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Abstract

Background –—Pulmonary vein isolation (PVI) is an effective treatment strategy for patients 

with atrial fibrillation (AF), but many experience AF recurrence and require repeat ablation 

procedures. The goal of this study was to develop and evaluate a methodology which combines 

machine learning (ML) and personalized computational modeling to predict, prior to PVI, which 

patients are most likely to experience AF recurrence after PVI.

Methods –—This single-center retrospective proof-of-concept study included 32 patients with 

documented paroxysmal AF who underwent PVI and had pre-procedural late gadolinium 

enhanced magnetic resonance imaging (LGE-MRI). For each patient, a personalized 

computational model of the left atrium simulated AF induction via rapid pacing. Features were 

derived from pre-PVI LGE-MRI images and from results of simulations (SimAF). The most 

predictive features were used as input to a quadratic discriminant analysis ML classifier, which 

was trained, optimized, and evaluated with 10-fold nested cross validation to predict the 

probability of AF recurrence post-PVI.

Results –—In our cohort, the ML classifier predicted probability of AF recurrence with an 

average validation sensitivity and specificity of 82% and 89%, respectively, and a validation AUC 

of 0.82. Dissecting the relative contributions of SimAF and raw images to the predictive capability 

of the ML classifier, we found that when only features from SimAF were used to train the ML 

classifier, its performance remained similar (validation AUC=0.81). However, when only features 
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extracted from raw images were used for training, the validation AUC significantly decreased 

(0.47).

Conclusions –—ML and personalized computational modeling can be used together to 

accurately predict, using only pre-PVI LGE-MRI scans as input, whether a patient is likely to 

experience AF recurrence following PVI, even when the patient cohort is small.
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Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia,1 with paroxysmal atrial 

fibrillation (PxAF) accounting for around 25% of AF cases.2 Untreated AF leads to 

increased risk of stroke and heart failure.2 For many PxAF patients, pulmonary vein 

isolation (PVI) ablation is a successful treatment strategy.2 However, in a meta-analysis of 

PVI outcomes, only 78% of patients were free from AF at 12 months.3 Patients who 

experience AF recurrence may require repeat PVI or additional substrate modification in the 

fibrotic left atrium (LA).4,5 A methodology which identifies, prior to PVI, patients who are 

likely to experience post-PVI AF recurrence would allow development of targeted ablation 

strategies for these patients, reducing redo procedures and decreasing the risk of morbidity 

and mortality.6

Given the importance of early and effective intervention for atrial arrhythmias, many 

machine learning (ML)-based healthcare technologies have focused on AF detection and 

clinical outcome prediction.7 There have been several attempts to use ML to predict AF 

recurrence after ablation, including a study which used deep learning-based LA shape 

analysis,8 and another which used ML on imaging and clinical biomarkers to predict cryo-

balloon PVI outcomes.9 However, ample experimental and clinical evidence supports the 

primary role of fibrosis remodeling in the atria in the pathophysiology of AF,10–13 which 

thus far has not been accounted for in ML approaches aimed at predicting AF recurrence 

after PVI.

Atrial fibrosis promotes the initiation and perpetuation of re-entrant activity underlying AF 

by disrupting conduction and establishing regions of pro-fibrillatory substrate.11,13 However, 

it remains unknown to what degree the patient-specific fibrosis distribution prior to ablation 

is a contributing factor to AF recurrence after PVI. Personalized biophysically-detailed 

computational models of the atria based on the patient’s late gadolinium enhanced magnetic 

resonance imaging (LGE-MRI), which visualizes the personalized fibrosis distribution, 

allow for clinically-validated,14 non-invasive investigation of the susceptibility of a patient’s 

fibrotic substrate to sustaining reentrant activity.15 Such atrial models of arrhythmogenic 

propensity may have potential to predict, pre-procedure, the probability of AF recurrence 

after PVI, but reducing hundreds of thousands of transmembrane voltage measurements over 

thousands of milliseconds to meaningful predictive features is a difficult task. In addition, 
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mechanistic modeling does not explicitly consider clinical biomarkers or quantitative 

measures of the structural remodeling derived from raw imaging data. ML classifiers are 

ideal for identifying predictive patterns in high-dimensional data and combining predictive 

features derived from multiple sources, thus we hypothesize that a combination of ML and 

mechanistic modeling may provide accurate pre-procedure prediction of AF recurrence after 

PVI.

In this proof-of-concept study, we develop a novel approach that combines mechanistic 

computational modeling and ML to predict, before the ablation procedure, the individual 

patient’s probability of AF recurrence post-PVI. We show that this approach results in an 

ML classifier that achieves high validation sensitivity and specificity even when even when 

the patient cohort available for training is small.

Methods

Data Materials, and Code Disclosure

The authors declare that all data supporting the findings of the study are available within the 

paper and its supplementary information. Source data for activation maps are available from 

the corresponding author upon request. The LGE-MRI images used to construct the 

personalized LA computational models are available on request and on approval of the Johns 

Hopkins Institutional Review Board.

Overview of Methodology

In this institutional review board-approved retrospective study, we present a novel predictor 

of AF recurrence post-PVI using ML and personalized LA computational models in patients 

with PxAF and discernable fibrosis on LGE-MRI. The predictor is designed to be applied 

pre-procedure; an overview of it is presented in Figure 1. In a cohort of 32 patients, we 

evaluated the predictive capability of this classifier. In doing so, for each patient, a 

personalized computational model of the LA was constructed from the pre-procedure LGE-

MRI images and used to simulate AF induction via rapid pacing. Features were derived from 

the results of these simulations (SimAF) and from raw LGE-MRI images, and served as 

input into a quadratic discriminant analysis (QDA) ML classifier. Features from SimAF 

were chosen in two ways: i) they were based on general knowledge of AF dynamics, and ii) 

they were left to be chosen by the ML training algorithm, unsupervised. The classifier was 

trained, optimized, and evaluated with 10-fold nested cross validation. Finally, we assessed 

the capabilities of ML risk predictors that used features from SimAF only and from LGE-

MRI imaging only, thus distinguishing the relative contributions to the overall predictive 

capability.

Patient Cohort and Cardiac MRI Image Acquisition

This study included adult patients from a single center with documented PxAF who received 

pre-procedural LGE-MRI scans and underwent PVI ablation between December 2011 and 

December 2015. PxAF was defined as an episode of AF that terminated spontaneously or 

with intervention within 7 days.2 Patients were excluded from the study if their LGE-MRI 

had motion or breathing artifact or if the myocardium was not correctly nulled, resulting in 
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insufficient visualization of the LA geometry and fibrosis distribution for model 

reconstruction and ML. 32 patients were included in the study.

All patients were observed overnight in the hospital for hemodynamic monitoring and 

resumption of anticoagulation. Routine follow‐up with electrocardiograms (ECGs) and 

clinical assessment was performed at 3, 6, and 12 months. Additional follow‐up for 

symptomatic patients was performed if necessary, including Holter monitoring. Any 

recurrence of AF/atrial tachycardia (AT) documented by ECG or a device‐recording system 

lasting ≥30 seconds, outside of a 3‐month post-procedure blanking period, was considered 

recurrence.

Twelve (38%) patients experienced AF recurrence in the follow-up period. All patients had 

PVI with either radiofrequency (RF) or cryo-balloon ablation. 28 (88%) patients underwent 

circumferential linear RF ablation around the left and right pulmonary veins. The other 4 

(12%) patients had cryo-balloon ablation performed with a 23 or 28mm cryo-balloon. The 

median time between the PVI procedure and last date of follow-up was 366 days (IQR: 365–

467 days). The median time to reported AF recurrence was 310 days (IQR: 204–381 days).

Pre-procedure LGE-MRI scans were acquired using a 1.5 T Avanto MR system for the 

purpose of visualizing and reconstructing the atrial geometry and fibrosis distribution. Scans 

were performed in the axial orientation 10–27min following 0.2mmol/kg of gadobenate 

dimeglumine contrast agent using a fat-saturated 3-dimensional (3D) IR-prepared fast 

spoiled gradient recalled echo sequence, with electrocardiogram-triggered and respiratory 

navigator gating. Image resolution was 1.25×1.25×2.5mm.

Methodology for Personalized Atrial Computational Modeling

A full description of the personalized atrial geometric model reconstruction workflow can be 

found in our previous publications.5,16,17 Briefly, the LA epicardial and endocardial walls 

were manually delineated on the pre-procedure LGE-MRI using ITK-snap.18 Fibrotic voxels 

were classified with image intensity ratio greater than 1.22,19 this threshold has been 

validated clinically by using thresholded fibrosis in atrial models to predict AF ablation 

targets.16 High-resolution tetrahedral finite-element meshes were generated from the up-

sampled segmented images.20 Realistic myocardial fiber orientations were incorporated 

using a diffeomorphic mapping technique from an atlas geometry.17,21,22

Electrophysiological properties were assigned to non-fibrotic and fibrotic tissue in the 

geometric models as described previously.14,23,24 Specifically, a human chronic AF action 

potential model25 with modifications to fit clinical monophasic action potential recordings 

from patients with AF26 was used to represent membrane kinetics in non-fibrotic 

myocardium. In fibrotic regions, further ionic modifications were implemented,27–29. At the 

tissue scale, fibrotic regions had reduced conductivities to represent impaired cell-to-cell 

coupling, as we have described previously.29 The rapid pacing atrial arrhythmia induction 

protocol is described on our previous publications, and involved rapid-pacing from 30 

uniformly distributed locations on the LA.17,24 Simulations were performed in the CARP 

software package (https://carp.medunigraz.at/).30,31 Persistent reentrant drivers (RDs) were 

identified using the wavefront tip analysis method.32,33 We also identified macro-reentrant 
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atrial tachycardias (MAT), wavefront propagation around a non-conductive obstacle such as 

the mitral valve (MV) or pulmonary vein (PV).17

Extraction of Features from SimAF

Once the personalized simulations of AF induction in all 32 models were completed, 

features from SimAF were selected for input into the ML classifier. These were chosen in 

two ways: i) by the authors based on general knowledge of AF dynamics (deductive 

features), and ii) by the ML training algorithm, unsupervised (inductive features). Deductive 

features included presence of RDs, theorized to correlate with or predict likelihood of AF 

recurrence,5 as well as other features we thought might be meaningful, such as the number 

of RDs inside the regions isolated by PVI. The latter could be predictive of AF recurrence in 

the case of PV reconnection, which has been shown to occur in as many as 85% of patients 

experiencing AF recurrence.34 In contrast, inductive features of SimAF were “learned” in an 

unsupervised manner during classifier training by analyzing SimAF in models of patients 

who experienced AF recurrence. This category of features was included to allow learning of 

predictive features of SimAF not previously described in the literature and to reduce bias 

that may be introduced by hand-crafting the choice of features. Detail regarding the 

extraction of inductive features from SimAF is presented in Supplementary Materials. A 

complete list of features extracted from SimAF is presented in Table 1.

Extraction of Features from LGE-MRI Images

While LA models were based on pre-procedure LGE-MRI images, model reconstruction 

involved binarizing the fibrosis distribution via thresholding, as well as its interpolation and 

mapping to the 3D mesh. As unprocessed (raw) images of fibrosis distribution might contain 

additional prognostic information pertinent to AF recurrence, features from the pre-

procedure LGE-MRI atrial scans were also made available to the classifier. A complete list 

of features extracted from LGE-MRI scans is presented in Table 1. They included, among 

others, the heterogeneity and quantity of the fibrosis distribution, both suggested to correlate 

with AF propensity,5 and a fractal dimension-based feature35 which quantifies how quickly 

the complexity of the 3D surface of the fibrosis volume decreases as resolution decreases; 

the latter was calculated by analyzing the differences in the number of cubes of various sizes 

required to cover the entire surface of the fibrotic region.

Training, Optimization, and Evaluation of QDA Classifier

Ten-fold nested cross-validation was used to train, validate, and test the classifier.36 Random 

forests were used for unbiased feature selection,37 then a QDA classifier was trained38,39 

using the selected features to predict the probability of AF recurrence after PVI. The 

selected features are listed in Table 1; all of these were extracted, as described, either 

directly from raw pre-PVI LGE-MRI or from SimAF in computational LA models 

reconstructed from pre-PVI LGE-MRI. Features extracted from raw images and those 

derived from SimAF were not treated differently in any way in the fully automatic feature 

section process, thus preventing bias towards either subset of features. Optimized 

hyperparameters included the number of features selected for the classifier and various 

parameters used to calculate the inductive SimAF features. The inductive SimAF features 
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learned during training were recorded for further analysis. Further details regarding ML are 

provided in the online Supplementary Methods.

Results

Clinical Characteristics of Study Cohort

There were no significant differences in clinical characteristics, including several known AF 

risk factors, between patients who did and did not experience AF recurrence (Table 2). 

Accordingly, we did not attempt to train classifiers with any of these clinical biomarkers as 

none of them were associated with AF recurrence in this retrospective cohort.

AF Inducibility in Patient-Specific LA Models

Figure 2 presents several examples of reconstructed LA models showing the pre-procedure 

patient-specific atrial geometries and fibrosis distributions, as well as examples of induced 

reentrant activity following the rapid pacing protocol in the models. A MAT was observed 

around the left inferior pulmonary vein (LIPV) in the LA model of Patient 1 (Fig. 2A). An 

RD was found on the posterior left atrium adjacent to the MV in the LA model of patient 2 

(Fig. 2B). In the LA model of patient 3, RDs were found on the inferior posterior wall and 

LIPV, and a MAT perpetuated around the RIPV (Fig. 2C).

We first tested whether the results of SimAF themselves could be used, pre-procedure, to 

predict AF recurrence post-PVI. We found that reentry was induced from a larger number of 

pacing sites in the LA models of patients who experienced AF recurrence post-PVI 

(9.2±1.8) compared to those of patients who did not (5.7±1.7), but this did not reach 

statistical significance (p=0.19, Fig. 2D). We also examined whether the number of pacing 

sites from which reentry was induced in the models was associated with AF recurrence after 

PVI--the resulting AUC was 0.72. More RDs and MATs were observed in the models of 

patients who experienced AF recurrence (2.6±0.4) compared to those of patients who did not 

(1.7±0.4), but this also did not reach statistical significance (p=0.18, Fig. 2E). Using the 

number of pre-ablation simulated RDs and MATs to predict have AF recurrence after PVI, 

the AUC was 0.69 and the sensitivity and specificity were 75% and 60%. The lack of 

statistical significance in the hand-picked features and relatively low training AUCs 

indicates that this approach may not perform well when applied to previously unseen 

patients.

Prediction of Post-PVI AF Recurrence Using ML on Features from Pre-Procedure LGE-MRI 
Imaging and SimAF

Our risk predictor, which used ML on features extracted from both pre-procedure LGE-MRI 

imaging and SimAF, predicted post-PVI AF recurrence with an average validation 

sensitivity and specificity of 82% and 89%, respectively, and a validation AUC of 0.82 (Fig. 

3). The training AUC was similar: 0.90. This indicates that the classifier is generalizable, or 

likely to correctly predict whether a previously unseen patient will experience AF recurrence 

after PVI, despite the small data set available for training.
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When only features derived from SimAF we used in an ML classifier, the predictive 

capability was similar: an average validation sensitivity and specificity of 79% and 89%, 

respectively, and a validation AUC of 0.81. This indicates that, in this small cohort, features 

extracted directly from raw images did not bestow additional predictive capabilities to the 

ML classifier, over those based solely on SimAF features, as pre-procedure LGE-MRIs are 

already included in the personalized models.

In comparison, an ML classifier using as input only features extracted from raw LGE-MRI 

(without imaging-based simulations) had validation sensitivity and specificity of 57% and 

61% respectively. This classifier achieved a training AUC similar to that of the classifier 

using combined inputs (0.85 vs. 0.90, respectively), but a much lower validation AUC (0.47 

vs. 0.82, respectively), the latter indicating that it was not generalizable. This suggests that 

data from a much larger patient cohort would be required to train an ML classifier to 

correctly predict AF recurrence risk of a previously unseen patient using only features 

extracted from raw LGE-MRI images, further supporting the inclusion of features extracted 

from imaging-based simulation results regarding AF propensity in ML-based AF recurrence 

risk prediction.

Analysis of Inductive Features Learned by the ML Algorithm from SimAF

To gain insight into how the ML classifier predicted AF recurrence after PVI, we analyzed 

the inductive SimAF features learned from the training data in each “outer loop” of cross-

validation. Figure 4 presents the learned features of SimAF (reentry locations and pacing 

locations) that were most predictive of AF recurrence and were thus selected by the ML 

classifier. All of the most predictive reentry-inducing pacing locations that contributed to the 

selected inductive SimAF features were outside the PVs. Additionally, the most predictive 

inductive features frequently involved the numbers of RDs and MATs on the LIPV and mid 

anterior wall, as well as the MV for MAT.

Discussion

The goal of this study is to develop and evaluate a novel methodology for prediction of AF 

recurrence post-PVI using ML and personalized mechanistic modeling of AF induction in 

the LA of patients with PxAF and fibrotic remodeling on LGE-MRI. The ML classifier is 

designed to be applied before the ablation procedure, using only data available up to that 

time point. It uses as inputs features extracted from LGE-MRI-based simulation results for 

AF propensity in the fibrotic substrate, as well as those extracted from raw pre-procedure 

LGE-MRI images. We demonstrate that this approach results in a highly predictive and 

generalizable classifier, even when the patient cohort used for training is small. Our 

approach achieved an average validation sensitivity and specificity of 82% and 89%, 

respectively, and a validation AUC of 0.82, indicating that the classifier is generalizable and 

likely to accurately predict the AF risk of a previously unseen patient. To our knowledge, 

this is the first study to demonstrate that ML and mechanistic cardiac modeling can be used 

together to develop an accurate and generalizable classifier that predicts the risk of adverse 

clinical events.
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Our ML-based AF recurrence risk prediction methodology incorporated both inductive 

SimAF features learned during training of the ML classifier and deductive SimAF features 

chosen prior to training. The inclusion of inductive features is analogous to deep learning, a 

popular form of ML in which feature extraction is performed in the process of training a 

classifier, rather than prior to training.40 Analysis of the inductive features extracted during 

training confirms that the classifier can learn patterns of SimAF which have not necessarily 

been previously evaluated for correlation with AF recurrence, but are clinically explainable 

in the context of published studies describing mechanisms of AF recurrence. For example, 

all pacing locations selected by the unsupervised algorithm for inductive SimAF feature 

extraction were outside the PVs, which is supported by research suggesting that triggers 

outside the PVs contribute to AF recurrence.4

Additionally, among the most predictive inductive SimAF features were the numbers of RDs 

and MATs on the LIPV and mid anterior wall, and the number of MATs around the MV. 

Since the mid anterior wall and the MV are outside the PV region and would not be 

electrically isolated by PVI, it is understandable that fibrosis distribution that can result in 

RDs and MATs forming there would be highly predictive of post-PVI AF recurrence. 

Furthermore, while it may seem counter-intuitive that reentry around the LIPV would 

predict AF recurrence, since PVI should electrically isolate this region, this feature might 

predict in which patients AF would recur should PVs reconnect after the ablation procedure. 

Jiang et al. found that re-connection of 1 or more PVs occurs in 85.5% of patients with AF 

recurrence, and 58.6% in patients without AF recurrence,34 which supports our findings.

In designing this study, we hypothesized that an ML classifier which included features 

extracted from both image-based SimAF and the raw LGE-MRI images would provide the 

best prediction of post-PVI AF recurrence. However, we found that the features extracted 

from the raw LGE-MRI images did not contribute significantly to the predictive capability 

of the ML classifier. This indicates that while model generation from LGE-MRI images 

effectively reduced the dimensionality of the images, it nonetheless retained enough image 

information about the fibrotic substrate to be able to accurately predict whether a given 

patient will experience post-PVI AF recurrence.

When we constructed an ML classifier which only included features extracted from raw 

LGE-MRI images, in our small training cohort it achieved a much lower validation AUC 

than training AUC. This result indicates that an ML classifier based on raw images (that 

does not incorporate personalized simulations) would need to be trained on a much larger 

imaging data set to be able to correctly predict AF recurrence post-PVI of a previously 

unseen patient.

The validation AUC of the ML classifier which included only features derived from SimAF 

to predict AF recurrence (Fig. 3B) was higher than the AUCs achieved using measures of 

AF inducibility in the LA models without ML (Fig. 2F). While both risk prediction methods 

relied on the same underlying SimAF in the same LA models, the ML classifier training 

algorithm allowed selection of multiple features derived from SimAF and weighting of these 

features, so the resulting classifier was finely tuned. In contrast, the non-ML method 

predicted the risk of AF recurrence via thresholding of a single measure of AF propensity 
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(number of reentry locations or number of reentry-inducing pacing sites); it did not consider 

multiple features, their relative importance, or inductive features learned from the training 

data.

In the presented approaches to predict post-PVI AF recurrence here, LGE-MRI is a central 

data input, as it has the ability to accurately visualize LA geometry and spatial distribution 

of fibrosis. This ability is paramount to our study and to many others that have utilized atrial 

LGE-MRI in clinical studies.5,16 Fibrosis on LGE-MRI has been shown to correlate with 

that in histological studies of biopsied patients.10 Furthermore, the measure used to define 

fibrosis in our study (image intensity ratio) has been validated by correlation with local 

intracardial LA bipolar voltage measurements.19 Finally, Chubb et al. 41 found excellent 

reproducibly of LGE-MRI, demonstrating that LGE scar assessment is very specific, albeit 

not particularly sensitive. The latter is an advantage in our study as it prevents us from 

predicting false AF inducibility in a “false-positive” fibrotic substrate.

A limitation of this study is the small data set, often a serious concern in ML studies. 

However, by using 10-fold nested cross-validation and aggregating the results, we 

demonstrated nonetheless excellent predictive capability. Our combined approach achieved 

similarly high validation and training AUCs, indicating that the resulting classifier was 

generalizable despite the small data set. Prospective validation in a larger cohort would 

confirm the predictive capability of the proposed post-PVI AF risk prediction methodology. 

Further, although this study only included PxAF patients with adequate clinical follow-up at 

3, 6, and 12 months, the methods for defining recurrence of AF are a limitation of any 

clinical study that uses such follow-up, especially the difficulty in identifying asymptomatic 

recurrent AF.

Another limitation is the lack of published detailed methods and quantitative results for 

previously proposed imaging-based ML AF recurrence prediction methodologies, which 

limited our ability to compare these with our methodology. A recent approach which used 

only imaging features8 achieved a F1-score (harmonic mean of precision and recall) of 0.33, 

while our approach achieved a testing F1-score of 0.70. However, the study did not state 

what part of the data (training, testing, or validation) this F1-score applied to, so this may be 

a poor comparison. Further, two clinical risk scores have been proposed to predict the risk of 

AF recurrence after PVI: the ATLAS score42 and the CAAP-AF score43, but our 

retrospective registry did not contain all the necessary variables to calculate either of these 

risk scores. However, we note that our ML classifier achieved a validation AUC of 0.82, 

which is greater than the censored C-statistic of 0.75 achieved by the ATLAS score and the 

development AUC of 0.69 achieved by the CAAP-AF score.

In this study, we developed an ML classifier able to accurately predict, pre-procedure, AF 

recurrence post-PVI. The classifier uses as inputs features extracted from LGE-MRI-based 

simulation results for AF propensity in the fibrotic substrate and those extracted from raw 

pre-procedure LGE-MRI images. The ML classifier is designed to be applied before the 

ablation procedure. Our vision for the use of this classifier is that should it predicts that AF 

will recur post-PVI, then the patient’s LA model would be used to also predict the treatment 

strategy, i.e. the personalized ablation targets outside the wide-area PVI, as we have done 
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prospectively in a recent study.16 An important characteristic of our resulting classifier is 

that it considers the potential patient-specific mechanisms of arrhythmogenesis resulting 

from the fibrotic substrate in the LA, making it clinically explainable. To our knowledge, 

this is the first study to demonstrate the potential of combining computational cardiac 

modeling and ML to make clinical predictions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Sources of Funding: This work was supported by National Institutes of Health grant (U01-HL141074) to N.T., a 
grant from the Lowenstein Foundation to N.T., a National Science Foundation Graduate Research Fellowship 
(DGE-1746891) to J.S, and a research fellowship from Johns Hopkins University to R.A.

Non-standard Abbreviations and Acronyms

PVI pulmonary vein isolation

ML machine learning

LGE-MRI late gadolinium enhanced magnetic resonance imaging

SimAF simulations of atrial fibrillation induction

AUC area under the curve

LA left atrium

RD reentrant driver

MAT macro-reentrant atrial tachycardia

MV mitral valve

PV pulmonary vein

QDA quadratic discriminant analysis

LIPV left inferior pulmonary vein

LSPV left superior pulmonary vein

LAA left atrial appendage

RIPV right inferior pulmonary vein

nRD+MAT number of re-entrant drivers and macro-reentrant atrial tachycardias 

observed

nRD number of re-entrant drivers observed

nMAT number of macro-reentrant atrial tachycardias observed
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PRD+MAT proportion of pacing locations from which AF (either re-entrant 

driver and macro-reentrant atrial tachycardia) was induced

PRD proportion of pacing locations from which re-entrant driver was 

induced

PMAT proportion of pacing locations from which macro-reentrant atrial 

tachycardia was induced
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What is known?

• In patients with paroxysmal atrial fibrillation (AF), recurrence of AF after 

ablation treatment via pulmonary vein isolation (PVI) is high.

• Atrial fibrosis promotes re-entrant activity underlying AF, thus presence of 

fibrosis in the atria could be a factor contributing to AF recurrence after PVI.

• Currently, there are no approaches to predict, before the ablation procedure, 

the individual patient’s probability of AF recurrence post-PVI.

What this study adds:

• A personalized approach to predict pre-procedure the probability of AF 

recurrence after PVI is developed, which combines machine learning and 

MRI-image-based computational modeling of AF inducibility in the fibrotic 

atrial substrate.

• The machine learning (ML) algorithm uses as input features from the 

patient’s LGE-MRI and from the results of the personalized mechanistic 

simulations.

• The optimized ML algorithm predicts AF recurrence following PVI with an 

average validation sensitivity of 82%, specificity of 89%, and area under the 

curve of 0.82.

• The inclusion, in the ML algorithm, of features extracted from the results of 

personalized mechanistic simulations of AF inducibility results in a highly 

generalizable AF recurrence prediction even for a small training data set.
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Figure 1. 
Overview of AF recurrence risk prediction methodology. The flowchart shows our novel 

machine learning (ML) methodology to predict, before the ablation procedure, atrial 

fibrillation (AF) recurrence following pulmonary vein isolation for patients with paroxysmal 

AF. For each patient, a personalized computational model of the left atrium was constructed 

from late gadolinium enhanced magnetic resonance imaging (LGE-MRI) to simulate AF 

induction via rapid pacing. Features were derived from the results of simulations (SimAF) as 

well as from the raw LGE-MRI images to serve as inputs into a quadratic discriminant 

analysis classifier. Features from SimAF were chosen in two ways: i) based on general 

knowledge of AF dynamics, and ii) left to be chosen by the ML training algorithm, 

unsupervised. The ML classifier was trained, optimized, and validated with 10-fold nested 

cross validation, resulting in the validation receiver operating characteristic curve shown 

(right).
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Figure 2. 
Mechanistic modeling results of AF induction in patient-specific LA models. (a) 
Reconstructed 3-dimensional (3D) left atrial model for patient 2. Pacing locations which did 

(yellow) and did not (red) induce reentrant drivers (RD) and/or macro-reentrant tachycardias 

(MAT) (left). Activation map showing MAT around the left inferior pulmonary vein (right). 

(b) Reconstructed 3D left atrial model for patient 4 (left). Activation map showing RD 

adjacent to mitral valve on posterior left atrium adjacent to the mitral valve (right). (c) 
Reconstructed 3D atrial model for patient 7 (far left). Activation maps showing RD inferior 

to the pulmonary vein (middle left), RD at left inferior pulmonary vein (middle right), and 

MAT around right inferior pulmonary vein (far right). (d) Number of AF-inducing pacing 

sites for each patient vs. pulmonary vein isolation (PVI) outcome. (e) Number of RDs and 
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MATs for each patient vs. PVI outcome. (f) Receiver operating characteristic curves for 

prediction of AF recurrence after PVI using the number of AF-inducing pacing sites (solid 

red line) and number of RDs and MATs (dashed blue line). reentrant driver (RD), macro-

reentrant tachycardia (MAT), area under the curve (AUC).
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Figure 3. 
Prediction of AF recurrence post-PVI using ML on Features Derived from raw LGE-MRI 

and SimAF. Training (a), validation (b), and testing (c) receiver operating characteristic 

(ROC) curve for quadratic discriminant analysis classifier trained using features derived 

from imaging and SimAF (solid yellow line), imaging only (dashed blue line), and SimAF 

only (dashed red line). ROC curves were calculated by aggregating the results of 10-fold 

nested cross validation. simulations of atrial fibrillation induction (SimAF), imaging (I), area 

under the curve (AUC).

Shade et al. Page 18

Circ Arrhythm Electrophysiol. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Analysis of inductive features learned by the ML algorithm from SimAF. (a) Reentry 

(reentrant driver, RD, and macro-reentrant tachycardia, MAT) locations most predictive of 

atrial fibrillation (AF) recurrence (red). (b) RD locations most predictive of AF recurrence 

(yellow). (c) MAT locations most predictive of AF recurrence (gray). (d) Locations (in 

purple) of the highest proportion of reentry-inducing pacing sites found to be predictive of 

AF recurrence. (e) The proportion of pacing sites in these locations (light blue) inducing 

MAT was predictive of AF recurrence. (f) Frequency with which each characteristic of 

SimAF was used to calculate an inductive feature selected by the random forest for inclusion 

in the ML classifier in the 10 outer loops of cross validation. mitral valve (MV), left superior 

pulmonary vein (LSPV), left inferior pulmonary vein (LIPV), left atrial appendage (LAA), 

right inferior pulmonary vein (RIPV)
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Table 2.

Baseline characteristics of the paroxysmal AF patient cohort.

Clinical Characteristics Freedom from AF (n=20) AF Recurrence (n=12) p

Age (years) 63 ± 8 63 ± 9 0.87

Male sex 9 4 0.71

Body mass index (kg/m3) 27 ± 6 27 ± 5 0.99

Hypertension 10 (50%) 7 (58%) 0.73

Impaired Glucose or Diabetes 5 (25%) 1 (8%) 0.63

Congestive heart failure 4 (20%) 2 (17%) 1

Ablation Procedure Details

Cryo Ablation 3 (15%) 1 (8%) 1

Flutter Line 5 (20%) 3 (25%) 1

P-values were calculated with Student’s t-test or Fisher’s exact test as appropriate. atrial fibrillation (AF)
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