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Abstract

The Cancer Genome Atlas consortium brought us terabytes of information about genetic 

alterations in different types of human tumors. While many cancer-driver genes have been 

identified through these efforts, interrogating cancer genomes has also shed new light on tumor 

complexity. Mutations were found to vary tremendously in their allelic frequencies within the 

same tumor. Based on those variant allelic frequencies grouping, an estimate of genetically distinct 

“clones” of cancer cells can be determined for each tumor. It was estimated that 4–8 clones are 

present in every human tumor. Presence of distinct clones, cells that differ in their genotype and/or 

phenotype, is one of the roots for the major challenge of effectively curing cancer patients. Any 

given treatment applied to a heterogeneous mixture of cancer cells will yield distinct responses in 

different cells and may be ineffective in killing particular clones. Moreover, in highly 

heterogeneous tumors, stochastically, there is a higher chance of presence of traits, such as point 

mutations in key receptor tyrosine kinases, that drive drug resistance. Thus, intratumor 

heterogeneity is like an arsenal, providing a variety of weapons for self-defense against cancer-

targeted therapy. However, in this arsenal the supplies are constantly changing, as cancer cells are 

accumulating new mutations. What is also changing is the battlefield-the tumor microenvironment 

including all noncancerous cells within the tumor and surrounding tissue, which also contribute to 

the diversification of cancer’s forces. In order to design more effective therapies that would target 

this ever-changing landscape, we need to learn more about the two elusive variables that shape the 

tumor ecosystem: the space-how could we exploit the organization of tumor microenvironment? 

and the time-how could we predict the changes in heterogeneous tumors?

Sources of heterogeneity in cancer

The abnormal morphology of cancer cells is the basis for cancer diagnosis in current 

medical practice. The morphological diversity of cancer cells within a single cancer 

specimen has been known since the first pathology studies by Rudolf Vichrov in 1920s. 

Early days of cancer research were focused on genetic aberrations that can initiate malignant 

transformation and contribute to disease progression. The classic view of tumorigenesis 

assumes that cancer arises from a single cell that acquires an oncogenic mutation and defies 

the rules governing normal tissue homeostasis and divides uncontrollably [1]. As this initial 
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cell divides, it accumulates additional mutations and gains new properties, such as apoptosis 

resistance and invasiveness, resulting in more aggressive tumor growth and metastasis [2]. 

However, mistakes in DNA replication that result in generation of mutations are stochastic 

and can arise in any daughter cell derived from the initial cancer cell, resulting in cellular 

diversification. Clonal populations become more and more genetically distant, as individual 

cells accumulate mutations at random during tumor growth. Thus, stochasticity of 

mutational processes is one of the causes of intratumor heterogeneity. This randomness of 

new genetic aberrations would result in an infinite number of cells with different aberrations. 

The original work by Peter Nowell described cancer progression as a process of Darwinian 

evolution, in which randomly generated clones have different levels of fitness and undergo 

environment-driven selection [3]. In this view, a tumor is a mixture of genetically distinct 

populations of cells with variable ability to proliferate or metastasize. Of note, the definition 

of a clone with regards to tumor heterogeneity depends on measures taken and relates to 

common ancestry with shared features, rather than a precise genetic replica.

Beyond genotype, phenotypic plasticity of some cancer cell populations is another important 

driver of tumor heterogeneity. In several tumor types, including breast, lung, and brain 

cancer, cells within a tumor display a diversity that resembles hierarchical organization of a 

normal tissue, with stem-like cells that can give rise to more differentiated progeny [4]. 

Despite having the same genetic aberrations as their more differentiated counterparts, cancer 

stem cells are usually more quiescent and resistant to treatments. These cells express 

transcriptional programs inherent to normal stem cells and maintain higher level of 

phenotypic plasticity due to a more promiscuous chromatin organization [5]. Thus, 

differences in epigenetic states of distinct populations of cancer cells, defined by DNA 

methylation, chromatin accessibility or histone modifications, contribute to intratumor 

heterogeneity [6].

The interplay between the genetic and epigenetic heterogeneity is a topic of high interest in 

current studies. Advances in single-cell transcriptomic [7] and epigenomic technologies [8] 

enable studies that integrate the contribution of mutations and epigenetic and transcriptomic 

plasticity in tumor heterogeneity. Single-cell DNA methylation assay coupled with whole 

transcriptome sequencing and targeted sequencing of known somatic mutations revealed that 

in chronic lymphoblastic leukemia (CLL) changes in DNA methylation, termed 

epimutations, drive transcriptional entropy, and phenotypic diversification [9]. This 

integrated approach has also shown that wile driver mutation in SF3B1 is a late subconal 

event in CLL, it can still drive evolutionary branching of the mutant clones by significant 

transcriptional changes. Another recent study focusing on integration of genetic and 

epigenetic diversity in glioblastoma has shown that copy number amplifications in distinct 

subpopulations are associated with distinct cellular states, which recapitulate the diversity of 

neural cell types [10]. The mechanisms and timing of genetic and epigenetic diversification 

are not yet well understood and may differ between different tumor types. Nevertheless, the 

abovementioned examples show that integrative approach can help delineate the principles 

of tumor evolution.

Tumor heterogeneity is not only governed by the intrinsic properties of cancer cells. The 

“fitness: of a cancer cell can be viewed as the ability to survive and/or proliferate more 
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rapidly than other cells in a particular environment. Selection processes that eliminate less fit 

cancer cells are thus inherently connected with tumor microenvironment. Just like in any 

ecosystem, environmental changes, such as hypoxia in a growing tumor mass, will lead to 

death of cells unable to adapt or respond to change, for example by secreting pro-angiogenic 

factor to promote new vessel formation and increase oxygen and nutrient supply. Immune 

cells within the tumor microenvironment can also prune certain clones, and select for cancer 

cells with fewer neoantigens or cells that actively dampen the immune response [11]. It still 

debatable as to whether the presence of genetically distinct clones in a late-stage lesion is a 

result of positive selection or natural drift [12]. It may be that certain tumor types, such as 

colorectal cancer, are much less dependent on environmental constrains and early genomic 

instability could be the main driver of heterogeneity in those tumors. However, in many 

other cancer types both the cancer cells and the normal cells surrounding and infiltrating the 

tumor affect tumor evolution by shaping clonal dynamics.

Spatial heterogeneity: The space conquerors

The term “tumor microenvironment” encompasses all of the noncancer cells that may be 

found intermixed within the tumor or in a direct contact with cancer cells at the edge of a 

malignant lesion. These “normal” cells, such as leukocytes, fibroblasts, and endothelial cells, 

can interact with cancer cells promoting antitumorigenic response, but can also be 

reprogrammed to support growth of the tumor and suppress immune response against cancer 

cells. Tumor microenvironment can be also defined as a set of variables, such as blood 

vessel density, and extracellular matrix stiffness, which contribute to the overall conditions 

that the cancer cells need to thrive in and migrate through. All of these components can vary 

substantially within different areas of the tumor. Thus, from the ecological perspective, 

tumor microenvironment creates specific niches, in which distinct cellular phenotypes might 

be necessary for survival. As such, heterogeneity in tumor microenvironment would play a 

vital role in selecting distinct subpopulations of cancer cells from randomly mutated cells in 

a heterogeneous pool.

Clinical consideration of spatial heterogeneity

Even without considering the role of the microenvironment, spatial heterogeneity is apparent 

in many tumor types. Phenotypic diversity of cancer cells can be readily observed in 

formalin-fixed paraffin embedded samples of human tumors without the need for specific 

markers. For example, glioblastoma multiforme, the most aggressive form of brain cancer, 

takes its name from the diverse shapes and sizes of cells readily visible with the basic 

hematoxylin and eosin counterstain. This cellular phenotypic variability is related to 

transcriptional variation present in these tumors [13]. Phenotypic diversity in different 

regions of a sample is also often causing challenges in pathologic assessment of markers 

used in clinical decision-making. In breast cancer, tumor classification used for treatment 

selection is based on immunohistochemical staining of the biopsies for presence of ER, PR, 

and HER2 proteins. Often, in different areas of the same biopsy distinct levels of marker 

expression can be found. This is especially true for HER2 and is underlined by cell-to-cell 

variation in copy number of the HER2 gene [14, 15] and could explain why even with 

HER2-targeted therapies only 40% of patients are in full remission. Other studies have 
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shown cellular heterogeneity for KRAS and TP53, common driver mutations, as well as for 

mutations associated with emergence of resistance after targeted treatment [16–20]. Despite 

these studies, regional heterogeneity within a single biopsy is not yet included in standard 

pathology reports. Clinically approved cytogenetic techniques can reveal a divergence of 

gene copy number between different cells within a tumor. However, due to a laborious 

manual counting single-cell based variation is rarely added to clinical reports. An extreme 

case of cell-to-cell variation of clinically actionable targets was shown in glioblastoma [21]. 

Amplifications of receptor tyrosine kinases EGFR, MET, and PDGFR were found in 

different cells within the same tumor and were mutually exclusive. All those populations 

were viable and contributed to tumor growth and harbored mutations pointing to a common 

ancestor cell. Thus, evaluation of intratumor heterogeneity for therapeutic targets could be 

useful in stratifying patients to different arms of clinical trials, especially for inhibitors of 

receptor tyrosine kinases. Relationships between treatment-induced changes in single-cell 

based heterogeneity and long term patient outcomes were also reported. In a small cohort 

study of HER2+ breast cancer, patient survival correlated with changes in intratumor 

heterogeneity between different areas of the tumor sample [22].Techniques that allow for 

spatial characterization of intratumor heterogeneity, such as fluorescence in situ 

hybridization and in situ PCR and their combination, STAR-FISH, could help assess these 

changes in local tumor niches. Yet, limitations in combining multiple markers and 

requirement of selecting only a handful of genes of interest need to be addressed. In the 

following sections, different approaches to mapping cancer cell heterogeneity in intact tumor 

tissues are discussed.

Genetic heterogeneity, topology, and microenvironment

Next-generation sequencing revolutionized the field of cancer genetics, revealing multitude 

of new cancer-related genes and the breadth of mutations in individual tumors [23]. Deep 

sequencing of tumor DNA has also allowed for reconstruction of clonality based on mutant 

allele frequency quantification [24–27]. The vastness of intratumor heterogeneity was 

further reveled by next-generation sequencing of distinct fragments of a tumor (Fig. 1a). 

Multiregion sequencing of a kidney tumor was one of the first studies that showed 

significant genetic diversity present in different areas of the same tumor [28]. Each 

sequenced spatially separated area was characterized by private mutations, not found in any 

other fragment of the tumor. However, all samples also shared a set of mutations, again 

pointing to a common ancestor and later diversification. This study pioneered the attempts to 

reconstruct the phylogenetic trees of tumors with regards to their topological organization. It 

also highlighted the problem of vast underestimation of intratumor heterogeneity measured 

from a single biopsy. Similar conclusions came from multiregional sequencing of 

melanoma, breast, and lung tumors [29–31]. Multiregion sequencing has also been used for 

deconvolution of T cell immunoreactivity in distinct areas of the tumor [32–34]. Variable 

expression of tumor antigens, differential immune infiltration and T cell specificity between 

regions of the same tumor all point to divergent evolution of immune evasion. Regional 

variations and local immunological heterogeneity may thus have significant implications for 

any systemic treatment, including immunotherapy.
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A closer look at the genetic diversity within a single biopsy and between histologically 

distinct areas was provided by tissue laser capture microdissection. Separating histologically 

distinct regions of tumor specimen and subsequent profiling of collected tissue fragments 

shed new light on the disease progression of breast and esophageal cancer [35, 36]. In these 

tumor types low-grade, noninvasive lesions are often found co-occurring with highly 

invasive malignant areas. Spatial separation at the tissue level thus provided evidence that 

invasive cancer-associated mutations may be present in the pre-malignant lesions. Further 

development of this approach into a single-cell microdissection and single-nucleus 

sequencing in breast cancer showed that individual invasive cells are present in the 

noninvasive carcinoma area and full-blown invasive ductal carcinoma could be founded by 

multiple clones migrating from distinct areas of ductal carcinoma in situ [37]. The fact that 

individual mutant malignant cells can be found within noninvasive lesions points to “the 

niche effect” in tumorigenesis. For an individual cancer cell acquisition of a new mutation, 

even in a cancer-driver gene, may not always lead to full-blown malignancy. This will 

depend on the surrounding cancer cells and on the tumor microenvironment. In fact, recent 

studies showing that point mutations in oncogenes are found at very low frequencies in 

almost all normal tissues suggest that the cancer-driver genes may not be enough to initiate 

tumorigenesis in vivo [38, 39].

In situ profiling of cancer phenotypes and tumor microenvironment

Since tumor heterogeneity is not only reflected in the genotypic diversity, but may also be a 

result of epigenetic variation, studies targeting the transcriptomic diversity can provide more 

complete answer to functional roles of distinct populations of cancer cells within a tumor. 

They also allow to identify phenotypes associated with particular microenvironments. 

Differential protein expression in tumor tissues provided the first clues to the extent of 

intratumor heterogeneity, as discussed above. Profiling of tumor and its microenvironment 

based on protein marker expression can be performed by immunofluorescence, which can be 

easily applied to archival human specimen. However, comprehensive studies using this 

technique were limited by technical challenges. Spectral overlap between fluorophores used 

to distinguish different markers in a stained sample made simultaneous detection of more 

than six proteins impossible. Multiple innovative approaches have recently been introduced 

to overcome this obstacle. One of them uses multiple rounds of red, blue, and green 

fluorophore-conjugated antibody staining followed by fluorophore inactivation and another 

staining round [40, 41]. This technique, named cyclic immunofluorescence, requires 

overlaying multiple images of the same area, yet allows to obtain single-cell resolution of 

co-occurrence of distinct markers of cancer cells, immune cells and other tumor components 

(Fig. 1b). Another way to increase the throughput of proteins analyzed on a heterogeneous 

tissue slide in immunostaining is to replace the fluorophores with heavy metals [42, 43]. 

Imaging mass cytometry and MIBI methods rely on laser ablation of the tissue stained with 

those conjugates and identification of metals derived from a particular tissue location by 

mass cytometry. Over thirty distinct antigens can be simultaneously identified with this 

approach. It allows for single-cell reconstruction and is more quantitative than fluorescence-

based techniques. Multiplexed immunofluorescence and mass cytometry-based analyses 

proved to be particularly useful in profiling leukocyte complexity and functional status in 
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archival tissues, as the identity and activity of individual tumor-infiltrating immune cells can 

be assessed [44–46]. Immune infiltration and activity are tightly linked to success of cancer 

immunotherapy, which is one of the most promising treatment strategies of the recent years 

[47]. However, the interactions between diverse populations of cancer cells and distinct 

types of leukocytes remain poorly understood. These interactions may have important 

implications for successful immunotherapy for cancer patients. Thus, more studies with 

advanced spatial analysis and automated feature recognition will drive the focus on spatial 

distribution and proximity of different cells types.

In situ profiling of cancer cells using antibody-based approaches is challenging, as selection 

of antigens requires a priori knowledge of expected cell types. While a lot is known about 

specific markers of the tumor microenvironment, cancer cell subtypes within any given 

tumor type are much more elusive. Therefore, unbiased approaches to profile phenotypic 

diversity have been focused on transcriptomic profiling. Recent revolution in single-cell 

sequencing enabled RNA sequencing from thousands of individual cells. Both normal 

tissues and cancer samples after dissociation into single cells can be now characterized at an 

unprecedented resolution [7]. However, because of the dissociation, information about 

spatial localization of cells within the tissue is lost. This loss of tissue context may prevent 

our understanding of the interactions between cancer cells and the tumor microenvironment 

that may drive selection and tumor evolution. Several new approaches are being used to 

overcome this limitation. RNA in situ hybridization allows for detection of expression of 

several targeted transcripts, while maintaining the tissue topology. Due to its low throughput 

it is rarely used to profile heterogeneity in tumors. Yet, this approach was modified to allow 

detection of individual cells with mutant KRAS in colorectal cancer and the frequencies and 

distribution of the mutant cells pointed to early evolution of the subclone or high fitness 

advantage conferred by the mutation [48]. First attempts to increase throughput of transcript 

detection in situ, named FISSEQ, relied on in situ sequencing on the slide containing a tissue 

[49]. An alternative strategy lead to the development of a barcoding technique, where 

transcripts within a tissue are hybridized to a slide that contains spatially distinct barcodes 

and after an amplification step labeled transcripts can be pooled and processed in a standard 

next-generation sequencing protocol [50, 51]. This results in location-specific indexing of all 

transcripts (Fig. 1c). Further miniaturization of the beads carrying the barcodes will increase 

the resolution of these techniques, which is now limited to ~10 microns. Thus far only few 

studies applied spatial transcriptomics to cancer samples [31, 52]. However, recent 

commercialization of spatial transcriptomics platform will have high impact on our 

understanding of tumor heterogeneity. The unbiased approaches will reveal novel 

transcriptional profiles associated with the interplay between tumor cell and the immune 

system. In situ phenotypic analysis based on RNA will also provide new clues to the 

metabolic dependencies of cancer cells found in distinct microenvironments.

Tumor heterogeneity and evolution: The time travel

Moving back in time has been explored by science-fiction literature as a way to prevent 

disasters and change futures of the novel’s characters. Cancer research is also focusing on 

moving across the time axis to learn more about the initiation, development, and progression 

of the tumors in hopes to be able to predict patients’ response and change the course of the 
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disease. Since tumor evolution depends on random events and selection of individual new 

traits, how tumors change in time is tightly linked to their internal heterogeneity and 

behavior of single cells. This is why many of the aspects of studying intratumor 

heterogeneity described in this review also have implications for tumor evolution studies.

Tumor history from DNA

To monitor changes within a tumor over time, longitudinal sampling of every individual 

malignancy would be required. However, for most tumor types, repeated sampling is 

difficult due to risks it could bring for the patient, that must be outweighed by potential 

benefit of the procedure. In several clinical trials repeated biopsies are now being collected 

before and after treatment, as it is clear that changes in the tumor short after neoadjuvant 

therapy could be useful in predicting the outcomes. However, it is much more difficult to 

sample a disease at an early stage. Thus, tumor evolution is often modeled based on a 

sampling from an advanced lesion. Deep sequencing of cancer tissues is used not only to 

quantify tumor clonality, but can be also used to infer evolutionary trajectory [24–26]. 

Mutations that occurred early in tumor development are present in all subclonal populations 

within a tumor and mutations in smaller fractions of alleles would correspond to a late 

development. Using this approach, evolutionary trees can be reconstructed from a single 

tumor sample subject to bulk sequencing. However, as mentioned before, the multiregion 

sequencing of tumors has shown that distinct samples from a single tumor can be clonally 

diverse [28–31]. Thus, drawing conclusions about tumor evolution based on a single sample 

may not be sufficiently powerful to distinguish subclonal from clonal events.

An alternative to a repeated biopsy acquisition from a tumor over time is the use of “liquid 

biopsies”. Circulating tumor cells and the cell-free DNA allows sampling of the tumor 

genome from the patient’s plasma and can thus be more readily implemented in clinical 

trials and patient follow-up [53]. These samples are also useful in monitoring metastasis [54, 

55]. While CTC and cfDNA proved to help monitor the occurrence of resistance to treatment 

[56–58], it is still not clear how representative they are in respect to the whole tumor mass. 

Cancer cells in circulation and cell-free DNA could be representing only the most invasive 

or apoptotic fractions of the tumor subpopulations, respectively. Studies of spatial 

localization of CTC are required to address these questions.

The evolution of metastasis

Timing in tumor development can have significant implications for metastasis, which if 

prevented would save many lives. The classic model of tumor evolution proposes that cells 

accumulate mutations that eventually lead to the acquisition of new traits, including the 

ability to invade and grow in a distant organ as a metastasis. Sequencing of metastatic 

lesions has shown that even the same tumor type can adopt different evolutionary models 

(reviewed in [59]). There is evidence for parallel evolution, where mutational burden points 

to long phylogenetic distances between primary and metastatic lesions [60, 61]. This can be 

associated with early seeding of the first metastatic clones or with very high mutation rates 

occurring in primary tumor and metastases [62]. On the other hand, there are also many 

examples of metastases that originate from a subclone that occurred late in the evolution of 
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the primary lesion. Thus far, those distinct evolutionary pathways to metastasis were not 

linked to patient survival in any tumor type. It is possible that this variation is related to 

limited sampling, as in most studies a single primary tumor sample is compared with 

multiple metastatic lesions and multiregional sequencing could help decipher clonal 

relationships [37]. What is clearly emerging from the clonal reconstruction studies in 

metastatic cancers, is that multiple clones contribute to metastatic growth. This could be 

related to the clusters of CTC that are often found in the blood of cancer patients [55]. These 

clusters are oligoclonal and contribute to the generation of heterogeneous metastases. 

Therefore, a better understanding of the clonal dynamics in primary tumor and in clustering 

cells in circulation could help devise better strategies to prevent metastatic spread and 

outgrowth. In this perspective, the dynamics between heterogeneous populations of cancer 

cells may be more important that the timing of mutations associated with metastatic 

progression.

Models of tumor evolution

Since studying tumor evolution over time using patients’ samples poses a lot of technical 

and ethical challenges, in vitro cancer models are extensively used to track changes in clonal 

dynamics over time. Clones can be defined by simple overexpressed markers that can be 

detected via microscopy or fluorescence-activated cell sorting. While this approach is useful 

in targeting questions about clonal cooperation in defined systems [63–65], it is limited to 

only a handful of clones that could be discriminated. Genetic barcoding technologies 

enabled indexing of individual cells and enumeration of the barcodes via sequencing allows 

for detection of progeny of millions of cancer clones [66]. Barcoded cells can be used to 

track selection of distinct clones from highly heterogeneous population over time, in vitro 

and in vivo [67–69]. This approach enabled studies of emergence of therapy resistance. 

Combination of single-cell barcoding with CRISPR-based genetic perturbation screening 

will help identify evolutionary bottlenecks and collateral sensitivity to prevent posttreatment 

relapse.

Conclusions

The evolution of a full-blown malignancy from a single cell that gives rise to a 

heterogeneous population of cancer cells is a complex process. In the recent years 

technological advances increased the resolution at which heterogeneity can be observed 

(Table 1). As we get closer to the characterization of genome, epigenome, and transcriptome 

cell by cell, it becomes evident that the complexity of the interplay between the tumor and 

the surrounding normal cells and the immune system plays a central role. Thus, interrogation 

of intact cancer tissue, containing distinct cancer cell clones in their native 

microenvironment in which they evolved, will be key. The excitement brought by the novel 

spatial transcriptomics and single-cell profiling platforms will certainly bring multiple new 

answers to the question of how cancers are moving through space and time. As our detection 

methods become more sensitive, we also require novel approaches to coalesce the fine-grain 

single-cell data with observations at the tissue and organ level. Therefore, integration of 

cancer biology, systems biology and mathematic oncology will be needed to translate the 

finding from the microcosmos of single cells to successful therapy for a patient.
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Fig. 1. 
Dissecting spatial tumor heterogeneity. a Multiregion sequencing. Gross resection or 

microdissection of tissue fragments for distant areas of the tumor allow for the comparison 

of variant allelic frequencies. Mutational abundance is used to identify truncal and private 

events and reconstruct tumor evolutionary tree. b Multiplexed immunostaining. Labeled 

antibodies are used in multiple rounds of staining and acquired images are superimposed to 

generate multiplexed image of the tissue. c Spatial transcriptomics. Spatial barcoding during 

RNA reverse-transcription allows identification of tissue localization of sequenced 

transcripts
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