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Introduction
The human body is colonized by >100 trillion symbiotic 
microorganisms, almost equivalent to the number of human 
cells and collectively referred to as the human microbiota (Qin 
et al. 2010; Sender et al. 2016). Due to environmental differ-
ences, each site in the body is home to a distinct microbial 
ecosystem (Sender et al. 2016). Among these sites, the most 
diverse bacterial populations are found in the intestinal tract 
(Human Microbiome Project 2012; Blum 2017). The human 
gut microbiota contributes to host physiologic development 
and maintenance, including education of the host immune sys-
tem, nutrient digestion, and defense against colonization by 
pathogenic microorganisms (Kamada, Seo, et al. 2013; Gilbert 
et al. 2018). Because of its enormous impact, disturbance of 
the gut microbiota, so-called gut dysbiosis, has been shown to 
underlie multiple intestinal pathologies, including irritable 
bowel syndrome (IBS), inflammatory bowel disease (IBD), 
and colorectal cancer (CRC). However, we lack a comprehen-
sive understanding of which bacteria act as disease-associated 
pathobionts and how they contribute to the pathogenesis of dis-
ease. In this regard, it has been reported that patients with dis-
eases of the gut exhibit an abnormal enrichment of typical oral 
bacteria in the luminal contents and the gut mucosal tissues 
(Gevers et al. 2014; Yachida et al. 2019). Thus, it is conceivable 
that the oral cavity serves as a reservoir of oral pathobionts 

whose ectopic gut colonization contributes to the pathogenesis 
of intestinal diseases.

The oral cavity is a primary gateway to the human body and 
has the second-largest and diverse microbiota after the gut, 
harboring >770 species of bacteria (Escapa et al. 2018). A vari-
ety of microbial habitats in the oral cavity (e.g., teeth, buccal 
mucosa, soft and hard palate, and tongue) makes the ecologic 
system complex and attracts diverse microorganisms, called 
oral microbiome, including bacteria, fungi, and viruses (Kilian 
2018). Within oral microbiome, bacteria are the major compo-
nents and form distinct microbial communities in each oral 
habitat; they primarily comprise members of the phyla 
Firmicutes, Fusobacteria, Proteobacteria, and Actinobacteria 
(Costalonga and Herzberg 2014). Diverse structural and 
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nutritional difference creates a unique microbial ecosystem in 
each body site, benefiting human health. However, compelling 
evidence indicates that certain bacteria can be disseminated 
from one site to the others and cause systemic diseases. In this 
regard, numerous studies have elaborated that oral microbes 
can spread through the body and have been found in a variety 
of systemic diseases, such as cardiovascular diseases, adverse 
pregnancy outcomes, and rheumatoid arthritis (Hajishengallis 
2015; Graves et al. 2019). Importantly, in addition to these 
sterile organs, oral microbes can be ingested and naturally 
translocate to the upper and lower digestive tract (i.e., esopha-
gus, stomach, small and large intestine). Unlike sterile organs, 
the digestive tract harbors indigenous microbial communities 
that prevent the colonization of exogenous microbes that 
invade from the extraintestinal compartment (i.e., the mouth) 
via multiple means (Kamada, Chen, et al. 2013). However, 
under certain circumstances, oral microbes can ectopically 
colonize the upper and lower digestive tract. In this regard, 
increasing evidence suggests that ectopic colonization by oral 
microbes may be detrimental and cause diseases in the diges-
tive tract. In this review, we summarize the current knowledge 
of the dissemination and its role of oral microorganisms in 
extraoral diseases, particularly diseases in the lower digestive 
tract. Among the oral microbiota, bacteria are the most well-
studied microorganisms with respect to the possible involve-
ment in extraoral diseases. Hence, in this review, we focus on 
the role that oral bacteria play in the pathogenesis of gastroin-
testinal diseases.

Oral Bacteria in Gut Pathology
Despite the environmental segregation of the mouth and gut, it 
has been reported that more than half of microbial species 
(e.g., Streptococcus and Veillonella) frequently detected in 
both sites show evidence of oral-gut translocation, even in 
healthy individuals (Schmidt et al. 2019). Gut colonization by 
oral bacteria such as Veillonella spp. is known to modulate host 
immunity (Geva-Zatorsky et al. 2017). Thus, ectopic coloniza-
tion by oral bacteria in the healthy gut may in part contribute to 
the physiologic development and/or maintenance of gut immu-
nity. However, ectopic gut colonization by specific oral bacte-
ria and/or under certain conditions might be linked to the 
pathogenesis of diseases in the gastrointestinal tract. In Table 
1, we define oral bacteria per the following criteria: 1) bacteria 
identified as a constituent of the oral microbiome by the Human 
Oral Microbiome Database (http://www.homd.org/) and 2) 
bacteria that have higher abundance in the oral cavity than in 
the gut samples of healthy individuals on the basis of the NIH 
Human Microbiome Project (HMP1; https://hmpdacc.org/
hmp/). In addition, some bacteria that were previously reported 
as bacteria involved in oral pathology (e.g., some species/gen-
era belonging to the Enterobacteriaceae family, Staphylococcus, 
Fusobacterium varium, and Porphyromonas gingivalis) are 
listed as possible oral bacteria even if they do not meet crite-
rion 2 (see Appendix Table 1).

Irritable Bowel Syndrome

IBS is the most common functional gastrointestinal disorder, 
characterized by recurrent episodes of abdominal pain (Simren 
and Tack 2018). The global prevalence of IBS is estimated to 
be 11.2%, with geographic variations ranging from 7% to 21% 
(Lovell and Ford 2012; Canavan et al. 2014). A study revealed 
the approximately 7-fold increased risk of IBS development 
after microorganism-driven gastroenteritis (Halvorson et al. 
2006). Given the evidence that gut dysbiosis may lead to the 
activation of gut immune systems and subsequent low-grade 
inflammation of the gut (Ohman and Simren 2010), it is likely 
that microbes residing in the gut play a role in the pathogenesis 
of IBS. In this context, notwithstanding the huge variations in 
the gut microbial composition of patients with IBS (Ohman  
et al. 2015; Chong et al. 2019; Hugerth et al. 2020), there are 
some common features in IBS, including an increase in the 
families Enterobacteriaceae and Lactobacillaceae and a 
decrease in the genera Clostridium, Faecalibacterium, and 
Bifidobacterium, as compared with controls (Pittayanon et al. 
2019). Interestingly, alterations in the microbial composition 
of patients with IBS include enrichment of certain types of 
typical oral bacteria in the gut. For example, Streptococcus 
spp. have repeatedly been reported to be enriched in the gut of 
patients with IBS (Wyatt et al. 1988; Kassinen et al. 2007; 
Rajilic-Stojanovic et al. 2011; Vich Vila et al. 2018). Likewise, 
an increased abundance of the family Veillonellaceae in the 
gut is often observed in IBS (Table 1). In this regard, over-
weight patients with IBS who have significantly higher 
IVP (induced visceral pain) scores exhibit a higher abun-
dance of Veillonellaceae than normal-weight patients with 
IBS. Also, infants with colic—characterized by gastrointesti-
nal discomfort caused by the accumulation of lactate, hydro-
gen (H2), or hydrogen sulfide (H2S)—have an increased level 
of Veillonellaceae in the gut (Pham et al. 2017). The ability of 
Veillonella spp. to produce a robust quantity of H2 suggests that 
Veillonella spp. may play a role in determining the pathogene-
sis of IBS.

Inflammatory Bowel Disease

IBD is an idiopathic disorder that causes chronic inflammation 
of the digestive tract, comprising Crohn’s disease (CD) and 
ulcerative colitis. Imbalance of the gut microbiota appears to 
be an essential factor in the pathogenesis of IBD (Sartor 2008). 
Multiple studies have shown the difference in the gut microbial 
composition between patients with and without IBD (i.e., 
healthy individuals; Lloyd-Price et al. 2019). Gut dysbiosis in 
IBD is characterized by a decrease in the bacterial diversity 
and species richness of the microbiota. In this context, one 
large multicenter microbiome study involved the collection of 
>400 treatment-naïve pediatric CD samples from multiple con-
current gastrointestinal sites (e.g., stool, rectal, ileum). The 
results clearly demonstrated a significant correlation between 
microbial alterations in rectal and ileal mucosa and disease status, 
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Table 1.  Oral Bacteria Found in the Gut of Patients with Gut Pathology.

Percentage Abundance in Healthy Individuals

Gut Pathology: Oral Bacterial Species Detected in the Guta Sample Type Saliva Gingiva Buccal Stool

Irritable bowel syndrome  
  Streptococcus (genus) Stool 13.94 10.04 51.49 0.04
  Streptococcus thermophilus Stool 2.63b 0.10b 1.92b 0.01b

  Veillonella (genus) Stool 11.64 3.91 3.35 0.08
  Haemophilus (genus) Stool 12.65 4.06 15.12 0.07
  Prevotella (genus) Stool 13.01 8.79 2.27 3.4
  Fusobacterium (genus) Stool 6.42 13.75 2.54 0.06
  Dialister invisus Stool 0.17 0.38 0.04 0.67
  Gammaproteobacteria (class) Stool 13.7 6.13 15.89 0.24
  Enterobacteriaceae (family) Stool 0.01 <0.005 <0.005 0.01
Inflammatory bowel disease  
  Veillonellaceae (family) Tissue 12.7 4.5 3.47 0.94
  Pasteurellaceae (family) Tissue 13.61 5.83 15.83 0.07
  Neisseriaceae (family) Tissue 6.57 6.07 3.34 <0.005
  Peptostreptococcaceae (family) Tissue 0.51 0.52 0.08 0.11
  Atopobium parvulum Tissue 0.42 0.05 0.06 <0.005
  Fusobacteriaceae (family) Stool, tissue 6.42 13.75 2.54 0.06
  Fusobacterium varium Tissue <0.005 ND ND 0.02
  Campylobacter (genus) Tissue 1.93 0.99 0.2 <0.005
  Campylobacter concisus Stool, tissue 1.66 0.1 0.01 <0.005b

  Aggregatibacter segnis Stool 0.11 0.27 0.02 <0.005
  Streptococcus (genus) Stool, tissue 13.94 10.04 51.49 0.04
  Streptococcus anginosus Stool <0.005b 0.02b 0.05b <0.005b

  Gemellaceae (family) Stool, tissue 0.87 0.53 6.32 <0.005
  Enterobacteriaceae (family) Stool, tissue 0.01 <0.005 <0.005 0.01
  Escherichia coli Stool, tissue 0.01b <0.005 <0.005b <0.005
Colorectal cancer  
  Porphyromonas (genus) Stool, rectal swab 4.67 3.6 2.66 <0.005
  Porphyromonas gingivalis Stool <0.005 0.01 <0.005 <0.005
  Porphyromonas uenonis Stool ND ND ND ND
  Fusobacterium (genus) Tissue, rectal swab 6.42 13.75 2.54 0.06
  Fusobacterium nucleatum Stool 0.78 8.45 0.38 <0.005
  Streptococcus (genus) Stool 13.94 10.04 51.49 0.04
  Peptostreptococcaceae (family) Stool, rectal swab 0.51 0.52 0.08 0.11
  Peptostreptococcus stomatis Stool 0.3 0.08 0.05 <0.005
  Peptostreptococcus anaerobius Stool <0.005 <0.005b <0.005b <0.005
  Prevotella (genus) Stool 13.01 8.79 2.27 3.4
  Prevotella intermedia Stool 0.13 0.66 0.04 ND
  Gemella morbillorum Stool, rectal swab 0.87b 0.53b 6.32b <0.005b

  Solobacterium moorei Stool 0.01 <0.005 <0.005 <0.005
  Atopobium parvulum Stool 0.42 0.05 0.06 <0.005
  Actinomyces odontolyticus Stool 1.43 0.16 0.49 <0.005
  Parvimonas micra Stool 0.16 0.51 0.05 <0.005
  Escherichia coli Stool, tissue 0.01b <0.005 <0.005b <0.005
  Klebsiella (genus) Stool <0.005 <0.005 <0.005 <0.005
  Helicobacter pylori Tissue <0.005 <0.005 <0.005 <0.005
  Mogibacterium Stool 0.15 0.03 0.02 <0.005
  Dialister pneumosintes Tissue 0.04 0.07 0.01 <0.005
Celiac disease  
  Staphylococcus (genus) Stool 0.01 0.01 0.01 0.19
  Staphylococcus epidermidis Tissue 0.01b 0.01b 0.01b 0.19b

  Enterobacteriaceae (family) Tissue 0.01 <0.005 <0.005 0.01
  Klebsiella oxytoca Tissue <0.005b <0.005b <0.005b <0.005b

ND, not detected.
aThe taxonomic rank is provided in parentheses only if the species information is not defined in the reference. Oral bacteria are defined per the 
following criteria: 1) bacteria identified as a constituent of the oral microbiome by the Human Oral Microbiome Database (Escapa et al. 2018) and 2) 
bacteria having higher abundance in the oral tissues than in the gut samples. The percentage abundance in the saliva, gingiva, buccal mucosa, and stool 
in healthy individuals, based on the NIH Human Microbiome Project (HMP1), is shown. In addition, some bacteria that were previously reported as 
bacteria involved in oral pathology are listed as possible oral bacteria even if they do not meet criterion 2. References are provided in Appendix  
Table 1.
bAmplicon sequence variants also match some other taxa (likely in the same genus).
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with an increased abundance of Veillonellaceae, Pasteurel
laceae, Enterobacteriaceae, Nisseriaceae, Gemellaceae, and 
Fusobacteriaceae and a decreased abundance of Bacteroidales, 
Erysipelotrichales, and Clostridiales (Gevers et al. 2014). 
Notably, most of the bacteria enriched in the gut of these pedi-
atric patients with CD were resident oral bacteria rather than 
typical resident bacteria in the gut, implying the contribution of 
oral bacteria to the pathogenesis of CD. Enterobacteriaceae are 
generally considered gut bacteria but not typical oral bacteria. 
However, a recent study showed that Enterobacteriaceae that 
reside in the saliva can elicit pathogenic immune responses 
when they ectopically colonize the gut (Atarashi et al. 2017). 
In this study, members of the family Enterobacteriaceae, in 
particular Klebsiella spp. (K. pneumoniae and K. aeromobilis 
[also known as K. aerogenes]), were isolated from gnotobiotic 
animals colonized by salivary microbiota derived from patients 
with IBD and identified as potent Th1 inducers in the gut. 
These Klebsiella strains are capable of eliciting severe gut 
inflammation when colonized in hosts genetically susceptible 
to IBD. Although Enterobacteriaceae, including Klebsiella 
spp., are only a minor constituent of oral microbiota, multiple 
studies reported that Enterobacteriaceae, including Klebsiella 
and E. coli, reside in the oral cavity in humans (Souto 2006; 
Baek et al. 2018; Zawadzki et al. 2016). Thus, at least a part of 
Enterobacteriaceae enriched in the gut of patients with CD 
could also be originated from the oral cavity (Table 1).

Colorectal Cancer

The colon is exposed to an infinite number of microorganisms, 
corresponding to about 70% of the estimated human microbi-
ome (Sekirov et al. 2010). Given that most of the known colon 
cancer risks (e.g., age, inflammation, obesity) are closely asso-
ciated with gut dysbiosis, it is conceivable that certain gut 
microbes contribute to tumor cell generation, by directly or 
indirectly shaping a microenvironment in the gut that is more 
favorable to tumor development. Many studies have shown 
that patients with CRC have a distinct gut microbial composi-
tion as compared with healthy individuals (Table 1). Of note, 
many of the bacteria enriched in colonic adenomas and carci-
nomas are related to the typical resident oral bacteria, including 
the families Streptococcaceae and Neisseriaceae and the genera 
Staphylococcus, Porphyromonas, Veillonella, and Fusobacterium 
(Kostic et al. 2013; Geng et al. 2014). This observation received 
validation from 3 recent large cohort studies demonstrating 
reproducible CRC-associated gut microbial signatures 
(Thomas et al. 2019; Wirbel et al. 2019; Yachida et al. 2019). 
These studies showed that patients with CRC have an enrichment 
of members of the oral microbes, including Fusobacterium, 
Atopobium, Actinomyces, Parvimonas, Peptostreptococcus, 
Porphyromonas, and Solobacterium, in the gut (Table 1). 
Furthermore, patients diagnosed with CRC had higher trans-
mission rates of bacteria from the mouth to the gut when com-
pared with healthy individuals. In particular, the transmission 
of Fusobacterium nucleatum, Parvimonas micra, and 
Peptostreptococcus stomatis was increased in patients with 
CRC. These results likewise support a potential link between 

the oral and gut microbiome in the context of CRC (Schmidt et 
al. 2019).

Mechanistic Insights into the Role  
of Oral Bacteria in Gut Pathology
Despite increasing knowledge of oral bacterial dissemination 
to the gut, the functional role of oral bacteria in the develop-
ment of intestinal pathology remains unexplored. Published 
reports demonstrate plausible molecular mechanisms by which 
oral bacteria affect the host responses to enhance diseases of 
the gut. The mechanistic role of 3 bacteria are discussed in turn 
and summarized in Table 2.

Fusobacterium nucleatum

F. nucleatum is enriched in the colonic mucosa of patients with 
IBD and CRC (Table 1). A recent study showed that identical 
strains of F. nucleatum are detected in both the saliva and 
colonic tumors of patients with CRC, indicating that F. nuclea-
tum colonized in the colonic tumors originates in the oral 
microbiota (Komiya et al. 2019). Unlike other oral bacteria, the 
mechanistic role of F. nucleatum has been relatively well 
explored. F. nucleatum is highly adhesive to the gut epithelium 
through Fap2 adhesin–mediated binding to Gal-GalNAc 
(galactose N-acetyl-d-galactosamine; Abed et al. 2016). 
Reports that F. nucleatum promotes the proliferation of tumor 
cells in vitro and in vivo may be explained by the F. nucleatum 
FadA adhesin–mediated activation of the Wnt/β-catenin path-
way (Rubinstein et al. 2013). Furthermore, F. nucleatum plays 
a pivotal role in controlling CRC chemoresistance in response 
to chemotherapy drugs (e.g., oxaliplatin) by selectively target-
ing miRNAs and activating the autophagy pathway (Yu et al. 
2017). Beyond a direct interaction with epithelial cells, F. 
nucleatum can shape the tumor microenvironment by altering 
the cytotoxic functions of tumor-infiltrating lymphocytes and 
natural killer cells. This action is mediated by the interaction 
between the inhibitory immunoreceptor TIGIT on these 
immune cells and Fap2 (Gur et al. 2015). Given that the over-
representation of Fusobacterium in CRC positively correlates 
with lymph node metastasis, Fusobacterium spp. may have 
further malignant potential that needs to be clarified. Notably, 
the ectopic gut colonization by fusobacteria can be a biomarker 
for the detection of CRC. A recent study reported that the fecal 
abundance of fusobacteria in combination with that of the 
potentially beneficial populations (e.g., Bifidobacterium) 
might serve as a biomarker for early CRC (Guo et al. 2018). 
Also, measuring anti-Fn-IgA level with the conventional bio-
markers, such as carbohydrate antigen 19-9 (CA19-9) and car-
cinoembryonic antigen, may increase the sensitivity for the 
detection of early CRC (Wang et al. 2016).

Porphyromonas gingivalis

P. gingivalis accumulates in the gut of patients with CRC. 
Although the precise role of P. gingivalis in the pathogenesis  
of CRC remains unknown, some pathologic functions of 
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P. gingivalis implicate a pathogenic role for this bacterium in 
CRC (Table 2). For instance, oral administration of P. gingi-
valis to mice is reported to disrupt the gut epithelial integrity 
(e.g., reduced expression of tight junction proteins; Arimatsu 
et al. 2014; Nakajima et al. 2015). P. gingivalis also inhibits 
epithelial apoptosis through multiple mechanisms, including 
activation of the JAK1/STAT3 and PI3K/Akt signaling path-
ways (Yilmaz et al. 2004; Mao et al. 2007), inactivation of 
caspase 3 and 9 (Mao et al. 2007; Yao et al. 2010), and pre-
vention of P2X7-mediated apoptosis (Yilmaz et al. 2008). 
Similar to F. nucleatum, P. gingivalis is capable of potentiat-
ing epithelial cell proliferation through activation of the 
Wnt/β-catenin pathway (Zhou et al. 2015), as well as by con-
trolling the activity of PI3K, p53, and cyclins (Kuboniwa  

et al. 2008; Pan et al. 2014). Furthermore, P. gingivalis con-
tributes to the invasive properties of tumors through the acti-
vation of matrix metalloproteinases (MMPs), including 
MMP-1, MMP-9, MMP-10, and MMP-13 (Inaba et al. 2014; 
Ha et al. 2015; Inaba et al. 2015). Also, P. gingivalis is known 
to invade macrophages and dendritic cells through the inter-
action between its fimbrial proteins and complement receptor 
3 (or DC-SIGN) on the immune cell surface. After hijacking 
the immune cells, P. gingivalis instigates the production of 
proteins that destroy tissue, such as MMP-9, from the infected 
cells. The role that MMPs play in controlling the invasive 
properties of tumors suggests that oral bacteria residing in 
colonic tumors may contribute to the metastatic potential of 
these tumors (Hajishengallis 2015).

Table 2.  Possible Mechanisms of Oral Bacteria in the Gut Pathogenesis.

Pathways in Host Cells  

Oral Bacteria: Target Cells Effector Receptor Related Signals Pathologic Functions

Fusobacterium nucleatum  
  Epithelial cells Fap2 Gal-GalNAc Tumor binding and 

enrichment
  Epithelial cells Metalloproteinase  

collagenase
Cellular migration and 

invasive properties
  Epithelial cells FadA Ecad Wnt/β-catenin Tumor cell proliferation
  NK cells, T cells Fap2 TIGIT Immune evasion
  Epithelial cells LPS TLR4 miR-4802, miR-18a* Chemoresistance (autophagy 

activation)
  Epithelial cells LPS TLR4 Myd88, miR-21 Tumor cell proliferation
  Recruitment of tumor-

infiltrating immune cells 
(MDSC, TAM, regDC)

Fusobacterium varium  
epithelial cells

Adhesion and invasion, IL-8 
and TNF-a production

Porphyromonas gingivalis  
  Epithelial cells Jak1/Akt/Stat3, PI3K/Akt Cell survival (antiapoptotic)
  Epithelial cells Cyclin D and E, PI3K Cell proliferation
  Epithelial cells Gingipain β-catenin destruction, 

complex degradation
β-catenin Cell proliferation

  Epithelial cells Immune evasion (B7-H1 and 
B7-DC upregulation)

  Epithelial cells Gingipain PAR NF-kB, ERK1/2, p38 Tumor invasiveness (MMPs 
expression↑)

  Epithelial cells and others Epithelial disruption, 
proinflammatory cytokine 
induction, gut dysbiosis

  Epithelial cells and others Epithelial disruption, immune 
activation, gut dysbiosis

  Neutrophils TLR1-TLR2 Myd88 Impaired antimicrobial 
response, Impaired killing 
activity

  Mø and DC Fimbrial proteins (FimA  
and Mfa1)

CR3 or DC-SIGN MMP and C1q Hijack and direct host 
immune cells (distant tissue 
destruction)

Klebsiella pneumoniae, K. 
aerogenes (K. aeromobilis) 
epithelial cells

TLR IL18 and Myd88 Th1 cell generation

Atopobium parvulum:  
unknown

H2S Mitochondrial dysfunction 
in host with impaired H2S 
detoxification

Campylobacter concisus 
epithelial cells

Epithelial disruption

Staphylococcus aureus  
epithelial cells, T cells

Enterotoxins Epithelial disruption, immune 
activation
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Klebsiella Species

A recent study showed that the colonization of germ-free  mice 
with salivary microbiota isolated from patients with CD 
resulted in potent Th1 cell differentiation in the gut (Atarashi 
et al. 2017). In this study, the authors determined that certain 
Klebsiella spp. (e.g., K. pneumoniae, K. aerogenes/aeromobi-
lis) residing in the salivary microbiota are responsible for the 
induction of Th1 cells. Interestingly, the expansion of Th1 cells 
due to the ectopic gut colonization by oral Klebsiella spp. does 
not lead to the development of spontaneous gut inflammation. 
However, these oral Klebsiella spp. are capable of inducing the 
development of Th1-skewed IBD-like colitis in mice lacking 
the immunosuppressive cytokine IL-10. Given that impaired 
IL-10 signaling is associated with the risk for very-early-onset 
IBD (Moran et al. 2013), oral bacteria such as Klebsiella spp. 
may contribute to the pathogenesis of certain subsets of IBD.

Other Oral Bacteria

Members of the oral microbiota found in the gut are known to 
produce carcinogenic substances. Similar to F. nucleatum and 
P. gingivalis, certain types of oral bacteria (e.g., Atopobium 
spp., Veillonella spp., Prevotella spp., Streptococcus spp., and 
Aggregatibacter spp.) are known to liberate H2S, a genotoxic 
and inflammatory substance, from sulfur-containing amino 
acids. Also, many species of indigenous oral bacteria, such as 
Streptococcus spp. and Neisseria spp., have been reported to 
produce acetaldehyde by catabolizing ethanol and glucose 
(Tagaino et al. 2019). Given the high genotoxic capacity of 
these bacterial metabolites, even at low concentrations, it is 
conceivable that ectopic colonization of the gut by these oral 
bacteria could induce genomic instability or mutations, leading 
to colonic tumor development.

Possible Pathways of Ectopic Gut 
Colonization by Oral Bacteria
Although the mode of the relocation of oral bacteria from the 
oral cavity to the gut mucosa is uncertain, 2 routes have been 
proposed: hematogenous and enteral.

Hematogenous Route

One possible route of oral bacteria dissemination is by hema-
togenous spreading from the oral cavity (Fig.). Studies have 
shown that oral mechanical injuries caused by daily dental 
activity (e.g., hard mastication, brushing) and dental proce-
dures (e.g., orthodontics, extraction) enable oral bacteria to 
spread into the systemic circulation (Lockhart et al. 2008; 
Parahitiyawa et al. 2009). Patients with periodontal diseases 
such as periodontitis and oral cancer have an elevated level of 
oral bacteria in their blood. Moreover, a ligature-induced 
murine periodontitis model showed that periodontal inflamma-
tion triggers oral bacterial dissemination to the liver and spleen, 
indicating a key role for oral inflammation in the systemic 

dissemination of oral bacteria through the bloodstream 
(Tsukasaki et al. 2018). This role was supported by another 
study that identified periodontal pathogens such as P. gingiva-
lis in the bloodstream of patients with periodontitis (Horliana 
et al. 2014). Furthermore, as described in Table 2, oral bacteria 
is known to invade and survive inside immune cells, such as 
dendritic cells and macrophages, indicating that oral bacteria 
may hijack host immune cells to serve as Trojan horses for 
dissemination from the oral mucosa to the gut mucosa 
(Hajishengallis 2015).

Enteral Route

Another possible route of oral bacteria dissemination is by 
enteral spreading. People swallow about 600 times a day, and 
~1.5 L of saliva contains numerous resident oral bacteria 
(Humphrey and Williamson 2001; Pedersen et al. 2002). 
However, ingested oral bacteria seldom reach and colonize the 
healthy gut because of the barrier functions along the gastro-
intestinal tract. The colonization resistance by the gut resident 
microbiota is considered the major barrier that prevents the 
ectopic colonization by swallowed oral bacteria. In other 
words, the disruption of the healthy gut microbiota results in 
the increased gut colonization by oral bacteria (Fig). For 
instance, antibiotics (e.g., vancomycin) used to treat bacterial 
infections are known to perturb gut microbial composition and 
to generate niches for translocated oral bacteria to colonize 
and expand in the gut. Th1 cell–inducing Klebsiella spp. that 
reside in the saliva of patients with IBD possess resistance to 
multiple antibiotics, including ampicillin (Atarashi et al. 
2017). Hence, ampicillin treatment can result in the gut colo-
nization by oral Klebsiella spp. and subsequent pathogenic 
Th1 cell expansion in the gut, suggesting that inadequate use 
of antibiotics may increase the risk for oral bacteria–driven 
gut pathology (Atarashi et al. 2017). Other than the aforemen-
tioned gut dysbiosis–inducing factors, multiple factors that 
elicit gut dysbiosis (e.g., gut inflammation, diets, artificial 
sweeteners) may increase the opportunistic gut colonization 
by oral bacteria. Considering all these factors, gut dysbiosis 
may be a prerequisite for the ectopic colonization of oral 
pathobionts.

Also, gastric acidity is an important bottleneck for oral bac-
teria. Since the majority of oral resident bacteria are sensitive 
to the gastric acid, ingested oral bacteria might be significantly 
reduced while they are passing the stomach. Consistent with 
this notion, patients who have gastric dysfunction related to 
achlorhydria caused by the long-term use of proton pump 
inhibitors exhibit a significant increase in gut colonization by 
oral bacteria (e.g., Streptococcus spp., Veillonella spp., 
Haemophilus spp.; Fig.). Another example of reduced expo-
sure of ingested bacteria to gastric juice may occur in individu-
als who have gastritis and gastric surgery (e.g., gastric bypass 
and removal; Castaner et al. 2018; Paganelli et al. 2019). These 
individuals have an altered gut microbial composition, accom-
panied by a significant increase in the level of resident oral 
bacteria (e.g., Streptococcus spp., Veillonella spp., and 
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Enterobacteriaceae) in the gut. Interestingly, certain types of 
oral bacteria, such as P. gingivalis, are able to tolerate the harsh 
acidic environment in the stomach and consequently may pass 
through the stomach barrier (Walker et al. 2018). Thus, gastric 
acidity can prevent the enteral transmission of oral bacteria but 
might be less effective for bacteria that are tolerated to the 
acidic environment.

Other Possible Factors Associated with the 
Ectopic Colonization of Oral Bacteria

In addition to the aforementioned mechanisms, other factors 
may be responsible for the ectopic colonization of oral bacte-
ria. For example, immune-compromised individuals (e.g., 
patients infected with HIV) have gut dysbiosis accompanied 
by the accumulation of oral bacteria, such as the Prevotellaceae, 
Erysipelotrichaceae, and Veillonellaceae families and the 
Proteobacteria phylum (Crakes and Jiang 2019). Given the 
importance of host immunity in shaping gut microbiota com-
position and its colonization resistance, it is likely that immune 
depression by multiple factors (e.g., aging, drugs, virus infec-
tion) may promote the ectopic gut colonization by oral bacte-
ria. Furthermore, overgrowth of oral pathogenic bacteria in the 
diseased oral cavity may increase the supply of oral bacteria, 

resulting in increased oral bacterial colonization in the gut. For 
instance, periodontal pathogens such as F. nucleatum and P. 
gingivalis expand in the oral cavity of patients with periodon-
titis (Socransky et al. 1998). Notably, a recent large cohort 
study (n = 77,443) revealed that women with fewer teeth and 
presumably moderate or severe periodontal inflammation have 
up to a 48% increased risk for developing CRC (Momen-
Heravi et al. 2017). Given the high prevalence of certain peri-
odontal pathogens in the gut of individuals with CRC (Table 
1), it is conceivable that poor oral health, accompanied by the 
expansion of certain oral bacteria, may cause an oversupply of 
the oral bacteria to the gut, increasing the chance of oral bacte-
rial colonization in the gut. However, only a few studies have 
focused on the link between periodontal disease and gut pathol-
ogy. Further large cohort studies are needed to clarify the clini-
cal relevance of periodontal disease in the development of gut 
pathology.

Conclusions and Perspective
Considering the results of many investigations, the mouth-to-
gut transmission may be an important process in bacteria-
driven pathologies in the gastrointestinal tract. However, as 
mentioned, most of the studies demonstrating the pathologic 

Figure.  Possible routes of oral bacteria transmigration from the mouth to the gut. The diagram depicts possible routes of oral bacteria transmigration 
from the oral cavity to the gut and potential factors contributing to the ectopic colonization of oral bacteria in the gut. Laboratory and clinical studies 
discussed in this review reveal 2 possible routes: hematogenous (red) and enteral (blue). *Enterobacter aerogenes was renamed Klebsiella aerogenes in 
2017.
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link between oral bacteria and extraoral diseases are observa-
tional and still at the stage of association. There is a need for 
more studies to elucidate the transmigration mechanisms of 
oral bacteria to extraoral sites and to understand the precise 
role of oral pathobionts in the pathogenesis of diseases at extra-
oral sites, including the gastrointestinal tract. In parallel and 
also essential are further epidemiologic cohort studies to clar-
ify the clinical relevance of oral pathology, accompanied by 
the expansion of oral pathobionts, in the development of gut 
pathology. These efforts will pave the way for the future devel-
opment of novel diagnostic and therapeutic interventions to 
target oral bacteria.
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