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ABSTRACT During all stages of infection, herpes simplex virus 1 (HSV-1) expresses
viral microRNAs (miRNAs). There are at least 20 confirmed HSV-1 miRNAs, yet the
roles of individual miRNAs in the context of viral infection remain largely uncharac-
terized. We constructed a recombinant virus lacking the sequences for miR-H1-5p
and miR-H6-3p (17dmiR-H1/H6). The seed sequences for these miRNAs are antisense
to each other and are transcribed from divergent noncoding RNAs in the latency-
associated transcript (LAT) promoter region. Comparing phenotypes exhibited by the
recombinant virus lacking these miRNAs to the wild type (17syn+), we found that
during acute infection in cell culture, 177dmiR-H1/H6 exhibited a modest increase in
viral yields. Analysis of pathogenesis in the mouse following footpad infection re-
vealed a slight increase in virulence for 177dmiR-H1/H6 but no significant difference
in the establishment or maintenance of latency. Strikingly, explant of latently in-
fected dorsal root ganglia revealed a decreased and delayed reactivation phenotype.
Further, 177dmiR-H1/H6 was severely impaired in epinephrine-induced reactivation in
the rabbit ocular model. Finally, we demonstrated that deletion of miR-H1/H6 in-
creased the accumulation of the LAT as well as several of the LAT region miRNAs.
These results suggest that miR-H1/H6 plays an important role in facilitating efficient
reactivation from latency.

IMPORTANCE While HSV antivirals reduce the severity and duration of clinical dis-
ease in some individuals, there is no vaccine or cure. Therefore, understanding the
mechanisms regulating latency and reactivation as a potential to elucidate targets
for better therapeutics is important. There are at least 20 confirmed HSV-1 miRNAs,
yet the roles of individual miRNAs in the context of viral infection remain largely un-
characterized. The present study focuses on two of the miRNAs (miR-H1/H6) that are
encoded within the latency-associated transcript (LAT) region, a portion of the ge-
nome that has been associated with efficient reactivation. Here, we demonstrate
that the deletion of the seed sequences of these miRNAs results in a severe reduc-
tion in reactivation of HSV-1 in the mouse and rabbit models. These results suggest
a linkage between these miRNAs and reactivation.
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he majority of the U.S. population (50 to 90%) is latently infected with herpes
simplex virus 1 (HSV-1) by the time they are adults (1). HSV-1 causes the common
cold sore and, less frequently, herpes stromal keratitis, the leading cause of infectious
blindness in the United States (2). Primary infection typically occurs in the mucosal
epithelium, and the virus spreads by retrograde axonal transport to the nuclei of
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peripheral neurons, the site of viral latency. During latency, viral gene expression is
restricted to select noncoding RNAs (ncRNAs), which include the latency-associated
transcripts (LATs) and viral microRNAs (miRNAs or miRs). Paradigm phenotypes of
latency associated with the LAT locus include aiding in the establishment of latency,
maintaining latency by protecting neurons from apoptosis, and facilitating efficient
reactivation (3).

In 2004, miRNAs were first described in herpesviruses, and soon after, several HSV-1
miRNAs were predicted or shown to be transcribed from within the LAT region (4, 5).
LAT phenotypes have largely been identified from the characterization of recombinant
viruses with deletions in the LAT promoter, which, in retrospect, also reduced viral
miRNA expression during latency (6). Since a hallmark feature of all herpesviruses is the
ability to persist as lifelong infections, it is not surprising that of the known virally
encoded miRNAs, 91% are found in herpesviruses (7). Thus, understanding the 10
known HSV-1 miRNAs in the LAT region (Fig. 1A), and separating their importance from
the phenotypes ascribed to the LATs, may be key in understanding the dynamic nature
of viral latency.

Individual viral miRNAs in herpesviruses are currently being characterized in a
systematic fashion by a number of investigators. For example, the biological signifi-
cance of miR-H2 was quickly examined with multiple recombinant viruses due to the
importance of its proposed target, ICPO (8-11). A recombinant virus that disrupted
miR-H2 function in the 17syn+ wild-type background resulted in increased replication
in neuronal cells (8). In addition, another recombinant virus mutating the miR-H2 in the
McKrae strain resulted in increased neurovirulence and increased reactivation upon
explant in mice (9). However, an miR-H2 mutant in the KOS strain background exhibited
no changes in pathogenesis or explant-induced reactivation in mice, suggesting that
there are strain-specific differences in miR-H2 function (11). Studies have also examined
the effects of a number of LAT promoter deletion viruses, used to prescribe paradigm
phenotypes of the LAT, on the expression of viral miRNAs. For example, one study
comparing two LAT promoter mutants in the KOS background, dILAT1.8, which deletes
a 1.8-kb region encompassing the LAT promoter and a portion of the primary LAT and
has reduced reactivation (12), and KOSAPstLAT, with a smaller deletion of 202 bases of
the LAT promoter (13, 14), found no effect on viral miRNA expression during the acute
infection in culture or in mice (6). However, during latent infection in mice, there was
vastly reduced viral miRNA expression (6). These results suggest these viral miRNAs
exert little or no influence on the acute infection or establishing latency but leave open
the possibility that reduced viral miRNA expression during latency contributes to, or is
responsible for, the reduced reactivation seen in LAT promoter mutants. Further,
reduced spontaneous reactivation in the rabbit ocular infection model was observed in
dLAT2903, a recombinant virus in the McKrae strain background with a 1.5-kb deletion
encompassing the LAT promoter and the first 1.5kb of the primary LAT (15), by
stem-loop reverse transcription-quantitative PCR (RT-qPCR) that miR-H2, -H3, -H4, -H5,
-H7, and -H8 in dLAT2903 were significantly reduced in expression relative to that of the
wild-type McKrae parent (10). The viral miRNA expression of another LAT promoter
deletion virus, 17APst (16), was examined and found to have significantly reduced viral
miRNA expression compared to its parental virus (10). To further examine the function
of miR-H2, the authors mutated the miR-H2 sequence in the dLAT2903 virus and found
increased neurovirulence and reactivation upon explant in mice (10). This finding was
striking, since dLAT2903 was found to have reduced spontaneous reactivation, and the
phenotype was reversed with mutation of just miR-H2, further highlighting the need to
investigate the contributions of individual viral miRNAs to latency and reactivation.

Of the LAT region miRNAs, HSV-1T miR-H1 and miR-H6 (termed miR-H1/H6) are of
particular interest for several reasons. HSV-1 miR-H1/H6 is composed of two miRNAs,
miR-H1-5p and miR-H6-3p, that are antisense to each other and transcribed from within
the LAT promoter region (Fig. 1). Mutating the seed sequence of one impacts both seed
sequences, complicating analyses. As stated above, many of the paradigm phenotypes
associated with the LATs have been revealed using promoter deletion mutants, which
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FIG 1 Complexity of the latency-associated transcript (LAT) locus. (A) The HSV-1 genome (drawn to scale) is depicted. The unique long (U,) and short (U)
segments are flanked by long (TR,) and short (TR,) terminal repeats that are inverted (IR./IR,) on the inner repeat segments. The inner inverted repeats are

enlarged to show transcripts in the LAT region. Viral miRNAs, colored by their upregula

tion during acute infection in white, latency in blue, and reactivation

in red, as well as select viral transcripts relevant to the text, are labeled. (B) The LAT promoter region is enlarged to indicate the LAT promoter region elements:

CTRL1, LAP1, LAP2, LAT TATA box, LAT transcriptional start site (TSS), and an ICP4-bind

ing region. The miR-H1 and miR-H6 precursor miRNAs (as well as the

17dmiR-H1/H6 deletion) are also labeled. The nucleotide positions refer to the 17syn+ reference genome (NC_001806.2). (C) The predicted structures of miR-H1
and miR-H6 precursor miRNAs (RNAfold webserver, http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi) with the mature miRNA sequences high-

lighted and the deletion corresponding to 17dmiR-H1/H6.
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also inadvertently affect miRNA expression (6). One of the central goals of this current
study was to determine if miR-H1/H6 phenotypes contributed to paradigm phenotypes
associated with the LATs. miR-H6 was one of the first HSV-1T miRNAs identified and was
the first to be shown to target ICP4, an essential immediate-early lytic viral gene (5). In
this seminal study, Umbach et al. showed that miR-H6 targeted ICP4 using transient
expression data from cell culture experiments (5). Here, the authors found a decrease
in ICP4 protein by Western blotting but not in ICP4 mRNA by gPCR (5). Further, Duan
et al. showed, using miR-H6 mimics and HSV-1 infection of human corneal epithelial
cells, that miR-H6 expression corresponded with a decrease in viral replication and
reduced interleukin-6 (IL-6) signaling (17). Aside from targeting ICP4, there is strong
evidence that suggests that miR-H6 is expressed during all phases of infection. North-
ern blot analysis confirmed miR-H6 precursor miRNA (6, 18, 19) and mature miRNA (18,
19) following acute infection in cell culture. In addition, miR-H6 accumulation during
acute infection in cell culture has been analyzed by stem-loop RT-qPCR (5, 6, 20, 21),
deep sequencing of RNA (18, 22), and RNA immunoprecipitation sequencing (RIP-seq)
(8). During latency in vivo, miR-H6 expression has been detected in mouse ganglia by
stem-loop RT-qPCR (6, 21) and deep RNA sequencing (18). It has also been validated in
human postmortem trigeminal ganglia (TG) samples following stem-loop RT-gPCR (23)
and deep RNA sequencing (20).

There is also strong evidence that miR-H1 is expressed during all temporal phases
of lytic infection, except during reactivation (21). Recently, miR-H1 was shown to target
host transcripts Sort1 (24) and Ubr1 (25) by transient expression; however, these studies
were based on transfections and not done in the context of viral infection. An
additional study that highlights the importance of examining these miRNAs in the
context of infection to validate transient expression assays was the proposed targeting
of ATRX by miR-H1. In this particular study, an miR-H1 mimic was shown to target the
mMRNA of the host intrinsic effector, ATRX, which is a component of ND10 bodies (26).
However, a recombinant virus lacking miR-H1/H6 in the HSV-1 strain KOS background
had no effect on ATRX depletion by Western blotting (26). Nonetheless, if the functions
of miRs H1 and H6 are biologically significant in the context of latency and reactivation,
rigorous in vivo characterization of a recombinant virus lacking miRs H1 and H6 would
effectively show whether or not these interactions are biologically significant.

The locations of miR-H1 and miR-H6 within the LAT locus, as well as their temporal
expression during all phases of infection, provide a strong scientific premise that these
miRNAs play a significant role in regulating HSV-1 latency and reactivation. We hypoth-
esized that if miR-H6 functions to downregulate ICP4, a recombinant virus lacking miRs
H1 and H6 would have increased pathogenesis compared to that of wild-type virus due
to an increase in the activation of the lytic cascade. We further hypothesized that this
fine-tuning of gene regulation by HSV-1T miRNAs contributes to the dynamic state of
viral latency.

RESULTS

An HSV-1 recombinant with deletions in miRNAs H1 and H6 displayed modest
increases in viral yields in vitro. HSV-1 miRNAs miR-H1 and miR-H6 are both ex-
pressed during acute infection in vitro (21). While a recombinant virus containing a
deletion in miR-H1/H6 had previously been constructed in HSV-1 strain KOS, this
deletion had little effect on pathogenesis (26). Because strain KOS is relatively avirulent
in the mouse (27) and does not reactivate in the rabbit eye model (28), we assessed the
contributions of these two miRNAs to pathogenesis and reactivation utilizing the more
pathogenic strain 17syn+ (abbreviated as 17+ in the figures). Therefore, we con-
structed a recombinant virus, 17dmiR-H1/H6, which contained a deletion of the anti-
sense mature miRNAs miR-H1-5p and miR-H6-3p (Fig. 1C). The 25-bp deletion corre-
sponding to the mature miRNA duplex of miR-H1-5p and miR-H6-3p was confirmed by
Southern blotting, PCR analysis, and Sanger sequencing of the fragment containing the
sequences flanking the deletion (data not shown). The deletion and genetic integrity of
the entire genome was confirmed by lllumina sequencing (see the supplemental
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material). Sixty-two putative SNPs, including 10 nonsynonymous substitutions, were
observed, but none resulted in nonsense, no-start, no-stop, or frameshift mutations.
Therefore, this mutant virus, 17dmiR-H1/H6 (abbreviated as dH1/H6 in the figures), was
compared directly to its parent wild-type virus, 17syn+.

Replication kinetics of 17dmiR-H1/H6 was assessed in cell lines from species relevant
to the animal models of HSV-1 infection, including rabbit skin (RS) and mouse neuro-
blastoma (Neuro2A) cells. At a high multiplicity of infection (MOI) (5 PFU/cell), viral DNA
(vDNA) accumulation for 17dmiR-H1/H6 showed a slight, though significant, increase at
18 and 24 h postinfection (hpi) in RS and Neuro2A cells (*, P < 0.05 by ordinary two-way
analysis of variance [ANOVA] with Sidak’s multiple-comparison test) (Fig. 2). At a high
MO, viral yields were also significantly increased at 12 and 24 hpi in the absence of
miR-H1/H6 in RS cells (Fig. 2C) and at 48 hpi in Neuro2A cells (Fig. 2D). At low MOI (0.01
PFU/cell), there were no consistently significant differences in viral yields or vDNA
replication.

Deletion of the HSV-1 miR-H1/H6 resulted in a slight increase in virulence in
the mouse footpad infection model. To measure the effects of deleting miR-H1 and
miR-H6 on pathogenesis, we utilized the murine footpad infection model because it
sensitively assesses the ability of HSV-1 to replicate in the footpad epithelium and
invade the peripheral to central nervous systems (29). Thus, these experiments were
conducted to provide a sensitive measure of potential differences in neurovirulence
and neuroinvasiveness due to deletions of miR-H1 and miR-H6. It is important to note
that we utilized the 17syn+ strain as the backbone for making the miR-H1 and miR-H6
deletions in an effort to better detect even subtle effects of the deletion due to its
higher pathogenicity, which is not observed in the KOS background (26), where 17syn+
is virulent following footpad infection in the mouse (50% lethal dose [LDs,] of 500 PFU)
compared to LDg,s of >2,000,000 PFU for KOS (27). Mice were infected with either
17dmiR-H1/H6 or 17syn+ at 50, 500, and 5,000 PFU/mouse on both rear footpads and
monitored daily in a masked fashion. When the mice reached the defined clinical
endpoint where they would likely succumb to HSV-1 infection (see Materials and
Methods), they were humanely euthanized. The resulting survival curves are shown in
Fig. 3A. The percent survival was plotted relative to dose using nonlinear regression
models. We found the modified LD, of 17syn+ to be 618 PFU and the modified LD,
of 17dmiR-H1/H6 to be 210.5 PFU (Fig. 3B). Significant differences in survival between
mice infected with 17syn+ and 17dmiR-H1/H6 at 500 PFU were observed (P = 0.017 by
log-rank Mantel-Cox test). Therefore, these results indicated that deletion of miR-H1/H6
from HSV-1 resulted in a significant increase in virulence relative to that of wild-type
virus.

17dmiR-H1/H6 established latency in the murine dorsal root ganglia equiva-
lently to 17syn+ following footpad infection. Mice were infected at 500 PFU with
either 17dmiR-H1/H6 or 17syn+ on both rear footpads, as described in Materials and
Methods. At 28 days postinfection (dpi), the dorsal root ganglia (DRG) from surviving
mice were dissected, DNA was extracted, and the relative load of latent HSV-1 genomes
was determined by qPCR (P = 0.75 by unpaired t test) (Fig. 3C). These analyses detected
no significant differences in the establishment of latency between 17dmiR-H1/H6 and
17syn+.

Deletion of HSV-1 miR-H1/H6 resulted in a significant reduction in reactivation
from latency in explanted mouse ganglia. We next utilized the murine explant
cocultivation model to determine if 17dmiR-H1/H6 displayed any alteration in its ability
to reactivate from latency. Mice were infected at 500 PFU with either 17dmiR-H1/H6 or
17syn+ on both rear footpads, as described in Materials and Methods. At 28 dpi, the
DRG from surviving mice were dissected (L4, L5, and L6), and individual ganglia were
placed onto monolayers of RS cells and monitored for reactivation by observing
cytopathic effects (scoring as positive or negative for reactivation) over 21 days (30). At
5 days postexplant, reactivation was observed for both viruses. At 7 days postexplant,
14/29 ganglia for 17syn+ had reactivated, while only 7/27 ganglia for 17dmiR-H1/H6
had reactivated. Overall, reactivation of 17syn+ peaked by day 12 postexplant, and for
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FIG 2 HSV-1 recombinant with deletions in miRNAs H1 and H6 displays modest increases in viral yields in vitro. (A

and B) Viral DNA (vDNA) replication in rabbit skin (RS) cells (A) and mouse neuroblastoma (Neuro2A) cells (B). In
a 24-well plate format, cells were infected with wild-type virus 17syn+ or 17dmiR-H1/H6 at a multiplicity of
infection (MOI) of 5 or 0.01, as indicated, and harvested at the indicated hours postinfection (hpi). gDNA was
extracted and subjected to qPCR probing for UL30, the viral polymerase gene, and rabbit (A) or mouse (B) GAPDH
(M.GAPDH). RS (C) or Neuro2A (D) cells were infected with wild-type virus 17syn+ or 17dmiR-H1/H6 at an MOI of
5 or 0.01 as indicated. Cells and supernatant were harvested at the given time point, lysed by one freeze/thaw
cycle, and subjected to limited dilution plaque assays. These data represent three independent experiments, and
significance was determined by ordinary two-way ANOVAs with Sidak’s multiple-comparison test (*, P < 0.05).

17dmiR-H1/H6, reactivation occurred at a much lower rate, peaking at 19 days postex-
plant (P < 0.001 by Mann-Whitney test) (Fig. 3D). By 21 days postexplant, we found that
17dmiR-H1/H6 reactivated from 12/27 ganglia (44%), compared to 16/29 ganglia (55%)
for 17syn+. Given that there was no significant reduction in the ability of 17dmiR-
H1/H6 to establish latency, these results indicate that the deletion of miR-H1/H6 results
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FIG 3 Deletion of HSV-1 miR-H1/H6 results in a slight increase in virulence in the mouse footpad infection model and a significant
reduction in reactivation from latency in explanted mouse ganglia. Female 4- to 6-week-old ND4 Swiss Webster mice were infected
with 17syn+ or 17dmiR-H1/H6 using the mouse footpad infection model. (A) Infection doses of 50, 500, and 5,000 PFU (n = 15
mice/dose/virus) were used to determine dose-dependent differences in viral replication and spread in vivo over 21 days. (B) Survival
for each dose is shown and combined to show the percent survival plotted against the log dose. The combined data were fit using
a nonlinear regression model to calculate the modified LD, (17syn+ = 618, 17dmiR-H1/H6 = 210.6). These curves are significantly
different (*, P < 0.05 by Mantel-Cox log-rank test). (C) Twenty-eight days postinfection, the dorsal root ganglia (DRG) were dissected
and gDNA was extracted (6 ganglia from each mouse were pooled for 1 gDNA sample and 5 mice per virus were analyzed; n =5
mice/virus) and subjected to qPCR probing for UL30 and mouse GAPDH (M.GAPDH). Unpaired t tests were used to determine
significance (*, P < 0.05; ns, not significant). (D) Twenty-eight days postinfection, individual DRG were dissected and seeded onto
monolayers of rabbit skin cells (6 individual ganglia per mouse and 5 mice per virus; n = 29 total DRG for 17syn+ and 27 total DRG
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in a decreased ability of 17dmiR-H1/H6 to reactivate from latency in the murine explant
model.

In the rabbit ocular infection model, the absence of miR-H1/H6 dramatically
reduced adrenergically induced reactivation. Given the decreased reactivation of
17dmiR-H1/H6 that was observed in the explanted mouse ganglia, we sought to
determine the ability of 17dmiR-H1/H6 to reactivate in the rabbit ocular model. The
rabbit ocular model parallels a number of aspects of ocular HSV-1 infection in humans
more closely than in the mouse (31, 32), including the ability to observe and quantify
corneal lesions during the acute infection period as well as the ability to very efficiently
and synchronously induce reactivation in latently infected rabbits following the admin-
istration of adrenergic agents, such as epinephrine (33). Rabbits were infected with
200,000 PFU/eye of either 17dmiR-H1/H6 or 17syn+ and monitored for survival, virus
shedding, and corneal pathology, as described in Materials and Methods. During the
acute infection, no significant differences were observed in the amount of virus present
in tear swabs through 7 days postinfection (¥, P < 0.05 by ordinary two-way ANOVA
with Sidak’s multiple-comparison test; ns, not significant) (Fig. 4A), and we did not
monitor spontaneous reactivation between 7 and 30 days postinfection. There were no
significant differences in slit lamp clinical scores grading the severity of the corneal
lesions (Fig. 4B) or in survival (*, P<0.05 by Mantel-Cox log-rank test) (Fig. 4C).
Therefore, 17dmiR-H1/H6 was phenotypically indistinguishable from 17syn+ during
the acute phase of infection in the rabbit eye.

At 30 days postinfection, reactivation was induced by iontophoresis of epinephrine,
as previously described (34). The eyes were swabbed daily, and the presence of
infectious virus was determined by plaque assay. Compared to 17syn+, 17dmiR-H1/H6
exhibited dramatically reduced cumulative reactivation when assessed by the cumu-
lative number of positive swabs (P = 0.0024 by Mann-Whitney test) (Fig. 4D), total
percentage of rabbits that reactivated (Fig. 4E), total percentage of rabbit eyes that
reactivated (Fig. 4F), or percentage of swabs that were positive for reactivation (Fig. 4G).
Strikingly, 17dmiR-H1/H6 reactivated in only 14% of the eyes compared to 60% of eyes
latently infected with 17syn+. These data demonstrate that 17dmiR-H1/H6 is signifi-
cantly impaired in epinephrine-induced reactivation in the rabbit ocular model and that
the degree of impairment approached that of the LAT promoter deletion 17APst (16).

Finally, 12 days after the induction of reactivation and no further virus shedding was
observed, the rabbits were euthanized, and TG were dissected to quantify latent viral
genomes. DNA was extracted from the TG, and relative quantities of HSV-1 genomes
were determined by gPCR. Although there is a potential for virus to replicate and
reestablish latency following reactivation, these analyses revealed no significant differ-
ences in genome copies between wild-type and 17dmiR-H1/H6 viruses (Fig. 4H).
Therefore, the decreased reactivation in the rabbit ocular model exhibited by 17dmiR-
H1/H6 was due to the deletion of miR-H1/H6 and not decreased levels of establishment
of latency.

Deletion of the viral miRs H1 and H6 results in increased LAT 5p exon and viral
miRNA accumulation during acute infection in cell culture. Due to the location of
miR-H1 and miR-H6 within the LAT region (Fig. 1A), we speculated that these miRNAs
could exert a regulatory influence on the LAT itself. Therefore, we next examined the
impact of the dH1/H6 deletion on the accumulation of latency-associated viral tran-
scripts (Fig. TA). During acute infection, significant increases in the accumulation of the
LAT 5p exon (Fig. 5A) were found at 8 and 24 hpi compared to levels of wild-type
infection (*, P < 0.05 by ordinary two-way ANOVAs with Sidak’s multiple-comparison
test). This increase of LAT 5p exon expression following infection with 17dmiR-H1/H6

FIG 3 Legend (Continued)

for 17dmiR-H1/H6 [some ganglia were excluded due to contamination]). Cytopathic effects were monitored daily and scored for
evidence of virus reactivation over 21 total days postexplant. Cumulative reactivation refers to explant DRG on a rabbit skin cell
monolayer positive for cytopathic effects relative to the total number of explant DRG. Reactivation was not tracked on a per-mouse

basis. Significance was determined by Mann-Whitney test (***, P < 0.0001).
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FIG 4 In the rabbit ocular infection model, the absence of miR-H1/H6 dramatically reduces adrenergically induced reactivation. Male and female New Zealand
White rabbits (2 to 3 kg) were infected in each cornea with either 17syn+ (7 rabbits) or 17dmiR-H1/H6 (8 rabbits) at 200,000 PFU and monitored over the course
of 41 days. During acute infection (1 to 15 days postinfection), the course of infection was monitored by shedding of virus by plaque assay (*, P < 0.05 ordinary
two-way ANOVA with Sidak's multiple-comparison test) (A), clinical scores (see Materials and Methods) assessed by slit lamp (ND, not determined;
17dmiR-H1/H6 eyes at 4 dpi were not scored) (B), and survival (*, P < 0.05 by Mantel-Cox log-rank test) (C). (D) Thirty days postinfection, reactivation was
induced by iontophoresis of epinephrine. Each eye was treated as an individual biological replicate (17syn+, n = 5 eyes from 3 rabbits; 17dmiR-H1/H6, n = 7
eyes from 4 rabbits), and eyes with evidence of corneal scarring were excluded from the reactivation experiments. Swabs were taken daily, and reactivation
was assessed by plaque assay. Data are shown as cumulative reactivation (swabs positive for infectious virus) as a function of time (**, P <0.005 by
Mann-Whitney test). Proportions of reactivation are represented for each rabbit (n = 3 for 17syn+ and n = 4 for 17dmiR-H1/H6) (E), eye (n = 5 for 17syn+ and
n = 7 for 17dmiR-H1/H6) (F), and swab (n = 60 for 17syn+ and n = 84 for 17dmiR-H1/H6) (G). After the reactivation experiment, the infection returned to latency
(determined by the absence of infections virus), and trigeminal ganglia (n = 8 TG per virus) were extracted to assess relative viral genomes (H) (*, P < 0.05 by
unpaired t test).

suggested that miR-H1 and/or miR-H6 negatively regulate LAT accumulation. Due to
the complexity of this region, we hypothesized that increased latency-associated
transcription could also impact viral miRNA accumulation, since miRs H1 through H8
reside in the LAT locus (Fig. 1A).

To investigate whether the modulation of LAT expression by miR-H1/H6 resulted in
downstream effects on the accumulation of other miRNAs in the LAT region, we
examined the relative accumulation of viral miRNAs (miRs H1 through H8) in RS cells
during acute infection at 12 hpi (MOI of 5) by stem-loop RT-qPCR (Fig. 5B). As expected,
we did not detect mature miR-H1 or miR-H6 transcripts from the 17dmiR-H1/H6 virus.
We did, however, find significant increases (*, P < 0.05 by unpaired t tests) in the
expression of other viral miRNAs in this region. These findings once again make it
difficult to separate the effects of the deletion of miR-H1/H6 and those corresponding
to increases in LAT and the expression of the other viral miRNAs, which both appear to
increase approximately 2-fold in 17dmiR-H1/H6. For this reason, we examined the role
of Drosha, a component of the canonical miRNA biogenesis pathway that processes the
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FIG 5 Viral miRs H1 and H6 negatively regulate the LAT 5p exon and viral miRNA accumulation during acute infection in cell culture. (A)
Rabbit skin cells were infected (MOl of 5) and harvested at several time points to analyze 5p exon expression (¥, P < 0.05 by ordinary
two-way ANOVAs with Sidak’s multiple-comparison test). (B) Rabbit skin cells were infected with 17syn+ or 17dmiR-H1/H6 (MOI of 5) and
harvested 12 h later to analyze viral miRNA (miR-H1 through miR-H8) accumulation using stem-loop primers (*, P < 0.05 by unpaired

t-tests). These data represent three independent experiments.

primary hairpin miRNA into the precursor miRNA, which is then exported into the
cytoplasm by Exportin-5 (35), in the accumulation of these different species of HSV-1
ncRNAs.

Latency-associated transcript accumulation was Drosha dependent. The LAT
primary transcript is 8.3 kb and is spliced to form a stable 2-kb intron. The 5p and 3p
exons are degraded rapidly, yet the mechanism for this rapid degradation of the spliced
transcript remains unknown. Following the discovery of the viral miRNAs in this region,
it was hypothesized that the spliced product acts as an IncRNA precursor for the viral
miRNAs in this region, which includes miR-H7, miR-H8, and miR-H14, but this hypoth-
esis has yet to be experimentally validated (5). In an attempt to address this question
and determine whether Drosha-mediated miRNA processing is involved in LAT accu-
mulation, we utilized a human embryonic kidney (HEK-293T) CRISPR Drosha—'~ knock-
out (K/O) cell line (36) and compared the results to those for the wild-type HEK-293T
cell line in the context of 17syn+ or 17dmiR-H1/H6 infection (Fig. 6). In theory,
miR-H1/H6 would not be processed for 17syn+ in the Drosha-K/O cells, allowing a
possible rescue of the miR-H1/H6 phenotypes. However, in designing this experiment,
we also appreciated that the Drosha-K/O cells would ablate the processing of all other
host and viral miRNAs in the canonical miRNA biogenesis pathway, resulting in the
dysregulation of many biological processes mediated downstream of both host and
viral miRNA regulation.

First, we assessed the effect of deleting miR-H1/H6 by comparing the results
between 17syn+ and 17dmiR-H1/H6 during acute infection in HEK-293T cells (Fig. 6A).
Consistent with our findings in rabbit skin cells (Fig. 2A and 5A), we found that the
deletion of miR-H1/H6 resulted in increased vDNA replication and increased LAT
expression. These results indicate that 17dmiR-H1/H6 infection of HEK-293T cells is
similar to that observed for rabbit skin cells and suggests that functional miR-H1/H6 is
responsible in part for repressing vDNA replication and LAT expression. In the Drosha-
K/O HEK-293T cells, we also found increases in vDNA replication and LAT expression for
both viruses (Fig. 6B), suggesting miR-H1/H6 (or their deletion) are not solely respon-
sible for regulating vDNA replication and LAT expression. There are likely other bio-
logical processes downstream of global miRNA regulation, apart from those attributed
to miR-H1/H6, contributing to this phenotype in the Drosha-K/O cells. Alternatively, the
results for the miR-H1/H6 deletion in the absence of Drosha may be alluding to a
function for miR-H1/H6, such as antisense regulation, cis-regulation, or noncanonical
miRNA biogenesis (see Discussion), which may be amplified by the loss of global
Drosha-mediated miRNA regulation.

We next assessed the impact of the absence of Drosha, comparing the results
between the HEK-293T cells and the Drosha-K/O cells. We found that for 17syn+ in the
Drosha K/O line, vDNA replication significantly increased by 9 hpi (Fig. 6D), which was
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FIG 6 Latency-associated transcript accumulation is Drosha dependent. Differences in human embryonic kidney cells (HEK-293T) and a CRISPR knockout
of Drosha (HEK-293t-Drosha-K/O) cell lines were examined following infection with 17syn+ or 17dmiR-H1/H6 at an MOI of 5. The effects of the miR-H1/H6
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expected, since it is known that host miRNAs can be antiviral and are perturbed during
HSV-1 infection (19, 37). We also examined the effects of Drosha on the accumulation
of the LAT 5p exon and the LAT intron by RT-qPCR. The LAT intron values are higher
than those of the LAT 5p or 3p exon, since, following splicing, the intron forms a highly
stable lariat structure (38). We found that in the absence of Drosha, the relative
accumulation of the LAT 5p exon increased and LAT intron levels decreased during
wild-type infection. To our knowledge, this is the first experimental evidence to show
that Drosha, presumably through the processing of miRNAs, is responsible for degra-
dation of the LAT primary transcript. This suggests functional miRNAs processed by
Drosha, or regulated by Drosha-mediated miRNAs, are responsible for repressing vDNA
replication and LAT 5p exon levels but facilitate LAT intron accumulation.

Deletion of miR-H1/H6 in the Drosha-K/O cells (Fig. 6E) also resulted in increased
vDNA replication and LAT 5p exon levels, suggesting that functional miRNAs other than
miR-H1/H6 are responsible, at least in part, for repressing vDNA replication and LAT 5p
exon levels. However, the miR-H1/H6 deletion in the Drosha-K/O cells had no effect on
restoring LAT intron levels, suggesting wild-type LAT intron accumulation is dependent
on functional miR-H1/H6 by an unknown mechanism independent of global Drosha-
mediated miRNAs and their downstream targets.

The increase in LAT 5p exon accumulation in Drosha-K/O cells was also observed in
the 17dmiR-H1/H6 infections, but the LAT intron accumulation did not significantly
decrease, as was observed in the wild-type infection, suggesting the dH1/H6 deletion
alters the splicing or stability of the LAT intron by a non-miRNA-mediated mechanism.
Nonetheless, these findings clearly demonstrate that (i) the deletion of miR-H1/H6
results in an overall increase in LAT accumulation, consistent with the increase in LAT
region miRNAs seen in Fig. 5, and (ii) these effects are Drosha dependent, suggesting
that the processing of the miRNAs from the LAT plays a significant role in the regulation
of LAT accumulation.

DISCUSSION

Much effort in the field of HSV-1 latency has been focused on the characterization
of viral noncoding RNAs (ncRNAs) that are transcribed during latency, with particular
focus on the LAT. Hallmark phenotypes attributed to the LAT include facilitating
establishment and maintenance of latency (39, 40) and also facilitating the ability of the
virus to reactivate (12, 16, 41, 42). These hallmark phenotypes were assigned to the LAT
by comparing recombinant viruses with various deletions in the LAT promoter (for a
comprehensive review, see Phelan et al. [3]). A limitation of these studies is that by
deleting the LAT promoter, the expression of other ncRNAs within the LAT region,
namely, a number of miRNAs, was also impacted (Fig. 5 and 6). Notably, several of the
LAT promoter deletions also deleted or reduced the expression of miR-H1 and miR-H6
(reviewed in reference 3). Therefore, we have examined the phenotypes attributed to
miR-H1-5p and miR-H6-3p, utilizing a recombinant virus in the 17syn+ wild-type
background in which the mature miRNAs for miR-H1/H6 (25 bp) are deleted. It should
be noted that this deletion is at least 70 bp from the nearest known LAT promoter
element. Using this recombinant with the 25-bp deletion (17dmiR-H1/H6), we found
slight increases in viral DNA replication and viral yields in rabbit and mouse cell lines
relative to wild-type 17syn+ (Fig. 2), along with increases in LAT 5p exon and LAT
region miRNA expression during acute infection in cell culture (Fig. 5). In the mouse
footpad infection model, 17dmiR-H1/H6 was slightly more virulent than 17syn+ (Fig. 3).
However, by far the most significant phenotype we observed for 17dmiR-H1/H6 was

FIG 6 Legend (Continued)
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deletion on VDNA replication and LAT expression were assessed in HEK-293T (A) and Drosha-K/O (B) cells. Relative genomes were determined by gDNA
qPCR probing for UL30, the viral polymerase, normalized to human GAPDH. RT-qPCR of the LAT 5p exon and LAT intron was normalized to human GAPDH.
(C) Summary of the findings comparing the two viruses. Comparison of results in HEK-293T and HEK-293t-Drosha-K/O cells for 17syn+ (D) and
17dmiR-H1/H6 (E). (F) Summary of the findings comparing the two cell lines. These data represent three independent experiments, and significance was
determined by ordinary one-way ANOVA with Sidak’s multiple-comparison test (*, P < 0.05; **, P < 0.001; ***, P < 0.0001; ****, P < 0.00001).
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decreased reactivation from latency in the mouse explant and rabbit ocular models
(Fig. 3 and 4). It is noteworthy that the degree of reduced reactivation efficiency was
similar to that observed previously for LAT promoter mutants. Significantly, in both the
mouse and rabbit models, the decrease in reactivation was present in the absence of
any detectable decrease in the establishment of latency. This is consistent with a recent
study utilizing an LAT promoter deletion virus (17APst) with significantly reduced viral
miRNA expression, which also had no impact on the establishment of latency in mice
(6). The results presented here represent the first robust phenotype described for a
recombinant of HSV-1 deleted specifically in miR-H1/H6 and indicates that one or both
of these miRNAs function to enhance the ability of HSV-1 to reactivate from latency.

Previous studies with miR-H1/H6 recombinant viruses. Previous studies exam-
ining HSV-1 miR-H1/H6 with recombinant viruses have not detected any phenotypes.
An analysis of the growth kinetics of a recombinant virus lacking miR-H1/H6, in the KOS
wild-type background, found no significant differences during acute infection in cell
culture (26). As stated earlier, we utilized the 17syn+ wild-type strain as the backbone
for our miRNA mutant due to the higher pathogenicity, an LD,,of 500 PFU in the
mouse footpad model, and the efficient reactivation phenotype in the rabbit ocular
model. These robust phenotypes for 17syn+ improve the sensitivity necessary for
observing even subtle differences. A lack of virulence and reactivation phenotypes for
miR-H1/H6 in the KOS background would be consistent with decreased virulence in the
footpad and limited reactivation in rabbit ocular models (26-28). Overall, differences in
virulent or avirulent wild-type and infection models (murine ocular, murine footpad, or
rabbit ocular) may explain the lack of phenotypes for miR-H1/H6 in the literature and
the phenotypes described here.

miR-H6 regulation of ICP4. The possible mechanisms of miR-H1/H6 are likely
layered in complexity. Since miR-H6 may target ICP4, the regulation of ICP4 and its role
in repressing LAT expression must be discussed. ICP4 is an important transactivator of
other viral genes, and in high abundance it can bind its own promoter and repress its
own expression later during infection, and it has been shown that ICP4 can bind the
promoter of LAT and limit LAT expression (43). Therefore, it is possible that miR-H6
expression flattens the curve of ICP4 expression by reducing its peak levels before it
eventually represses its own expression and inhibits LAT expression. Therefore, the
effect of miR-H6 during the acute infection is predicted to be subtle. Indeed, in the case
of herpes simplex virus 2 (HSV-2), a recombinant virus lacking the HSV-2 ortholog of
miR-H6 exhibited no significant differences in absolute ICP4 levels during acute infec-
tion in culture and no difference in the guinea pig reactivation model (44). In addition,
an HSV-2 recombinant virus in which the ICP4-binding sequence in the LAT promoter
was deleted (Fig. 1B) exhibited no change in replication kinetics, virulence, viral miRNA
expression, or reactivation (45), providing further evidence that an ICP4-mediated
repression of LAT expression mechanism for miR-H6 is unlikely.

Antisense regulation by miR-H1/H6. Since, in the case of HSV-1, we are not able
to specifically delete miR-H6 separately from miR-H1 due to their overlap, it is intriguing
to speculate that miR-H1 plays a dominant role in the reactivation phenotype that we
identify here by deleting both miR-H1 and miR-H6. A recent study examined miR-H6-5p
and miR-H1-3p, which are considered the star strands of the miR-H1/H6 miRNA duplex
(Fig. 1C), meaning they are presumably degraded quickly (46), as opposed to the
miRNAs examined here, miR-H1-5p/H6-3p. These authors found miR-H6-5p accumu-
lated more rapidly than its antisense partner, miR-H1-3p, which accumulated about 6 h
later (46). To examine the functions of miR-H6-5p, miR-H6-5p was inhibited with the
transfection of a plasmid expressing miR-H1-3p or an miRNA sponge for miR-H6-5p
transiently, resulting in reduced vDNA replication, viral yields, and viral protein levels of
the F wild-type HSV-1 strain in culture. To examine the effects of inhibiting miR-H6-5p,
a recombinant virus was constructed expressing an miR-H6-5p sponge between the
viral genes UL3 and UL4 and resulted in reduced viral yields and viral protein levels
during acute infection in culture and no differences in viral gene expression upon
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reactivation in the mouse trigeminal ganglia explant-induced reactivation model com-
pared to that of wild-type virus (46). Overall, these results suggest that the antisense
partners miR-H1 and H6 play a minor role in reducing lytic gene expression during
acute infection, consistent with our results, but we are not convinced by the negative
results in vivo, since the miRNA sponge was encoded between the lytic genes UL3 and
UL4, which likely would not be expressed during latency, since this part of the genome
is heterochromatic. This highlights the limitations of an ectopic expression approach for
examining miRNA effects during HSV-1 latency.

Consideration of the complexity of the LAT locus. Further resolution of miR-
H1/H6 mechanisms will require specific knockdown of the individual precursor miRNAs,
possibly by ribozymes (47), and this work is underway. However, this approach is not
straightforward, since there are multiple possible primary precursor IncRNAs for miR-H1
and -H6, including AL (48) or TAL (49) for H6 and UOL (50) or ATAL for H1 (49), and the
expression of these transcripts may be precisely regulated for an efficient latent
infection. Further, an alternatively spliced transcript, named pri-miR-H6/UDG, derived
from UL1 and UL2, a viral uracil-DNA glycosylase (UDG) gene, was found to be
expressed in KOS (51). Pri-miR-H6/UDG expression was found to be dependent on
ICP27 (51), implicating differential regulation of a spliced miR-H6 precursor during
acute infection and a Drosha-processed miR-H6 precursor in the absence of ICP27
during the establishment of latency. Importantly, this suggests a possible cis-regulation
mechanism of the biallelic LAT miRNAs that would be regulated differently if they were
next to ULT and UL2 (tRL) or in the iRL, where insulator elements were recently shown
to influence epigenetic repression during HSV-1 latency (52). In addition, these multiple
cis elements in the LAT promoter region make ectopic expression approaches likely to
influence the epigenetic repression of an ectopically expressed miR-H1 or miR-H6 in
another part of the virus. For these reasons, we did not pursue an ectopic expression
approach where miR-H1/H6 would be expressed in a different part of the HSV-1
genome, and we are designing ribozymes to specifically target the miR-H1/H6 precur-
sors.

Previous studies with LAT promoter mutants and ectopic expression of miR-
H1/H6. The ectopic expression of miR-H1/H6 was examined retrospectively. A recom-
binant virus, dLAT2903, in the McKrae background lacks the LAT promoter and the first
1.5 kb of LAT and exhibits a reduced reactivation phenotype in the rabbit ocular model
(53). With another recombinant virus, LAT15a, the LAT promoter (including miR-H1/H6)
and the first 1.5 kb of LAT were deleted (as in dLAT2903), and this segment was inserted
between UL37 and UL38 to examine the ectopic expression of LAT from its native
promoter (15). These authors found that the spontaneous reactivation phenotype of
LAT was rescued (15). These results support our findings here, that miR-H1/H6 are
involved in HSV-1 latency and reactivation, because miR-H1/H6 also were ectopically
expressed from the LAT promoter region included in LAT15a. However, a follow-up
study examining the ectopic expression of the LAT promoter and a smaller segment of
the LAT 5p exon resulted in only a partial rescue of the spontaneous reactivation
phenotype (54). This raises a question regarding whether or not ectopic expression of
the LAT promoter (including miR-H1/H6) and partial 5p exon sequences fully or partially
restore spontaneous reactivation.

Different models to study HSV-1 reactivation. We did not measure spontaneous
reactivation for 17dmiR-H1/H6 in rabbits in this study and instead utilized epinephrine-
induced reactivation of latently infected (>30 dpi) rabbits. These conflicting results
warrant a discussion regarding spontaneous versus induced reactivation in the rabbit
ocular infection model. Following ocular infection of rabbits with HSV-1, there is an
initial period of sustained acute shedding in the eyes that can be assessed by swabbing
of the eyes and assaying for infections virus. This shedding peaks at days 3 to 4 and
generally decreases to undetectable by days 8 to 10, while viral lytic transcripts can still
be detected in the TG until days 16 to 20. Spontaneous reactivation analysis makes use
of the observation that one can detect frequent episodes of positive ocular swabs
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between days 20 and 30. After 30 days, ocular shedding is infrequent. It has been
argued that spontaneous reactivation actually is an incomplete resolution of the acute
infection period as the virus establishes stable latency, perhaps through more complete
heterochromatinization of the viral genomes. Nonetheless, this spontaneous reactiva-
tion phenomenon mirrors the more frequent appearance of lesions that occurs in
humans immediately after primary infection. In contrast, adrenergically induced reac-
tivation is performed on rabbits that are in a more stable state of latency and involves
a synchronous induction of reactivation by iontophoresis of epinephrine, an adrenergic
agent. This model closely parallels the periodic reactivation episodes that occur
throughout HSV patients’ lives.

Over the years, differences have been observed between spontaneous reactivation
and induced reactivation phenotypes for different HSV-1 virus strains and mutants.
With recombinant virus X10-13 (55), which had a deletion of the LAT promoter and a
portion of the 5" LAT and was an HSV-1/2 chimera (HSV2-HG52 sequence inserted close
to UL29), explant-induced reactivation (55) and spontaneous reactivation was observed
(56). However, induced reactivation yielded a reduced reactivation phenotype com-
pared to that of a rescue virus (56). However, for the most part, phenotypes for LAT
mutant viruses are consistent between models (10, 28, 57-61).

Impact of miR-H1/H6 deletion on ncRNA expression from the LAT locus. In this
study, we further examined the roles of miR-H1/H6 on the expression of other ncRNAs
and transcripts in the LAT region and found that LAT region expression may be
downstream of Drosha-mediated processing of miR-H1/H6 (Fig. 6). We experimentally
showed that Drosha is responsible for the rapid degradation of the spliced LAT primary
transcript, and the effects of Drosha on the accumulation of LAT differ between
17dmiR-H1/H6 and 17syn+. In the absence of Drosha, there were significant decreases
in the LAT intron and significant increases in the LAT 5p exon (Fig. 6). Since canonical
miRNA biogenesis is Drosha mediated, in the Drosha-K/O cells, miR-H1/H6 most likely
would not be processed and functional in 17syn+-infected Drosha-K/O cells. If the only
impact of the miR-H1/H6 deletion was the loss of a functional miR-H1/H6, one hypoth-
esis is that 17dmiR-H1/H6 would not have a phenotype similar to that of 17syn+ in the
Drosha-K/O cells. The increased vDNA replication and LAT expression for 17dmiR-H1/H6
compared to that of 17syn+ found in HEK-293T cells was also found in the Drosha-K/O
cells. These results suggest the differences in vDNA replication and LAT expression for
17dmiR-H1/H6 are independent of Drosha. A broader conclusion would be that the
phenotypes found here cannot be attributed to miR-H1/H6. However, since Drosha
mediates canonical miRNA biogenesis, the majority of host and viral miRNAs also would
not be functional, and miRNA regulation can have many effects downstream from any
given target. Therefore, we favor the most obvious interpretation that, in a wild-type
infection setting, miR-H1/H6 is responsible for the phenotypes presented here. It is
possible that the phenotype for 17dmiR-H1/H6 compared to 17syn+ in Drosha-K/O
cells is attributed to the miR-H1/H6 deletion itself, and the effects may be amplified by
the absence of global miRNA regulation. The phenotypes found for 17dmiR-H1/H6
compared to 17syn+ in the Drosha-K/O cells are also suggestive of a possible com-
pensation mechanism, where the observed increased in LAT and viral miRNA accumu-
lation (Fig. 5) may have been in response to the miR-H1/H6 deletion. The phenotypes
observed following the deletion of miR-H1/H6 and the combined dysregulation of
ncRNAs in this region highlight the complexity of the LAT locus and the importance of
its precise regulation. The export of precursor miRNAs in the canonical miRNA biogen-
esis pathway has been shown to be inhibited by HSV-1 during acute infection in a
vDNA replication- and ICP27-dependent manner, resulting in a high precursor-to-
mature miRNA ratio (19). More investigation is required to determine if HSV-1 miRNAs,
including miR-H1/H6, are regulated in both a canonical Drosha-dependent manner and
possibly a Drosha-independent mirtron mechanism arising from the alternative splicing
of pri-miR-H6/UDG.
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Possible functions of miR-H1/H6. Based on the data presented in this study, we
propose that there are multiple functions for miR-H1/H6. During wild-type infection,
miR-H1/H6 negatively regulate lytic transcription, resulting in an acute infection with
moderate levels of pathogenesis. This facilitates the establishment of dynamic latency,
whereby lytic genes are epigenetically repressed to evade the immune system, and this
repression occurs in a way that retains the capacity to reactivate efficiently. In the
absence of miR-H1/H6, there is a modest increase in pathogenesis, which results in a
latent infection with a reduced ability to reactivate. Further, the expression of other
viral miRNAs in the LAT region is increased. This could be very significant, given the
evidence that miR-H2, miR-H3, and miR-H4 limit viral replication and pathogenesis by
targeting and downregulating important viral genes, including ICPO (miR-H2) and
ICP34.5 (miRs H3 and H4) (8-11). Thus, when miRs H1 and H6 are absent, either by
deletion or by reduced expression, the virus may possess an alternate program to
regulate lytic gene expression by an increase in the expression of the other viral
miRNAs in this region. We hypothesize that the reduced ability of 17dmiR-H1/H6 to
reactivate ultimately may be due to qualitative differences in the establishment of
latency resulting from the altered acute infection program. This may be manifested in
the ratios of heterochromatin marks on lytic genes that are constitutive (H3K9me3) or
facultative (H3K27me3), similar to the differences found for other LAT promoter mu-
tants (13, 62, 63).

Finally, it is possible and likely that miR-H1/H6 target multiple host and viral
transcripts, some of which may be cell type or species specific. For instance, in human
corneal epithelium, the transfection of miR-H6 mimics was found to result in decreased
IL-6 secretion and decreased viral replication (17), suggesting miR-H6 has multiple roles
in balancing lytic replication relative to host immune responses. Therefore, it is possible
that miR-H1 and miR-H6 will be found to target other viral and cellular transcripts,
including host restriction factors, since it is advantageous for a virus with limited coding
capacity to globally modulate its lytic and latent cycles. Future analyses using modified
cross-linking and sequencing of hybrids (qCLASH) (64) and miRNA mimic and sponge
approaches will be needed to further elucidate the importance and global nature of
individual HSV-1 miRNAs in the regulation of lytic and latent infections.

In conclusion, our studies demonstrate that HSV-1 miRNAs miR-H1 and miR-H6 are
likely important regulators of HSV-1 reactivation. Herpesviruses have evolved complex
regulation mechanisms to limit pathogenesis in order to increase fitness and transmis-
sion. Evolutionarily, viruses with uncontrolled lytic transcription paired with frequent
and severe reactivation episodes would be selected against in favor of viruses with
stealthy shedding of virus, sensed and regulated by both host and viral factors, which
set the stage for efficient and dynamic HSV-1 latency.

MATERIALS AND METHODS

Cell culture, viruses, and infections. Low-passage immortalized rabbit skin (RS) cells (gift from B.
Roizman) were cultured (passages 5 to 30) in minimum essential medium (MEM; 11095-098; Gibco)
complete with 5% bovine serum (26170-043; Gibco) and 1% PSG (100 U penicillin, 100 mg/ml strepto-
mycin, 0.292 mg/ml L-glutamine; SV30082.01; HyClone). Neuro2A cells were obtained from the ATCC
(CCL-13) and were cultured in MEM plus 10% fetal bovine serum (FBS; 16140-0630; Gibco) with 1%
nonessential amino acids (NEAA; SH30238.010; HyClone) and 1% PSG. HEK-293T (CRL-11268; ATCC) and
HEK293T-Drosha-K/O (gift from S. Gu) cells were cultured in Dulbecco’s modified Eagle medium (DMEM;
MT100114CV; ThermoFisher) with 10% FBS and 1% PSG. Low-passage-number wild-type virus 17syn+
was obtained from J. Stevens and used between passages 5 and 7. Cells were seeded at 50% density in
24-well plates and infected at the indicated multiplicity of infection (MOI) for 1 h in a volume of 250 wl,
with gentle rocking every 15 min. Following the 1-h inoculation, the cells were washed with phosphate-
buffered saline (PBS; SH30256.01; HyClone) and overlaid with complete medium. For plaque assays, cells
and supernatants were harvested at the corresponding time points and lysed by 1 freeze (—80°C)/thaw
cycle. Limiting dilution series (1:10) were used to determine viral yields. For plaque assays, the overlay
medium (complete) was supplemented with 0.3 mg/ml human IgG serum (18640-100MG; Sigma), and
48 h later, cells were fixed and stained with crystal violet solution (0.01% g/ml crystal violet [C0775-100G;
Sigma] with 22% 190-proof ethanol [2801G; Decon Labs] and deionized water). Plaques were counted
and averaged across three technical and three biological replicates.

Construction of recombinant virus 17dmiR-H1/H6. 17dmiR-H1/H6 includes a biallelic deletion of
25 nucleotides from the TRL/IRL segments of the genome (Fig. 1). The In-Fusion advantage PCR cloning
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TABLE 1 Custom TagMan primer/probe sequences

Transcript Forward primer? Reverse primer Probe

LAT 5p exon GGCTCCATCGCCTTTCCT AAGGGAGGGAGGAGGGTACTG TCTCGCTTCTCCCC
LAT intron CGCCCCAGAGGCTAAGG GGGCTGGTGTGCTGTAACA CCACGCCACTCGCG
uL30 AGAGGGACATCCAGGACTTTGT CAGGCGCTTGTTGGTGTAC ACCGCCGAACTGAGCA

aThe primer and probe sequences are in the 5p-to-3p orientation.

kit (639649; TaKaRa) was used to subclone ~150-bp recombination arms and the deletion corresponding
to the seed sequences of miR-H1-5p and miR-H6-3p into a pBluescript plasmid by following the
manufacturer’s protocol. Primers used to construct the recombination plasmid were the following:
BS-H1-5f 5p, TCCCCCGGGCTGCAGGAATTCCCAGTCTCCTCGCCTTCTC; D-H1-5r 5p, ATCAGGACCGTTCCCC
TCGGTTGTTC; D-H1-3f 5p, GGGAACGGTCCTGATACCCATCCTACACCG; and BS-H1-3r 5p, GATAAGCTTGAT
ATCGAATTCCTGCCTCTGCCGCTTGTG. The wild-type strain 17syn+ HSV-1 DNA was transfected along
with the recombination plasmid by calcium phosphate precipitation at a ratio of 10:1 as described
previously (65). Three independent isolates were screened by dot blot TMAC hybridization using
oligonucleotide probes and plaque purified at least 5 times as described previously (65). The biallelic
deletion was confirmed by PCR, Sanger sequencing, and Southern blotting (data not shown), and no
off-target mutations were found by Illumina sequencing. The sequencing data for the 17dmiR-H1/H6
virus are readily available (SRA accession number SRR9121361).

Reverse transcription and qPCR. Genomic DNA (gDNA) and RNA were extracted using DNA and
RNA miniprep kits (D7001; Zymo Research) by following the manufacturer’s instructions. RNA was DNase
treated using TURBO DNase (AM2239; ThermoFisher) and reverse transcribed using random decam-
ers (5722G; ThermoFisher/Invitrogen) and the Omniscript reverse transcription kit (205113; Qiagen).
gDNA or cDNA was subjected to gPCR (StepOnePlus real-time PCR system; 4376600; ThermoFisher/
Applied Biosystems) with fast qPCR master mix (4352042; ThermoFisher/Applied Biosystems) and
custom primer probes (Table 1). Relative genomes (probing for UL30, the viral polymerase gene) or
relative expression (relative to human [assay Hs02786624_g1; ThermoFisher/Applied Biosystems],
mouse [assay MmM99999915_g1], or rabbit [assay Al09030] glyceraldehyde-3-phosphate dehydrogenase
[GAPDH]) were determined based on standard curves from 1:10 dilutions of amplicon PCR products. For
miRNA accumulation assays, small RNAs were extracted using the Zymo Quick-RNA miniprep kits (R1055)
by following the manufacturer’s protocol for isolating small RNAs (<200 nucleotides [nt]) and TURBO
DNase treated. Stem-loop reverse transcription primers (miR-H1-5p assay 464923_mat, miR-H2-3p assay
005632, miR-H3-3p assay 97242_mat, miR-H4-3p assay 197191_mat, miR-H5-3p assay 197213_mat,
miR-H6-3p assay 197219_mat, miR-H7-5p assay 462602_mat, and miR-H8-5p assay 241862_mat) were
used for reverse transcription (Table 1). For extracting DNA from animal tissue, murine dorsal root ganglia
or rabbit trigeminal ganglia were dissected, and cells were suspended and snap-frozen in RNA lysis buffer
(D7001; Zymo Research). The ganglia then were sonicated (Bioruptor-Twin; UCD-400 TO; Diagenode) on
the high setting for 30 s on and 30 s off for 3 to 5 cycles, followed by gDNA extraction by following the
manufacturer’s protocol.

Murine footpad infections. Four- to 6-week-old female ND-40 Swiss-Webster mice were pretreated
with saline injections in both rear footpads 2 h prior to infection. The mice were anesthetized and the
cornified epithelium layer abraded with an emery board, and 10 to 25 ul of diluted virus stock was
applied to each footpad and allowed to absorb for 1 h until the mice regained consciousness. Mice were
monitored twice daily during the acute infection (5 to 15 days postinfection) and humanely euthanized
prior to succumbing to infection based on the University of Florida’s Institutional Animal Care and Use
Committee-approved defined endpoints. Mice that survived the acute infection had no obvious signs of
infection, and latency was established. Twenty-eight days postinfection, mice were euthanized and the
L4 to L6 DRG were dissected and analyzed by qPCR as described above (65). For explant-induced
reactivation assays, individual DRG were dissected 28 dpi and seeded onto RS cell monolayers in a
24-well format. Each well was monitored for cytopathic effects daily and scored positive or negative for
reactivation over 21 days as described previously (30).

Rabbit ocular infection model. Male and female New Zealand White rabbits (2 to 3 kg) were
infected in each cornea at doses of 200,000 PFU, as described previously (47). Briefly, eyes were scarified
and inoculated with 25 ul virus in MEM plus 5% FBS and massaged for 30 s. Eyes were examined by slit
lamp microscopy (SLE) with 0.1% fluorescein 3, 5, 7, 10, and 14 dpi and assessed for the presence of
ocular lesions. Lesion scores were determined by the surface area of cornea the lesion occupied, as
previously described. Rabbits were considered latent when no corneal lesions were observed. Ocular
swabs were done to confirm that no infectious virus could be detected 30dpi. Thirty-one days
postinfection, rabbits were subjected to transcorneal iontophoresis of 0.01% epinephrine (0.8 mA for 8
min) daily for 3 days for reactivation, as previously described. Ocular swabs were taken from each eye
daily for 12 days postreactivation, and the presence of infectious virus was determined by plaque assay
as a measure of reactivation. By 12 days postreactivation, infectious virus was no longer detected in the
ocular swabs, and trigeminal ganglia were dissected and subjected to qPCR as described above.

HSV-1 genome sequencing. A total of 500 ng of nucleocapsid viral genomic DNA was purified (66)
and sonicated in a Covaris Model S2 (intensity, 5; duty cycle, 10; cycle per burst, 200; treatment time,
1805). Libraries were made using SPRIworks System | for the Illumina Genome Analyzer (A88267;
Beckman Coulter) and Illumina DNA barcodes. Samples were pooled at equal nanomolar concentrations
and sequenced on MiSeq with 2X 75-nt paired-end reads. MiSeq reads were trimmed using Trimmo-
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matic, quality filtered using FASTQC, and mapped to the HSV-1 17syn+ genome (GenBank accession no.
NC_001806.2) using SegMan NGen (version 17.0.2.2). Out of 6.0 million paired reads, template coverage
was 99.897% with median coverage of 6,797 X. Variants were analyzed using SeqMan Ultra (version
17.0.2 [1]). The intended 25-bp deletion of mature miR-H1-5p/miR-H6-3p was observed at NC_001806.2
nt 8021 to 8045 and 118329 to 118353, representing the tRL and iRL segments, respectively. Ten
nonsynonymous substitutions were observed but did not result in nonsense, no-start, no-stop, or
frameshift mutations.

Statistical methods. All statistics were done using GraphPad/Prism (version 8.3.0). Data from cell

culture experiments represent at least three independent experiments, acute mouse infections were
repeated independently three times, and the reactivation experiments in the mouse and rabbit models
were not repeated, although the similar results in the two different reactivation models strongly suggest
these results were cross-validated. Significance for experiments with one time point was determined by
unpaired t tests (¥, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). Significance for time course
infection experiments in cell culture was determined by ordinary two-way ANOVAs with Sidak’s multiple-
comparison test. In the mouse modified LD, experiment, the percent survival relative to dose was fit
using a nonlinear regression model to calculate the modified LD,,s. Survival was found to be significantly
different at 500 PFU (Mantel-Cox log rank test). Significance for cumulative reactivation in the mouse
explant and adrenergically induced rabbit ocular reactivation models was determined by Mann-Whitney
tests.
Data availability. The sequencing data for the 17dmiR-H1/H6 virus are available in the Sequence
Read Archive (SRA) under accession number SRR9121361.
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