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Abstract

Growing evidence suggests that damage-associated molecule patterns (DAMPs) and their receptors, pattern
recognition receptors (PRRs), are associated with the progression of cardiometabolic disorders, including obesity-
related insulin resistance and atherosclerosis. Cardiometabolic disorders share sterile chronic inflammation as a
major cause; however, the exact mechanisms are still obscure. Toll-like receptor 9 (TLR9), one of the nucleic acid-
sensing TLRs, recognizes DNA fragments derived from pathogens and contributes to self-defense by activation of
the innate immune system. In addition, previous studies demonstrated that TLR9 recognizes DNA fragments
released from host cells, accelerating sterile inflammation, which is associated with inflammatory diseases such as
autoimmune diseases. In obese adipose tissue and atherosclerotic vascular tissue, various stresses release DNA
fragments and/or nuclear proteins as DAMPs from degenerated adipocytes and vascular cells. Recent studies
indicated that the activation of TLR9 in immune cells including macrophages and dendritic cells by recognition of
these DAMPs promotes inflammation in these tissues, which causes cardiometabolic disorders. This review discusses
recent advances in understanding the role of sterile inflammation associated with TLR9 and its endogenous ligands
in cardiometabolic disorders. New insights into innate immunity may provide better understanding of
cardiometabolic disorders and new therapeutic options for these major health threats in recent decades.
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Introduction
Immune cells such as macrophages recognize the struc-
tures of pathogens through a family of pattern recognition
receptors (PRRs) such as Toll-like receptors (TLRs) by de-
tecting components referred to as pathogen-associated
molecular patterns (PAMPs) and activate the innate im-
mune system for self-defense [1]. TLRs are evolutionarily
conserved proteins. Thus far, 10 functional TLRs have
been identified in humans and 12 in mice. TLRs are clas-
sically categorized into two groups by their localization in/
on the cell: cell surface TLRs include TLR1, TLR2, TLR4,
TLR5, TLR6, and TLR11, which mainly recognize mem-
brane components such as lipids, lipoproteins, and pro-
teins on bacteria; intracellular TLRs include TLR3, TLR7,

TLR8, and TLR9, which recognize viral and bacterial nu-
cleic acids. The latter group is expressed in intracellular
vesicles such as endosomes, lysosomes, and endoplasmic
reticulum (ER) [2]. Numerous previous studies have ex-
amined the mechanisms underlying TLR signaling and
demonstrated that it requires the recruitment of several
adaptor molecules, leading to the activation of the NF-κB
and interferon (IFN) regulatory factor (IRF) pathways,
which accelerate inflammatory responses (Fig. 1). In
addition, emerging evidence has revealed that TLR signal-
ing is involved in not only innate immune systems but
also in the pathogenesis of various diseases such as auto-
immune diseases and lifestyle-associated diseases. Among
them, the role of TLRs in the pathogenesis of cardiometa-
bolic disorders, one of the health threats for humans in re-
cent decades, has attracted much attention. TLRs whose
roles in cardiometabolic disorders have been most studied
are TLR2 and TLR4 [3–9], while recent studies have sug-
gested the participation of TLR9, originally known as a
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sensor for exogenous DNA fragments, in these diseases
(Table 1). This review briefly summarizes the role of
TLR9 in the pathogenesis of inflammatory diseases and
describes recent findings, including our own, on the po-
tential participation of TLR9 in the development of car-
diometabolic disorders.

DNA sensors in innate immunity
Nucleic acids are indispensable for life; however, exogen-
ous nucleic acids, especially those from exogenous organ-
isms such as bacteria and viruses, strongly induce
inflammation. There are several sensors for nucleic acids.
Generally, TLR3, TLR7/8, and TLR9 recognize double-
stranded (ds) RNA, RNA, and DNA, respectively. Other
than these TLRs, nucleic acids are also detected by other
groups of molecules, such as retinoic acid-inducible gene I
(RIG-I) and melanoma differentiation-associated gene 5
(MDA5) by detecting single-stranded (ss) RNA and
dsRNA, respectively [31, 32]. In addition to endosomal
DNA-sensing proteins, cytoplasmic DNA sensors, such as
the cGAMP synthase-cGAMP-stimulator of interferon
genes (STING), have been reported [33].
Among these, TLR9 is one of the most studied sensors

for nucleic acids. TLR9 recognizes DNA fragments that
contain unmethylated CpG DNA and plays a role in in-
nate immunity [34, 35]. TLR9 localizes in the ER in mul-
tiple cell types, including macrophages, B cells, dendritic
cells, and plasma cells [34]. After uptake of the ligands

by phagocytosis, TLR9 immediately redistributes from
the ER to the CpG DNA-containing structures. TLR9
activation leads to the production of type I IFN through
myeloid differentiation primary response 88 (MyD88)-
IRF7 or of inflammatory cytokines through MyD88-NF-
κB, accelerating inflammatory responses [2, 36–38].

Role of TLR9 in inflammatory diseases
TLR9 activation plays a central role in self-defense against
exogenous organisms as a sensor for exogenous DNA frag-
ments; however, accumulating evidence has revealed that
TLR9 also recognizes self-derived DNA and promotes in-
flammation improperly in certain disease contexts such as
autoimmune diseases [39, 40]. The pathogenesis of auto-
immune diseases is not clear. The initiating stimuli are
often unidentified, and the reasons why the mechanisms
that ordinarily handle the immune response fail are
unknown. However, it is clear that these diseases are char-
acterized by an extraordinarily destructive tissue environ-
ment. Hence, the DAMP level is elevated locally and/or
systemically in these conditions. To avoid unwanted activa-
tion of TLR9 by endogenous DNA fragments, its level is
thought to be maintained under a certain threshold. How-
ever, disease conditions in which an abundant supply of
DNA fragments overwhelms the removal mechanisms, or
the removal mechanisms of DNA fragments deteriorate
even if the supply is maintained, cause elevation of the
levels of endogenous DNA fragments. The existence of

Fig. 1 Overview of TLR signaling. TLRs are classified into cell surface TLRs and intracellular TLRs. Each TLR recognizes their specific ligands and
promotes gene expression of inflammatory molecules mainly via NF-κB and IRF pathway in immune cells
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Table 1 Potential ligands and roles of TLR9 in cardiometabolic disorders

Organ Ligand Role of TLR9 in cardiometabolic organs Models used Ref

Adipose
tissue

DNA
fragments

- Induction of insulin resistance
- Induction of adipose tissue inflammation

- HFD feeding
- WT and Tlr9-/- mice
- TLR9 antagonist
- Murine peritoneal macrophages
- Human study

[10]

Nucleic acids - Induction of insulin resistance
- Induce adipose tissue and liver inflammation

- HFD feeding
- WT mice
- Inhibitors of ET formation or a TLR7/9 antagonist

[11]

- Up-regulation of inflammatory cytokines and
chemokines

- HFD feeding
- ob/ob and WT mice

[12]

- Improvement of insulin resistance*
- Reduction of adipose tissue inflammation*

- HFD feeding
- WT and Tlr9-/- mice

[13]

Liver HMGB1 - Increase of body weight gain
- Increase of hepatic inflammation

- HFD feeding
- WT and Tlr9-/- mice
- Anti-HMGB1 antibody

[14]

mtDNA - Increase of NAFLD activity
- Induction of liver inflammation

- HFD feeding
- WT, Tlr9-/-, and macrophage-specific Tlr9-/- mice
- TLR9 antagonist
- Human study

[15]

- Increase of non-apoptotic hepatocyte death
- Promotion of liver fibrosis
- Induction of liver inflammation

- HFD feeding
- Hepatocyte-specific DNase 2a-/- mice
- TLR9 agonist/antagonist
- Murine hepatocyte cell line

[16]

Not identified - Stimulation of steatosis, inflammation, and fibrosis
- Induction of insulin resistance

- CDAA diet-feeding
- WT, Tlr9-/-, Il1r-/-, and Myd88-/- mice
- Murine Kupffer cells

[17]

Vasculature DNA
fragments

- Association with coronary artery disease severity - Human study [18]

- Promotion of atherosclerotic lesion development - Apoe-/- and Tlr9-/-Apoe-/- mice
- Angiotensin II infusion
- Murine peritoneal macrophages
- Human study

[19]

- Promotion of atherosclerotic lesion development
- Promotion of inflammatory activation of Endothelial
cells

- Promotion of inflammatory activation of T cells and
pDCs

- Apoe-/- mice
- TLR9 agonist
- Peripheral blood mononuclear cells
- Human study

[20]

HMGB1 - Promotion of vascular injury-induced neointima
hyperplasia

- Increase of foam cell accumulation
- Promotion of inflammatory activation of
macrophages

- WT and Tlr9-/- mice
- Vascular injury-induced neointima hyperplasia
- HMGB-1 and anti-HMGB1 antibody
- Murine peritoneal macrophages and RAW264.7
cells

[21]

- Promotion of vascular injury-induced neointima
hyperplasia

- Increase of foam cell accumulation
- Promotion of inflammatory activation of
macrophages

- Apolipoprotein E*3-Leiden mice
- Vascular injury-induced neointima hyperplasia
- TLR7/9 dual antagonist
- Murine BMDMs

[22]

Not identified - Promotion of inflammatory activation of
macrophages

- Promotion of foam cell formation

- Murine peritoneal macrophages and RAW264.7
cells

- TLR9 agonist

[23,
24]

- Promotion of inflammatory activation of pDCs
- Induction of plaque destabilization

- Leukocytes collected from human atherosclerotic
lesions

(pDCs and T cells)
- Peripheral blood mononuclear cells
- TLR9 agonist

[25]

- Promotion of atherosclerotic lesion development
- Stimulating endothelial dysfunction
- Promotion of inflammatory cell accumulation

- Apoe-/- mice and WT mice
- Electric denudation of carotid artery
- TLR9 agonist

[26]

- Inhibition of atherosclerosis development*
- Reduction of vascular inflammation*

- Apoe-/- and Tlr9-/-Apoe-/- mice
- TLR9 agonist

[27]
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extracellular DNA in human plasma, also known as cell-
free DNA (cfDNA), has been described almost from the
1940s [41], whereas recent studies demonstrated elevation
of cfDNA level and its association with the pathophysiology
of several inflammatory diseases [42]. For example, circulat-
ing cfDNA level is higher in systemic sclerosis [43], experi-
mental pulmonary thromboembolism [44], end-stage renal
disease [45], and sepsis [46]. Of note, the role of cfDNA has
attracted much attention in the pathogenesis of auto-
immune diseases including systemic lupus erythematosus
(SLE) and rheumatoid arthritis [47–52]. In fact, autoanti-
bodies against dsDNA and nucleosomes represent a feature
of SLE [39, 53, 54]. In general, TLR9 activates IRFs and/or
NF-κB, which produces interferons and cytokines, leading
to the acceleration of inflammatory responses in these dis-
eases [2, 36–38]. In addition, other studies demonstrated
that TLR9 promotes p38 mitogen-activated protein kinase
(MAPK) activation and the subsequent NF-κB activa-
tion, stimulating inflammation [19, 55]. On the other
hand, a few studies reported that ligation of TLR9
with its ligand has beneficial effects on some disease
context such as cerebral ischemia/reperfusion injury
by activation of PI3K/Akt signaling [56]. These results
indicated that the role of TLR9 in inflammatory dis-
eases and the underlying mechanisms are context-
dependent and signaling systems under TLR9 might
not be fully understood. TLR9-mediated signaling and
following response suggested in the inflammatory dis-
eases are summarized in Fig. 2. A number of studies
have suggested a link between TLR9 and inflamma-
tory diseases; however, the role of TLR9 in the devel-
opment of cardiometabolic diseases in which chronic
sterile inflammation takes part as an underlying
mechanism remains not fully investigated.

Role of TLR9 in metabolic diseases
Because of the change in our lifestyle, the prevalence of
obesity is increasing all over the world. Obesity is closely

associated with multiple metabolic abnormalities includ-
ing insulin resistance, hyperglycemia, dyslipidemia, hep-
atic steatosis, and hypertension. In the pathobiology of
obesity and obesity-related complications, chronic sterile
inflammation in metabolic organs plays a central role.
The mechanisms by which obesity promotes inflamma-
tion in metabolic organs are still unknown, although re-
cent studies suggested the contribution of TLRs [7, 57–
59]. For example, adipose tissue is an energy-storing
organ, in which interaction of immune cells, hypertrophy
and proliferation of adipocytes, and angiogenesis are
highly coordinated [60–63]. However, obesity-related
conditions, such as higher oxidative stress [62], lower
oxygen pressure [63], and enhanced inflammation [60,
64], disturb this balance, leading to the induction of cel-
lular degeneration and enhancement of cellular turnover
in adipose tissue [65–67]. A previous study demon-
strated that local and/or systemic adipocyte-derived fac-
tors contribute to multiple pathological states associated
with obesity, including adipose tissue inflammation [68].
Here, TLR2 and TLR4 recognize their ligands from
obese and degenerated adipose tissue, mediating adipose
tissue inflammation [59, 69–72]. Importantly, clinical
studies showed that TLR2/TLR4 expression was in-
creased in adipose tissue and monocytes in obese or dia-
betic patients, which is correlated with the severity of
insulin resistance [5, 73].
In addition to other types of endogenous ligands for

TLRs, such as saturated fatty acids and heat shock protein
(HSP), self-derived DNA fragments are thought to be re-
leased. However, the role of self-derived DNA fragments
and the contribution of TLR9 to the development of adi-
pose tissue inflammation have not been studied. We previ-
ously demonstrated that high-fat feeding increased the level
of plasma ssDNA in mice. Also, plasma ssDNA level was
higher in patients with visceral obesity diagnosed by com-
puted tomography compared with the non-obese popula-
tion. We further found that the level of ssDNA positively

Table 1 Potential ligands and roles of TLR9 in cardiometabolic disorders (Continued)

Organ Ligand Role of TLR9 in cardiometabolic organs Models used Ref

- Reduction of T cell accumulation*
- Increase of cholesterol level

Heart mtDNA - Related with the development of heart failure after
TAC

- Worsen survival after TAC

- Cardiomyocyte-specific DNase2a-/- mice
- TAC
- TLR9 antagonist
- Adult murine cardiomyocytes

[28]

- Induction of cardiomyocyte death - WT and NF-κB luciferase reporter mice
- Primary cardiac cells and cardiac fibroblasts
- mtDNA and TLR9 agonist

[29]

-Induction of inflammatory cell activation - Human study
- THP-1 cells, Raji cells, and HUVECs
- mtDNA
- TLR9 antagonist

[30]

BMDM bone marrow-derived macrophage, CDAA diet choline-deficient amino acid-defined diet, ET extracellular trap, TAC transverse aortic constriction
*Protective role against disease progression
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correlated with HOMA-IR, a parameter of insulin resist-
ance, in humans [10]. The increase in plasma cfDNA in
obese subjects was significant but modest compared with
previous research on patients with other inflammatory dis-
eases, including cancer and SLE [45, 51, 74]. Importantly,
obesity is associated with chronic, low-grade inflammation.
This might be one of the explanations for the lower level of
cfDNA in obese individuals. Next, we investigated the roles
of TLR9 in adipose tissue inflammation. In in vitro studies,
a TLR9 agonist, ODN1826, promoted the expression of in-
flammatory molecules such as tumor necrosis factor-α
(TNF-α) and monocyte chemoattractant protein-1 (MCP-
1), important molecules for adipose tissue inflammation, in
macrophages. Also, cfDNA collected from degenerated adi-
pocytes activated macrophages through TLR9 and stimu-
lated the expression of inflammatory molecules [10].
Obesity induced by high-fat diet (HFD) feeding promoted
TLR9 expression in adipose tissue in addition to cfDNA in
animal studies [10, 12]. Genetic deletion of TLR9 decreased
the accumulation of macrophages in obese adipose tissue
(Fig. 3) and inhibited the development of obesity-induced
adipose tissue inflammation and insulin resistance. Further-
more, bone marrow-specific expression of TLR9 worsened
insulin resistance under HFD feeding compared with that
in mice lacking TLR9 in their body. On the other hand, ad-
ministration of an inhibitory oligonucleotide for TLR9,
iODN2088, to HFD-fed wild-type mice attenuated inflam-
mation in adipose tissue and improved insulin resistance.

These results suggest a link between TLR9 and obesity-
associated insulin resistance, and the potential of cfDNA-
TLR9 signaling as a therapeutic target. In addition, in the
development of obesity-associated metabolic disorders, sev-
eral reports suggest the role of another endogenous ligand
of TLR9 beside self-derived DNA fragments. In a clinical
study of obese individuals, Guzmán-Ruiz et al. showed an
elevated level of high mobility group box protein-1
(HMGB1) in the plasma as well as increased expression in
visceral adipose tissue, which correlated with markers of
adipose tissue inflammation [75].
A role of TLR9 in the pathogenesis of non-alcoholic stea-

tohepatitis (NASH) has also been reported. In mice, a TLR7/
9 antagonist (IRS954) was effective for improving hepatic
steatosis and NASH [15]. TLR9-deficient mice had less insu-
lin resistance than wild-type mice on a choline-deficient
amino acid-defined diet [17]. Liver damage including mito-
chondrial stress promotes mitochondrial DNA (mtDNA)
leakage. Similar to bacterial DNA, mtDNA contains a pre-
dominantly unmethylated CpG motif [76, 77] and can act
on macrophage TLR9, leading to a strong induction of in-
flammatory responses. Saito et al. demonstrated mtDNA-
mediated activation of the TLR9/IFN-β signal pathway accel-
erates non-apoptotic hepatocyte death and liver fibrosis [16].
In addition to animal studies, a clinical study demonstrated
that the number of mtDNA copies was 3.2-fold higher in
NASH patients than in healthy controls [78]. Of note, re-
cent studies have established that mtDNA triggers various

Fig. 2 TLR9 signaling in inflammatory diseases. Activation of TLR9 signaling in immune cells leads to release various cytokines and interferons in
cardiometabolic organs and other tissues, participating in the pathogenesis of both infectious and sterile inflammatory diseases
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inflammatory or degenerative diseases as an important
DAMP [79]. Also, an animal study using anti-HMGB1
antibody revealed that neutralization of HMGB1 attenu-
ates weight gain and liver inflammation, but not adipose
tissue inflammation, under HFD feeding [14].
Another study, however, showed that TLR9 deficiency

promoted insulin resistance in response to a HFD, sug-
gesting anti-inflammatory roles of TLR9 in macrophage
activation [13]. Several differences in the study design,
including the diet and duration of feeding, might ac-
count for these discrepancies (Table 2). Further studies
are required to elucidate the role of cfDNA-TLR9 signal-
ing in the pathogenesis of metabolic disorders.

Role of TLR9 in cardiovascular diseases
Chronic inflammation in the vasculature, initiated by
endothelial dysfunction under risk factors such as hyper-
tension, diabetes mellitus, and dyslipidemia, causes ath-
erosclerosis [80]. Controlling these risk factors reduces
cardiovascular events; however, considerable residual
risk remains and is a clinical issue. This also indicates
that the mechanisms that cause vascular inflammation
and atherosclerosis are not fully understood.
Accumulating evidence indicates that the innate immune

system plays a role in the development of vascular inflamma-
tion despite it being multifactorial in etiology [81]. Many types
of PRRs are expressed in multiple cell types present in arterial
lesions, including endothelial cells and infiltrated monocytes,
macrophages, and dendritic cells. TLRs are essentially associ-
ated with the process of atherosclerosis [82]. Both in murine
and human lipid-rich atherosclerotic lesions, macrophages
show TLR4 expression preferentially, which is upregulated by
oxidized low-density lipoprotein (oxLDL) [83]. Other studies
showed that TLR2 expression is enhanced in patients with
diabetes, and TLR2/TLR4 stimuli promote inflammation in
obese patients with atherosclerosis [84, 85].

In addition to TLR2 and TLR4, recent studies have
suggested the contribution of TLR9 to the development of
vascular inflammation and atherogenesis. In vitro studies
demonstrated that the activation of TLR9 accelerates the
shift from macrophages into foam cells via the NF-κB and
IRF7 pathways [23, 24]. Also, we found that a TLR9
agonist, ODN1826, markedly promoted the pro-
inflammatory activation of apolipoprotein E-deficient
(Apoe−/−) macrophages, partially through p38 MAPK sig-
naling [19]. Another study demonstrated the activation of
plasmacytoid dendritic cells (pDCs) through the TLR9
pathway, leading to the development of vascular lesions
[25]. Previous studies have shown degeneration of vascular
cells including endothelial cells and macrophages in ath-
erosclerotic lesions [86–88], suggesting the release of cel-
lular debris that contains various endogenous ligands for
TLRs [89]. Therefore, we hypothesized that TLR9 plays a
role in the development of atherosclerosis through the
recognition of DNA fragments released by vascular dam-
age. To address this hypothesis, we employed three differ-
ent mouse models. Genetic deletion of TLR9 in
subcutaneous angiotensin II (Ang II)-infused Apoe−/− mice
on a Western-type diet (WTD) reduced the development
of atherosclerotic lesions (Fig. 4). Pharmacological blockade
of TLR9 using iODN2088, one of the inhibitory oligodeoxy-
nucleotides specific to TLR9, attenuated atherogenesis in
Ang II-infused Apoe−/− mice compared with control oligo-
deoxynucleotide. Genetic deletion and pharmacological in-
hibition of TLR9 also decreased macrophage and lipid
accumulation and the expression of inflammatory mole-
cules at both the RNA and protein levels in this mouse
model [19], while restoration of TLR9 in the bone marrow
in Tlr9−/−Apoe−/− mice accelerated atherogenesis in the
aortic arch. These findings indicate proatherogenic roles
of TLR9 [19]. Furthermore, Ma et al. showed that the in-
activation of TLR9 by employing IRS869, another type of

Fig. 3 Genetic deletion of TLR9 attenuated obesity-induced adipose tissue inflammation. Representative figures of Mac3 staining of visceral
adipose tissue from HFD-fed wild-type or TLR9-deficient mice. Genetic deletion of TLR9 reduced the accumulation of macrophages in adipose
tissue, indicating less inflammation. Bar, 100 μm
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inhibitory oligodeoxynucleotide for TLR9, reduced plaque
burden and shifted macrophage polarization to the anti-
inflammatory M2 population [90]. Krogmann et al. also
showed that intravenous administration of ODN1826 to
Apoe−/− mice impaired reendothelialization of an acute
vascular injury and increased subsequent atherosclerotic
plaque development [26]. Similarly, we have reported the
contribution of TLR9 activation to neointima formation
after mechanical vascular injury, which was blocked by the
administration of an anti-HMGB1 antibody [21]. In
addition, we also demonstrated that TLR9 activation im-
paired blood flow recovery in an ischemic hind limb
model by the promotion of TNF-α expression [91]. All of
these studies suggested TLR9 activation promotes inflam-
mation and accelerates atherosclerotic and/or vascular
diseases.

Recent clinical studies also indicated the contribution of
the cfDNA-TLR9 axis in the development of atheroscler-
osis in humans. Borissoff et al. demonstrated that patients
with severe coronary artery disease diagnosed by coronary
computed tomographic angiography have elevated plasma
dsDNA and nucleosome levels [18]. We also measured
the level of cfDNA in the plasma collected from the target
vessel of patients with acute myocardial infarction and ex-
amined the correlation between the concentration and
plaque morphology of the target lesion assessed by optical
coherence tomography. The plasma level of cfDNA in the
target vessel was positively correlated with lipid depos-
ition, macrophage content, and ruptured plaque cavity
length/area in the target lesion, all of which are associated
with plaque inflammation [19]. Several studies have shown
the expression of TLR9 in vascular lesions, although its

Table 2 Experiment models for exploring the roles of TLR9 in cardiometabolic disorders

Mice strain Model
(feeding)

Duration of
feeding

Agonist Antagonist Role Ref

Obesity

Tlr9-/-

(B6.129P2-Tlr9tmAki)
HFD, 60 kcal% fat 12 weeks - - promotive [10]

C57BL/6 12 weeks - iODN2088 for 12 weeks

Tlr9+/+ bone marrow in
Tlr9-/-

(B6.129P2-Tlr9tmAki)

12 weeks - -

Tlr9-/-

(C57BL/6J-Tlr9M7Btlr)
HFD, 60 kcal% fat 15 weeks - - promotive [11]

C57BL/6 10 weeks - IRS954 for 3 weeks

C57BL/6J Normal chow diet 8 days CpG-ODN2395 for 8
days

-

C57BL/6J HFD, 40 kcal% fat 12 weeks - - - [12]

ob/ob Standard chow diet 12 weeks - -

Tlr9-/-

(B6.129P2-Tlr9tmAki)
HFD, 60 kcal% fat 8-10 weeks - - protective [13]

Atherosclerosis

Tlr9-/- Apoe-/-

(C57BL/6 background)
WTD, 21% fat, 0.2% cholesterol
+Ang II-infusion
for 4 weeks

12 weeks - - promotive [19]

Tlr9-/- Apoe-/-

(C57BL/6 background)
12 weeks - iODN2088 for 4 weeks

Tlr9+/+ bone marrow in
Tlr9-/- Apoe-/-

(C57BL/6 background)

12 weeks - -

Apoe*3Leiden
transgenic mice

WTD
+ cuff placement
for 2 weeks

5 weeks - TLR7/9 dual antagonist
for 2 weeks

promotive [22]

Apoe-/-

(C57BL/6 background)
Cholesterol rich diet, 21% fat and
1.25% cholesterol

8 weeks CpG-ODN1826 for 7
weeks

- promotive [26]

Apoe-/- HFD, 21% fat and 0.15% cholesterol 6 weeks CpG-ODN1585 for 5
weeks

- promotive [20]

Tlr9-/- Apoe-/-

(C57BL/6 background)
HFD, 21% fat and 0.15% cholesterol 12 weeks - - protective [27]

Apoe-/-

(C57BL/6 background)
8 weeks CpG-ODN1668 for 8

weeks
-
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expression may be lower than that of other TLRs such as
TLR4 and TLR2 [82]. However, these studies suggested
that the cfDNA-TLR9 axis participates in the pathogenesis
of vascular inflammation and atherogenesis.
On the other hand, several groups have reported incon-

gruous findings which suggested protective roles of TLR9
in atherosclerosis. In vitro stimulation of TLR9 triggered
IL-10 production in B cells in humans, which in turn
inhibited CD4+CD25+ T cell proliferation [92, 93]. Also,
Koulis et al. demonstrated antiatherogenic roles of TLR9
using a genetic deletion model of TLR9 in HFD-fed
Apoe−/− mice [27]. In that study, TLR9-deficient Apoe−/−

mice showed increased macrophage, DC, and CD4+ T cell
in the plaque. Also, the administration of CpG-ODN1668,
a TLR9 agonist, attenuated atherosclerotic lesion develop-
ment in Apoe−/− mice under HFD feeding. Of note, the
study of Koulis et al. showed that TLR9 deletion increased
blood lipid levels by an undetermined mechanism. This
might have affected the results and suggested that TLR9 is
associated with lipid metabolism in addition to the innate
immune system. Thus, both pro- and anti-atherosclerotic
roles of TLR9 have been described. Interestingly, a previ-
ous study mentioned conflicting roles of TLR9 activation
due to the concentration of its ligand [94]. Therefore, the
difference in the study design such as mouse model, mouse
strain, food, duration of treatment, and types of agonist or
antagonist might cause the difference in the levels of li-
gands, which results in these discrepancies observed in pre-
vious studies (Table 2). Further experiments are needed to
determine the effect of TLR9 in atherosclerotic diseases.
Accumulating evidence suggests that cardiac inflamma-

tion contributes to promoting heart failure (HF). In HF
patients, levels of circulating cytokines including TNF-α,

interleukin (IL)-1β, and IL-6 are elevated, which is associ-
ated with the severity and outcome of these patients [95].
In most cases, microbial infection is not involved in the
development of HF, indicating that there is a state of ster-
ile inflammation. However, the complex mechanisms
underlying cardiac inflammation are unclear [96]. In HF,
multiple endogenous DAMPs such as HMGB1, HSP, and
mtDNA are released and recognized by TLRs, stimulating
NF-κB-dependent inflammatory responses [97]. Recently,
a study demonstrated that intracellular mtDNA escaping
degradation induces cardiac inflammation signaling
through TLR9 in an animal model of pressure overload-
induced HF [28]. Endogenous mtDNA in the extracellular
space activates NF-κB signaling through TLR9 in cardio-
myocytes, resulting in its detrimental effects [29]. In
addition, inhibition of TLR9 attenuated the development
of pressure overload-induced HF [98].
Thus, recently, the role of TLR9 is expanding to the car-

diovascular field as well as the innate immune field. Inves-
tigating the role of the cfDNA-TLR9 axis would increase
the understanding of the pathogenesis and generation of
new therapeutic approaches for these diseases.

TLR9 as a therapeutic target for inflammatory
diseases
Because recent advances of immunology indicated the role
of TLRs in various inflammatory diseases, TLRs are receiv-
ing increased attention as the therapeutic target. Previously,
two phase III clinical trials using TAK-242, a small mol-
ecule which targets TLR4, were carried out [99]. The first
trial (NCT00143611) resulted in not enough satisfaction be-
cause of failure to effectively decrease serum cytokine levels
(IL-6, IL-8, and TNF-α) compared to controls, in spite of

Fig. 4 Genetic deletion of TLR9 attenuated the development of atherosclerosis. Representative figures of Sudan IV staining of the aortic arch of
Ang II-infused Apoe−/− or Tlr9−/−Apoe−/− mice. Genetic deletion of TLR9 attenuated the development of atherosclerosis. Bar, 1 mm
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its well-tolerance [100]. Another trial (NCT00633477)
ended because of a business decision. Since then, TAK-242
has not been developed clinically.
In contrast, drugs targeting endosomal TLR attract much

attention. A group of antimalarial drugs, such as chloroquine
(CQ), hydroxychloroquine sulfate (HCQ), and quinacrine,
have been used to treat autoimmune diseases in clinical prac-
tice [101]. These drugs are weak bases that accumulate in
the acidic intracellular compartment such as endosomes and
lysosomes, and modulate the pH in these vesicles, leading to
the suppression of autoantigen presentation and inhibition of
endosomal TLR signaling (TLR7, 8, and 9) [102]. In addition
to the effects for autoimmune diseases, pre-clinical studies
suggested beneficial effects of these drugs on cardiovascular
diseases. For example, pretreatment with CQ improved cere-
bral ischemia symptoms in a transient global cerebral ische-
mia rat model animal [103], and long-term treatment with

HCQ attenuated hypertension and endothelial dysfunction
in a lupus animal model as well [104]. Oligonucleotides with
specific sequences also function as antagonists of endosomal
TLRs because endosomal TLRs recognize nucleic acid struc-
tures. These oligonucleotides can block the TLR signal trans-
duction by inhibiting the binding of TLRs to their ligands.
Because of this background, variety types of these oligonucle-
otides have been developed for the treatment of autoimmune
diseases including SLE and plaque psoriasis in both basic
and clinical researches [105, 106].
Thus, controlling TLR9 signaling might have a potential

to inhibit cardiometabolic diseases. In fact, previous stud-
ies have suggested that several types of oligonucleotides
for TLR9 have inhibitory effects on the development of
cardiometabolic diseases in animal models (Table 2). In
addition, other studies have suggested that antibodies tar-
geting HMGB1 or CD4 attenuate TLR9-mediated

Fig. 5 Role of TLR9 in the development of cardiometabolic disorders. DNA fragments and/or nuclear proteins released from damaged cells/
tissues activate immune cells such as macrophages and DCs through TLR9, leading to the development of inflammation in these tissues, which is
central in the pathogenesis of cardiometabolic disorders
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atherogenesis [27, 107]. Targeting immune responses me-
diated by TLR9 has a potential as a therapeutic strategy to
control unwanted, disease-associated inflammation; how-
ever, further studies are needed to develop therapeutic
strategies targeting immune systems clinically.

Conclusion
Chronic low-grade inflammation plays a central role in
the pathophysiology of cardiometabolic disorders, in
which various cellular and molecular mechanisms par-
ticipate. Recent studies have suggested that activation of
innate immune systems by DAMPs contributes to the
development of chronic inflammation [89]. The present
review focused on the role of TLR9, which was originally
known as a sensor for exogenous DNA fragments, in
pro-inflammatory activation of immune cells and in the
pathogenesis of cardiometabolic disorders. Innate im-
mune systems are essential for survival. Originally, in-
flammation induced by sensing of DNA fragments has a
protective role, although emerging evidence demon-
strated that this immune system also has harmful effects.
The prevalence and incidence of metabolic disorders as-
sociated with aging, obesity, and nutritional excess have
dramatically increased worldwide in recent decades. This
change may induce a shift in what are usually favorable
for physiological processes to pathological events. Recent
studies including our own demonstrated that the
cfDNA-TLR9 pathway plays a pivotal role in the
pathogenesis of adipose tissue inflammation and vascular
inflammation via pro-inflammatory activation of macro-
phages, leading to the development of cardiometabolic
disorders including obesity-related insulin resistance and
atherosclerosis (Fig. 5). Regardless of accumulating re-
search these days, there is still limited knowledge about
the cfDNA-TLR9 pathway in cardiometabolic fields. For
example, the origin of elevated DNA fragments in obese
and atherosclerotic conditions is still not clear. The
release of nucleic acids as cellular debris from degraded
cells/tissues in metabolic organs together with other
TLR agonists is considered to be one of them. However,
recent studies have shown a link between the gut micro-
biota and metabolic disorders [17, 108, 109]. These
studies suggested the translocation of bacterial com-
ponents (such as DNA) and inflammatory factors
(including lipopolysaccharide) in the host circulation
under certain circumstances, accompanied by intes-
tinal epithelial dysfunction caused by obesity or other
metabolic disorders.
In summary, the cfDNA-TLR9 pathway contributes to

the pathogenesis of cardiometabolic disorders. This
pathway might be a potential therapeutic target and a
possible biomarker for this health threat. However, fur-
ther studies are required to define the possible clinical
application of this pathway.
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