGCs show similarities with 
previously reported gene clusters (Table 4 and Additional 
file 2). The antiSMASH prediction suggests that Neo-
nectria sp. DH2 may produce small molecules similar to 
desmethylbassianin (Fisch et al. 2011), bikaverin (Arndt 
et al. 2015), fujikurins (Von Bargen et al. 2015), fusaric 

Table 2   Number of genes 
associated with general KOG 
functional categories

The total is based on the total number of protein coding genes in the genome

Code Value %age feature

B 46 0.32 Chromatin structure and dynamics
C 363 2.56 Energy production and conversion
E 269 1.90 Amino acid transport and metabolism
A 99 0.70 RNA processing and modification
F 54 0.38 Nucleotide transport and metabolism
G 275 1.94 Carbohydrate transport and metabolism
H 77 0.54 Coenzyme transport and metabolism
J 195 1.38 Translation, ribosomal structure and biogenesis
K 134 0.95 Transcription
V 34 0.24 Defense mechanisms
L 84 0.59 Replication, recombination and repair
I 336 2.37 Lipid transport and metabolism
M 97 0.68 Cell wall/membrane/envelope biogenesis
N 2 0.01 Cell motility
O 328 2.32 Posttranslational modification, protein turnover, chaperones
Y 5 0.04 Nuclear structure
T 240 1.69 Signal transduction mechanisms
Q 423 2.99 Secondary metabolites biosynthesis, transport and catabolism
R 929 6.56 General function prediction only
Z 59 0.42 Cytoskeleton
S 206 1.45 Function unknown
P 115 0.81 Inorganic ion transport and metabolism
W 6 0.04 Extracellular structures
X 1 0.01 Unknown
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acid (Brown et al. 2012) and LL-Z1272β (Li et al. 2016). 
The other 42 BGCs do not have significant homologous 
to previously reported BGCs, suggesting that Neonec-
tria sp. DH2 has a remarkable potential to produce many 
novel secondary metabolites that might have interesting 
biological activities.

Fig. 1   Neighbor-joining 
phylogenetic tree of 18 s 
rRNA gene sequences of 
Neonectria sp. DH2 and its 
taxonomic neighbors. Asper-
gillus oryzae was used as the 
outgroup. The evolutionary 
history was inferred using the 
Neighbor-Joining method. The 
evolutionary distances were 
computed using the Maximum 
Composite Likelihood method 
and are in the units of the 
number of base substitutions 
per site. The analysis involved 
35 nucleotide sequences. 
Codon positions included were 
1st + 2nd + 3rd + Noncoding. All 
positions containing gaps and 
missing data were eliminated. 
There are 235 positions in the 
final dataset. Evolutionary 
analyses were by MEGA7
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Table 3   The BGCs of 
Neonectria sp. DH2 predicted 
by antiSMASH

Type Count

PKS 15
NRPS 13
T1PKS-NRPS hybrid 6
Terpene 5
Others 8
total 47

Table 4   Comparison of 5 BGCs 
from Neonectria sp. DH2 with 
previously reported BGCs

BGCs from Neonectria sp. 
DH2

Reported BGCs Percentage of 
similarity (%)

cluster3 Desmethylbassianin biosynthetic gene cluster 60
cluster14 Bikaverin biosynthetic gene cluster 42
cluster17 Fujikurins biosynthetic gene cluster 33
cluster 22 Fusaric acid biosynthetic gene cluster 45
cluster 37 LL-Z1272β biosynthetic gene cluster 100
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Genome accession number and CCTCC Patent 
number

The whole genome project has been deposited at DDBJ/
EMBL/Genebank under the accession RQWH00000000 
(bioproject PRJNA507358). The strain has been submitted 
to China Center for Type Culture Collection (CCTCC) for 
patent and reservation under the patent number CCTCC M 
2015499.
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