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a b s t r a c t

In patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy (NAC), some
patients achieve a complete pathologic response (pCR), some achieve a partial response, and some do not
respond at all or even progress. Accurate prediction of treatment response has the potential to improve
patient care by improving prognostication, enabling de-escalation of toxic treatment that has little
benefit, facilitating upfront use of novel targeted therapies, and avoiding delays to surgery. Visual in-
spection of a patient’s tumor on multiparametric MRI is insufficient to predict that patient’s response to
NAC. However, machine learning and deep learning approaches using a mix of qualitative and quanti-
tative MRI features have recently been applied to predict treatment response early in the course of or
even before the start of NAC. This is a novel field but the data published so far has shown promising
results. We provide an overview of the machine learning and deep learning models developed to date, as
well as discuss some of the challenges to clinical implementation.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Clinical background

In patients with locally advanced breast cancer, treatment has
historically consisted of surgical resection followed by post-
operative radiation and chemotherapy. Since clinical trials have
demonstrated that neoadjuvant chemotherapy (NAC), or chemo-
therapy administered prior to surgery, is equivalent to chemo-
therapy administered after surgery, an increasing number of
patients are receiving NAC prior to surgery. The primary goal of NAC
is to decrease the size of the tumor, leading to downstaging or even
pathologic complete response (pCR). This enables breast conser-
vation surgery (BCS) in women who previously required a mas-
tectomy as well as less extensive BCS; additionally, it also
ce spectroscopy; 23 N MRS,
parent diffusion coefficient;
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eliminates the need for axillary lymph node dissection in a subset
of patients, saving them the long-term morbidity of associated
lymphedema. In early-stage breast cancer, NAC has been proposed
as a potential standard of care, and to date it is widely used to treat
triple-negative and HER2þ subtypes of breast cancer, enabling
increased rates of breast-conserving surgery and decreased axillary
dissection [1]. A pCR to NAC is significantly associated with
improved disease-free and overall survival in high-risk breast
cancer subtypes [2], whereas a poor response to NAC is associated
with an adverse prognosis [3]. However, pCR is only achieved in
only 30e50% of breast cancer patients and therefore accurate and
early predictors of treatment response are warranted. Early iden-
tification of treatment resistance would enable de-escalation of
toxic treatment that has little benefit and could prompt initiation of
alterative, more personalized neoadjuvant or post-neoadjuvant
treatment strategies [4,5].
2. Imaging of treatment response

Although the assessment of tumor response to NAC may be
measured with mammography, breast ultrasound, or molecular
imaging [6e11], magnetic resonance imaging (MRI) is the most
sensitive imaging technique for the assessment and prediction of
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response [12e16]. In studies to date, tumor burden/tumor response
has been assessed typically with multiparametric MRI prior to NAC,
after NAC, and sometimes during NAC as well. Using imaging to
identify a priori those who will not benefit from standard NAC can
allow non-responders to be triaged to alternative treatments or
immediate surgery, thus improving patient care. This would both
expedite the delivery of effective treatment and eliminate the
administration of potentially toxic and ineffective therapies.

Initial work on treatment response was focused on MRI mea-
surements of tumor diameter, according to RECIST criteria [17], and
tumor volume with dynamic contrast-enhanced MRI (DCE-MRI)
[18]. However, changes in tumor size and volume usually occur
later during treatment and so there is a need to better assess tumor
response earlier during NAC. Multiparametric MRI of the breast,
which combines morphological parameters from DCE-MRI with
functional parameters from MRI techniques such as diffusion-
weighted imaging (DWI) and 3D proton magnetic spectroscopic
imaging (3D 1H-MRSI), enables the simultaneous assessment of
qualitative and quantitative imaging biomarkers. Initial studies
have shown that multiparametric MRI further improves the accu-
racy of treatment response assessment over DCE-MRI alone [19].
Changes in apparent diffusion coefficient (ADC) values reflect
changes in tissue cellularity, which can be affected during treat-
ment earlier than lesion size and therefore may be used for early
prediction of treatment outcome [20]. Other studies have incor-
porated proton magnetic resonance spectroscopy (1H-MRS) or
sodium MR spectroscopy (23N MRS), which can provide metabolic
information on breast tumors [21e23]. While earlier studies have
employed mainly univariate and multivariate regression models,
recent work has adopted more sophisticated predictive modeling
approaches using a variety of radiomics, machine learning, and
deep learning techniques.
3. Advanced image analysis and artificial intelligence for
response prediction

Radiomics is the conversion of medical images into high-
dimensional mineable data [24,25]. In oncology, a tumor is
segmented and hundreds or even thousands of quantitative im-
aging features, derived from tumor shape, texture, kinetics, etc, are
extracted. These features encode both simple patterns within
medical images but also many higher order patterns not apparent
to the human eye. This collection of features is often referred to as a
“radiomic signature.” Statistical or machine learning classifiers are
then applied on the radiomics signatures to classify patients ac-
cording to a predicted outcome (e.g., response to NAC). In super-
vised machine learning, the computer is presented with paired
“radiomics signatures” and patient outcomes to learn patterns in
the data such that for a given “radiomics signature” input, it is able
to predict the patient outcome [25]. Many machine learning
methods are available for this task including logistic regression,
random forest/decision trees, and support vector machine (SVM).
More recently, deep learning techniques using convolutional neural
networks (CNNs) have been developed that are more powerful and
more robust than traditional machine learning classifiers [26].With
deep learning, feature extraction and feature classification are
performed in concert directly from the raw medical images. This
eliminates the dependency on image pre-processing and allows for
a less constrained learning process. However, it also vastly in-
creases the search space of the model, and thus requires orders of
magnitude more training data and more computing power for
optimal performance.
4. Clinical implementation of machine learning with MRI for
response prediction

Several studies have evaluated the potential of machine learning
with multiparametric MRI to predict response to NAC at an early
stage, when adaptive treatment can be established.

In a study by Tahmassebi et al. [27], 38 patients were scanned
before and after two cycles of NAC with a 3T multiparametric MRI
scan. Qualitative features were extracted from T2-weighted images
(e.g., signal intensity and presence of edema) and from DCE images
(e.g., tumor size, pattern of shrinkage, mass or non-mass
enhancement, shape, margins, internal enhancement characteris-
tics, distribution, and symmetry). Quantitative features were
extracted from DCE images (e.g., mean plasma flow, volume dis-
tribution, and mean transit time) and DWI images (e.g., minimum,
maximum, and mean ADC values). Twenty-three quantitative and
qualitative features were fed to machine learning classifiers to
predict residual cancer burden (classified as complete pathologic
response with no evidence of residual disease, minimal residual
disease, moderate residual disease burden, and extensive residual
cancer burden). Eight machine learning classifiers were used to
predict residual cancer burden, recurrence-free survival, and
disease-specific survival, namely linear support vector machine,
linear discriminant analysis, logistic regression, random forests,
stochastic gradient descent, decision tree, adaptive boosting, and
extreme gradient boosting (XGBoost). Each specific learning algo-
rithm was designed to provide the best model to fit the input data
and predict the class labels correctly. Features were ranked based
on their importance in the model using recursive feature elimina-
tion. Four-fold cross-validation was used to prevent overfitting.
Area under the curve (AUC) was the classification metric. Fig. 1
summarizes the feature importance based on recursive feature
elimination, for prediction of response to NAC. The most relevant
features for prediction of residual cancer burden included change in
lesion size, complete pattern of shrinkage, mean transit time, per-
itumoral edema, and minimum ADC value. Out of the eight ma-
chine learning classifiers, XGBoost outperformed other classifiers
for prediction of response to NAC (AUC ¼ 0.86).

In another study, O’Flynn et al. [28] investigated the role of
multiparametric MRI to predict response to NAC in 32 womenwith
locally advance breast cancer who were scanned before and after
two cycles of NAC. For this study, treatment responsewas evaluated
on final surgical histology, pCRwas classified as “no invasive and no
in situ residual disease in the breast or nodes” and near pCR was
classified as presence of “non-measurable isolated microscopic foci
of residual invasive or in situ disease”. Non-responders had
measurable residual invasive and in situ disease. Enhancement
fraction (EF), tumor volume, initial area under the gadolinium
curve, and quantitative pharmacokinetic parameters (Ktrans, kep,
ve) were recorded. ADC and R2* values were recorded pixel-by-
pixel. The percentage change in overall mean values for all pa-
rameters before and after two cycles of chemotherapy according to
pCR status was evaluated using a paired t-test. Linear discriminant
analysis determined the most important parameter in predicting
pCR. A reduction in the EF (�41% ± 38%) and tumor volume
(�80% ± 25%) after two cycles of NAC were significantly greater in
those achieving pCR (p¼ 0.025, p¼ 0.011 respectively). A reduction
in the EF of 7% after two cycles of NAC identified those more likely
to achieve pCR with a sensitivity of 63% and specificity of 77% (AUC
0.76). Tumor volume required a much greater percentage decrease
(71%) to yield an equivalent specificity of 77%. Other parameters
were not contributory to predict response to NAC. Contrary to the
aforementioned study, ADC measurements from this multi-



Fig. 1. Feature importance of mpMRI model in prediction of RCB class. RCB, Residual cancer burden. Reprinted with permission from: Tahmassebi A, Wengert GJ, Helbich TH, Bago-
Horvath Z, Alaei S, Bartsch R, Dubsky P, Baltzer P, Clauser P, Kapetas P, Morris EA, Meyer-Baese A, Pinker K. Impact of Machine Learning With Multiparametric Magnetic Resonance
Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients. Invest Radiol. 2019; 54(2):110e117.
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parametric model showed no impact in differentiating responders
from non-responders. ADC values in fact demonstrated a small fall
in those achieving pCR and a rise in the non-responders.

Mani et al. [29] investigated the early prediction of response in
20 patients after just one cycle of NAC, analyzing not only func-
tional information retrieved from DCE and DWI but also ultraso-
nographic, clinical, and histopathological information. They used a
representative set of machine learning and feature selection algo-
rithms including three linear classifiers (Gaussian Naïve Bayes, lo-
gistic regression (LR), and Bayesian LR), two decision tree-based
classifiers (CART36 and RF), one kernel-based classifier (SVM) and
one rule learner (Ripper). A small number of features was selected,
and irrelevant features were excluded to reduce risk overfitting.
Datasets with 13 imaging variables, 12 clinical variables, and 25
combined imaging plus clinical variables in addition to the outcome
variable were assessed (Table 1). Thirteen imaging features from
quantitative DCE-MRI and 11 clinical variables were relevant. Im-
aging and clinical parameters separately had similar overall per-
formance; imaging and clinical variables together boosted the
performance of Bayesian LR considerably, resulting in an accuracy
of 0.9 and an AUC of 0.96.

In a follow-up study [30], the authors developed a predictive
model with an increased number of imaging features (118 instead
of 13), which were derived from semiquantitative and quantitative
DCE-MRI and DWI-MRI parameters. The imaging parameters were
combined with 11 clinical variables. With a sample size of 28 pa-
tients, they achieved similar results to the prior study (AUC ¼ 0.86)
(Table 2). The authors used Bayesian LR with feature selection
within a machine learning framework to capture non-linear re-
lationships between variables and outcome and integrated clinical
and imaging data obtained before and after one cycle of NAC to
predict response in breast cancer patients undergoing NAC. To in-
crease predictive performance and decrease overfitting, feature
selection algorithms were used to select only a small number of
features that were highly predictive of response to NAC. The feature
selections algorithms included HITON-Markov blanket (MB), Gram-
Schmidt (GS) orthogonalization with a maximum number of 10
features output, and BLCD-MB. The MB-based feature selection
algorithms selected only two clinical and two imaging features
(ERþ, PRþ, mean ADC after one cycle of treatment, and mean of the
change of the top 15% of kep), generating an accuracy of 0.82 (95% CI
0.68e0.96). When clinical and imaging features were combined,
they generated an accuracy of 0.86 (95% CI 0.71e0.96), a sensitivity
of 0.88 (95% CI 0.71e1) and a specificity of 0.82 (95% CI 0.56e1),
which were higher compared to the accuracy, sensitivity, and
specificity yielded by the current RECISTapproachwhich amounted
respectively to 0.71, 0.82, and 0.65. The Gram-Schmidt-based al-
gorithm performed more poorly and selected all the 11 clinical



Table 1
List of clinical and imaging variables used. Reprinted from: Mani S, Chen Y, Li X, Arlinghaus L, Chakravarthy AB, Abramson V, Bhave SR, Levy MA, Xu H, Yankeelov TE. Machine
learning for predicting the response of breast cancer to neoadjuvant chemotherapy. J Am Med Inform Assoc. 2013; 20(4):688-95.

Clinical Variable Description Imaging
Variable

Key
Term

Description

Age Age at the time of diagnosis Delta ADC Delta t1, t2 difference
ERþ Estrogen receptor Delta

Ktrans FXL
Ktrans Pharmocokinetic

transfer constant
PRþ Progesterone receptor Delta

Ktrans

FXLvp

FXL Fast exchange limit

HER2þ Human epidermal growth factor receptor Delta
Ktrans FXR

FXR Fast exchange regime

Clinical Grade Pretreatment clinical grade Delta ve
FXL

vp Blood plasma volume
fraction

Proliferative rate Delta ve
FXvp

ve Extravascular
extracellular volume
fraction

Pre-treatment nodal
status

Pathologically confirmed by fine needle aspiration or sentinel node evaluation Delta ve
FXR

ti Intra cellular water
lifetime of wated
molecule

Clinical-T Pretreatment clinical size based on clinical findings judged most accurate for that case (physical
exam, ultrasound, mammogram, conventional MRI)

Delta vp
FXL

Clinical-N Pretreatment nodal stage based on pathologically confirmed by fine needle aspiration of node or
sentinel evaluation

Delta ti
FXR

Pre-treatment clinical
stage

Staging of the breast cancer prior to initiation of systemic chemotherapy Ktrans, t1
FXL

Pre-treatment physical
exam

Longest diameter by physical exam (CM) Ktrans, t1
FXLvp

Pre-treatment longest
diameter (ultra sound)

Longest dimension (CM) Clinical judgment is used to determine the modality most accurate for
that case (physical exam, ultrasound, mammogram, conventional MRI)

Ktrans, t1
FXR
Delta
tumor
volume

Table 2
List of pretreatment clinical variables with a short description. NAC, neoadjuvant chemotherapy. Reprinted from: Mani S, Chen Y, Arlinghaus LR, Li X, Chakravarthy AB, Bhave
SR, Welch EB, Levy MA, Yankeelov TE. Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative MRI and machine learning. AMIA
Annu Symp Proc. 2011; 2011:868e77.

Clinical variable Description

Age Age at the time of diagnosis
ERþ Estrogen receptor
PRþ Progesterone receptor
HER2þ Human epidermal growth factor receptor
Clinical Grade Pretreatment clinical grade
Proliferative rate No of cells in mitosis per 10 high power fields
Nodal status Pathologically confirmed by fine needle aspiration or sentinel node evaluation
Clinical-T Pretreatment clinical size based on clinical imaging (ie, physical examination, ultrasound, mammogram, conventional MRI) judged to be most accurate

for each case. In patients in whom these measurements were discordant, the most reliable measurement (as deemed by the treating physician) was
utilized to determine tumor size before chemotherapy

Clinical-N Pretreatment nodal stage based on pathologically confirmed by fine needle aspiration of node or sentinel evaluation
Clinical stage Staging of the breast cancer before initiation of NAC. Clinical staging includes physical examination as well as standard imaging including ultrasound,

mammogram and clinical MRI
Physical

examination
Longest diameter by physical examination (cm)
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variables (range 15e28 folds), 58 imaging variables (range 1e24
folds) and 60 (range 1e27 folds) when clinical and imaging vari-
ables were combined.

Some studies have attempted to predict response to NAC with
pretreatment imaging alone. For example, Cain et al. [31] used
pretreatment MRI performed in 288 patients to predict response to
NAC using a multivariate machine learning-basedmodel (LR and an
SVM). This study analyzed computer-extracted features solely from
pretreatment MRI and did not evaluate differences between pre-
and post- (1 or 2 cycles of NAC) treatment MRI. The larger dataset
size allowed the creation of an independent validation cohort for
each of the following subpopulations: 1) all neoadjuvant therapy
(NAT) patients, 2) NAC patients, and 3) triple-negative or HER2þ
(TN/HER2þ) patients treated with NAT. The entire cohort was
equally divided into a training set, which was used to generate the
machine learning models, and a test set. A stepwise multilinear
regression-based feature selection procedure was used to select
features from the training set for predicting pCR. The initial set of
features comprised 529 features that were used to train a multi-
variate logistic regression classifier and a support vector machine
classifier. The trained models were used to predict pCR in the test
set. Feature selection and training classifiers in the training set was
done for all patients and was then repeated for two subpopulations
(i.e., NAC patients and TN/HER2þ patients treated with NAT).
Twelve features were selected from the training set for the three
cohorts: six were extracted from tumor alone, five were extracted
from FGT alone, and one was extracted from both tumor and FGT.
Only two were significant for TN/HER2þ patients who received
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NAT. Onewas “change in variance of uptake”, a tumor-based feature
which quantifies the change in variance of tumor uptake by finding
the minimum ratio of the variances of tumor voxels in two
consecutive time points. This feature had the highest AUC (0.71, 95%
CI 0.58e0.83) among the 12 features selected in all subpopulations
evaluated: lower values were predictive of pCR. An additional
feature, ‘SER Partial tissue vol cu mm T1,’ extracted using fibro-
glandular tissue (FGT), was also selected and found to be significant
in TN/HER2þ patient subpopulation. This feature is a volumetric
measure of FGT enhancement (extracted from T1 non-fat-saturated
sequences) using the signal enhancement ratio of FGT voxels. For
this feature, higher values predicted a lower chance of achieving
pCR. This study demonstrates that while multivariate models (e.g.,
SVM, LR) were prognostic of pCR in the TN/HER2þ patient sub-
group (p < 0.002), the prognostic value of the model in predicting
pCR across the entire cohort was significant, but to a lesser extent
(p ¼ 0.01).

In another example of pretreatment MRI-based predictive
modeling, Aghaei et al. [32] studied quantitative kinetic imaging
features to predict response to NAC from the pretreatment MRI
scan of 68 cancer patients. Tumors were segmented using com-
puter aided detection and 39 kinetic image features were extracted
from both the segmented tumor and background parenchyma.
Features are summarized in Table 3. Only a small set of non-
redundant and highly performing imaging features were selected.
Two approaches were used to analyze the data. First, individual
features were analyzed with a simple feature fusion method
(average, weighted combination, and selection of the maximum or
minimum feature value) that combined classification results from
multiple features; the correlation coefficients of individual image
features were also computed and compared to identify non-
redundant image features. Second, a statistical machine learning
classifier-based method selected optimal features and predicted
tumor response to NAC using an artificial neural network (ANN) as
a base classifier integrated with a wrapper subset evaluator. The
base classifier was trained with a leave-one-case-out validation
method where each case was selected as an independent testing
case and the remaining cases in the dataset were used to form a
training dataset. The ANN was subsequently applied to the testing
case and used to generate a classification score. Using the feature
fusion method, ten features yielded AUC >0.6 in classifying be-
tween the complete response and the partial and nonresponse case
groups: 1) average intensity and 2) maximum pixel intensity from
the entire tumor region, 3) volume, 4) average intensity and 5)
standard deviation from active tumor region, excluding necrotic
region, 6) volume and 7) skewness of low-enhanced pixel intensity
from the necrotic area, 8) average intensity, 9) standard deviation
from the background parenchyma, and 10) average intensity from
Table 3
Summary of computed kinetic image features in five groups.a These features are comput
and right) breast regions, left breast and right breast.b Absolute bilateral feature difference
Tan M, Hollingsworth AB, Qian W, Liu H, Zheng B. Computer-aided breast MR image fe
42(11):6520-8.

Feature group Feature
number

Description

Tumor area 1e7 Volume, average intensity, maximum pixe
value of tumor radius, and shape factor

Enhanced area 8e11 Volume, average intensity, standard devia
Necrotic area 12e16 Volume, average intensity, standard devia

tumor volume
Background parenchymal

areaa
17e34 Average intensity, standard deviation, skew

5% of pixel values
Absolute bilateral difference

of BP areab
35e39 Average intensity, standard deviation, ske
the absolute bilateral feature difference of BPE between the left and
right breasts. From the comparison results, five final low-
redundancy image features [2,3] were selected with correlation
less than 0.5. These five features were used to classify responders
and non-responders. This simple feature fusion method achieved
an AUC ¼ 0.85 ± 0.05, which was significantly higher than the AUC
using each individual feature (which ranged from 0.604 ± 0.072 to a
maximum of 0.713 ± 0.065). The ANN-based classifier selected 11
features. The five most relevant features were: 1) average contrast
enhancement and 2) standard deviation of contrast enhancement
inside an entire tumor region, 3) standard deviation of contrast
enhancement in the enhanced area, 4) average pixel value of
necrotic regions, and 5) ratio of necrotic volume over tumor vol-
ume. The ANN-based classifier proved more accurate, with an
AUC ¼ 0.96 ± 0.03, which was significantly higher than that of the
simple fusion method (p < 0.01). These results highlight the idea
that quantitative imaging feature analysis has higher discrimina-
tory power and is better able to predict outcome compared to
visually assessable features (e.g., tumor size, average contrast
enhancement). For example, the heterogeneity of tumor contrast
enhancement represented by the standard deviation of the contrast
enhancement on the active tumor region had the highest
discriminatory power (AUC 0.778 ± 0.066), and this marker cannot
be accurately and reliably evaluated using a visual or subjective
evaluation method.
5. Deep learning with MRI for response prediction

Recently, deep learning methods have been proposed for pre-
diction response to NAC using pretreatment MRI alone. Ha et al.
[33] trained a CNN to take tumor regions of interest from the pre-
treatment MRI and predict whether the patient would achieve a
complete pathologic response considered as no residual invasive
disease in the breast and lymph nodes (ypT0/Tis ypN0), partial
pathologic response, or no response/progression. The study was
performed using 141 patients with locally advanced breast cancer.
The CNN consisted of ten convolutional layers, four max pooling
layers, and a fully connected layer. Data augmentation, 50%
dropout, and L2 regularization were used to prevent overfitting.
The CNN achieved an overall mean accuracy of 88% in three-class
prediction of NAC (i.e., discriminating one class from the other
two). The complete response group had a specificity of 95.1%± 3.1%,
a sensitivity of 73.9% ± 4.5%, and an accuracy of 87.7% ± 0.6%. The
partial response group had a specificity of 91.6% ± 1.3%, a sensitivity
of 82.4% ± 2.7%, and an accuracy of 87.7% ± 0.6%. The non-responder
group had a specificity of 93.4% ± 2.9%, a sensitivity of 76.8% ± 5.7%,
and an accuracy of 87.8% ± 0.6%. The dataset size in this studye 141
patients e is not large enough to fully harness the potential of deep
ed from three different regionsdbackground parenchymal region of the whole (left
of BPE between the left and right breasts. Reprinted with permission from: Aghaei F,
ature analysis for prediction of tumor response to chemotherapy. Med Phys. 2015;

l intensity, standard deviation, and skewness of tumor pixel intensity, maximum

tion, and skewness of contrast-enhanced pixel intensity
tion, and skewness of low-enhanced pixel intensity, ratio of necrotic volume over

ness, maximum pixel intensity, average value of top 1%, and average value of top

wness, average value of top 1%, and average value of top 5% of pixel values



Table 4
Summary of findings across key articles. The machine learning classifiers in bold characters represent those that yielded the most significant results and the AUC values are
related to the results from those classifiers in bold characters.

Study Analyzed images Machine learning classifiers Most relevant selected features AUC

Tahmassebi
et al.

DCE, DWI T2 Linear support vector machine
Linear discriminant analysis
logistic regression
Random forests
Stochastic gradient descent
Decision tree
Adaptive boosting
Extreme gradient boosting (XGBoost)

Change in lesion size
Complete pattern of shrinkage
Mean transit time
Peritumoral edema
Minimum ADC value

0.86

O’Flynn et al. DCE, DWI, T2 Linear discriminant analysis Enhancement fraction (EF)
Tumor volume

0.76

Mani et al. DCE, DWI Linear classifiers (Gaussian Naïve Bayes, Logistic Regression,
and Bayesian
Logistic Regression) decision tree-based classifiers (CART
and Random Forests)
Kernel based classifier (Support Vector Machine)
Rule learner (Ripper)

See Table 1. 0.96

Mani et al. DCE, DWI GS-10
HITON-MB
BLCD-MB

Mean ADC post one cycle of treatment
Mean of the change of the top 15% of kep as estimated by
the TK model

0.86

Cain et al. T1 non-fat sat, DCE Multivariate logistic regression classifier (fitglm)
Support vector machine classifier (fitcsvm and
fitSVMposterior)

Change in variance of uptake 0.71

Aghaei et al. DCE Simple feature fusion method
Artificial neural network (ANN) with a wrapper subset
evaluator

Average contrast enhancement
Standard deviation of contrast enhancement inside an
entire tumor region
Standard deviation of contrast enhancement in the
enhanced area
Average pixel value of necrotic regions
Ratio of necrotic volume over tumor volume

0.96

Ha et al. First T1 postcontrast
dynamic images

Convolutional neural networks (CNN) Not specified 0.88
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learning for treatment response prognostication. The 88% accuracy
achieved in this study is therefore especially encouraging, since it
can be expected that future work with larger datasets will achieve
even higher predictive accuracy. Key findings from the above
mentioned studies are summarized on Table 4.

6. Challenges

Despite these encouraging results, the field of machine learning
using multiparametric breast MRI for early prediction of NAC
treatment response is still in its infancy. To date, studies have been
retrospective, single-institutional, and have included relatively
small numbers of patients, which limits the statistical power of the
studies and may compromise the generalizability of the results.
Additionally, multiparametric MRI has been performed using a
wide range of MRI hardware; as well as varied scan protocols,
sequence parameters, and post-processing steps. Rigorous stan-
dardization of MRI hardware and software is needed. Ideally,
quantitativeMRI techniques should also be used to further improve
repeatability and reproducibility. Deep learning is a particularly
promising technique for early prediction of treatment response, but
to avoid overfitting, it is necessary to train models on extremely
large datasets that are large and diverse enough to span the bio-
logical heterogeneity of the diseases and outcomes they seek to
classify. Breast cancer is a highly heterogeneous disease and so
models with real potential for clinical translation must be orders of
magnitude larger than all studies to date. The curation of highly
standardized, large, multi-institutional MRI datasets is a herculean
task, but it is a prerequisite to building robust machine learning
models that will work across patients and across institutions and
that have real potential for clinical use. Finally, it is also necessary to
establish more standardized and transparent ways to validate the
machine learning models being developed. Rigorous testing by
third parties in prospective studies is essential to guarantee a
model’s diagnostic accuracy and is needed prior to implementation
in the clinical setting.

7. Summary

Several large randomized trials have demonstrated that
achieving pCR after neoadjuvant treatment for locally advanced
breast cancer not only decreases patient morbidity by facilitating
less invasive surgery but also aids in predicting patient mortality, as
pCR is a marker for improved disease-free and overall survival
[34,35]. However, only 30e50% [35] of patients undergoing neo-
adjuvant treatment achieve pCR, and it would be clinically advan-
tageous to identify those patients for optimal triage of care. To date,
traditional machine learning approaches have been applied to
predict treatment response using a mix of qualitative and quanti-
tative multiparametric MRI features early in the course of, or even
before the start of, neoadjuvant treatment. Incorporating clinical
data into these models further improves accuracy [36,37]. More
recently, deep learning using CNNs have been used to predict pCR
and have achieved results similar to the more traditional machine
learning methods. However, the datasets used were not large
enough to evaluate the full potential of the CNN approach and it is
expected that future work with larger numbers of patients will
demonstrate the superiority of a deep learning over traditional
machine learning.

In conclusion, machine learning and deep learning using breast
MRI enable the early prediction of pCR to neoadjuvant treatment
with high accuracy. The integration of machine and deep learning
has the potential to provide valuable predictive information on
treatment outcomes and risk of recurrence and thus improve
clinical management by minimizing toxicities from ineffective
therapies, avoiding delays to surgery in non-responders, and
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facilitating upfront use of novel targeted therapies.
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