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Abstract

Efficient prediction of the air quality response to emission changes is a prerequisite for an 

integrated assessment system in developing effective control policies. Yet representing the 

nonlinear response of air quality to emissions controls with accuracy remains a major barrier in air 

quality-related decision-making. Here we demonstrate a novel method that combines deep-

learning approaches with chemical indicators of pollutant formation to quickly estimate the 

coefficients of air quality response functions using ambient concentrations of 18 chemical 
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indicators simulated with a comprehensive atmospheric chemical transport model (CTM). By 

requiring only two CTM simulations for model application, the new method significantly enhances 

the computational efficiency compared to existing methods that achieve lower accuracy despite 

requiring 20+ CTM simulations (the benchmark statistical model). Our results demonstrate the 

utility of deep-learning approaches for capturing the nonlinearity of atmospheric chemistry and 

physics and the prospects of the new method to inform effective policymaking in other 

environment systems.

Graphical Abstract

Air pollution is a global concern due to its harmful effects on human health1, climate2, 

agriculture and ecosystem health3, and visibility4. Ambient PM2.5 (particulate matter with 

aerodynamic diameter less than 2.5 μm) and ozone (O3) are among the highest risk factors 

for global premature mortality1,5, with PM2.5 pollution estimated to have contributed to 2.9 

million deaths globally in 2017 and O3 pollution to nearly a half million deaths6. A central 

challenge in effectively controlling the sources of ambient PM2.5 and O3 is that the dominant 

contributors to these pollutants are emitted precursors such as sulfur dioxide (SO2), nitrogen 

oxides (NOx), ammonia (NH3), and volatile organic compounds (VOCs)7 that undergo 

chemical transformations in the atmosphere. The chemical reactions that lead to O3 and 

PM2.5 formation involve highly nonlinear processes across multiple phases that vary 

significantly with meteorological conditions and precursor levels. Despite their complexity, 

these chemical pathways ultimately dictate the strong nonlinear responses of PM2.5 and O3 

to precursor emission changes8–12 and must be accurately modeled.

Comprehensive chemical transport models (CTMs) implemented with the most recent 

knowledge of atmospheric science are the preferred tools for simulating the chemical and 

physical processes occurring in the atmosphere13. Numerical experiments such as simulating 

air quality under conditions of reduced precursor emission levels relative to a baseline case 

(i.e., “brute force” method) can be conducted to investigate the response of air quality to 

emission changes14. The sensitivity of air pollutant concentrations to emission sources can 

also be explored with advanced techniques such as the decoupled direct method (DDM)15, 

higher-order DDM16, and adjoint sensitivity analysis17. Contributions of emissions to 

ambient concentrations can be estimated using ozone source apportionment technology18, 
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particulate matter source apportioning technology19, the integrated source apportionment 

method20–21, and source-oriented models22. These methods are practical for quantifying the 

relative contributions of emission sources to air pollution and the sensitivity of air pollution 

to limited changes in emissions23; however, they are computationally expensive and do not 

address prediction of air quality responses to emission changes for the wide range of 

possible scenarios of interest to policymakers.

Efficient and accurate prediction of air pollutant responses to emission changes is a key 

component of the integrated assessment systems commonly used by policymakers to quickly 

achieve multiple objectives. Integrated assessment models for air pollution control quantify 

the influence of future policies on air pollution levels using process parameterizations and 

are used to analyze the benefits and costs of emission controls in designing efficient 

strategies to attain air quality goals24–28. The Air Benefit and Cost and Attainment 

Assessment System (ABaCAS) is an integrated assessment system that connects air 

pollution emission control with health benefit and cost estimation29. In ABaCAS, the 

response of pollutant concentrations to emission changes is predicted in real-time with a 

response surface model (RSM) developed from many CTM simulations using advanced 

statistical interpolation techniques30–31. Recently, a series of innovations have improved the 

representation of nonlinear interactions among precursors from sources in multiple regions 

in extended versions of the original RSM (i.e., E-RSMs)32–34. To ensure model accuracy, the 

development of RSM and E-RSM requires many control scenarios to be simulated with a 

CTM, with heavy computational burden that limits the adaptability and broad application of 

RSMs. To partially address this issue, a RSM based on polynomial functions (pf-RSM) was 

recently developed using prior knowledge from earlier RSM studies to reduce the number of 

CTM simulations required for RSM development by 60%35. However, implementation of 

the pf-RSM still requires at least 20 CTM simulations, and such computational cost remains 

a significant barrier to the broad adoption of RSM technology.

In the pf-RSM, polynomial functions were fitted individually for each spatial grid cell and 

therefore did not consider the moderate degree of spatial correlation that is common among 

air pollutants. Also, the functions were fitted solely based on simulated O3 and PM2.5 

concentrations without considering the concentrations of related chemical species. Many 

species are influenced by common atmospheric processes and reactions and are highly 

correlated in the atmosphere. Moreover, concentrations of secondary pollutants, such as O3 

and PM2.5, may largely be determined by the ambient levels of their precursors. Previous 

studies suggest that certain combinations of related chemical species can be used as 

indicators for O3 and PM2.5 chemistry36–37. Studies have also shown that the response of O3 

and PM2.5 to changes in precursor levels can be identified from changes in concentrations of 

related species38, as illustrated with Empirical Kinetic Modeling Approach (EKMA) 

diagrams of the response in O3 and PM2.5 concentrations to changes in NOx and VOC 

concentrations39–40. Such relationships imply that nonlinearity in the O3 and PM2.5 response 

to precursor emission changes can be quantified using combinations of ambient 

concentrations of certain species (hereafter indicators), and that the indicator-pollutant 

relationships are independent of location or time.
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Despite the potential predictive value of the chemical indicators, previous RSMs have been 

directly fit to O3 and PM2.5 concentrations, because collinearity associated with the 

moderately-correlated indicators cannot be resolved with statistical regression models. In 

contrast, neural network algorithms are well suited to address collinearity issues and have 

been used in recent air quality prediction studies41–42. Moreover, convolutional neural 

networks (CNNs) can potentially enhance predictive capability by preserving important 

spatial features of pollutants through the network. Although previous studies have used 

neural networks to forecast air quality under varying meteorological conditions and develop 

concentration fields for retrospective periods, deep learning methods have not been applied 

to comprehensively address air quality prediction under varying emission levels, which is of 

central importance to policymakers.

In this study, we present a novel method called the Deep-learning-based response surface 

model (DeepRSM) to characterize the response of O3 and PM2.5 concentrations to the full 

range of emission changes using a deep CNN with carefully designed architecture and 

training method. The training and test data for the DeepRSM model is based on brute-force 

simulations with the Community Multiscale Air Quality (CMAQ) CTM (Table S1) on 

domains that cover China (noted as CN27) and three polluted regions within China (i.e., 

Northern China Plain, NCP; Fen-Wei Plain, FWP; and Chuan-Yu region, CYR) (Figure S1). 

The DeepRSM based on the trained CNN can reliably estimate the responsiveness of O3 and 

PM2.5 concentrations to emission changes for any domain and time period in real-time using 

only ambient concentrations of related chemical species from two simulations (i.e., baseline 

and fully-controlled emission scenarios). To demonstrate the performance of DeepRSM, we 

evaluated DeepRSM predictions against CTM results in a series of experiments with 

different types and numbers of training datasets, as summarized in Table S2. DeepRSM 

predictions are also compared with those of the existing RSM method, which serves as the 

benchmark case in this study.

Methods

(1) CTM Configuration

The pf-RSM and DeepRSM were developed using CTM simulations with the CMAQ model 

(version 5.2; www.epa.gov/cmaq). Baseline concentrations and the responses of PM2.5 and 

O3 to emission controls were simulated for a matrix of 40 emission control scenarios (Table 

S1) as part of our previous pf-RSM development35. The four modeling domains are shown 

in Figure S1. Simulations for the CN27 domain used 27km by 27km horizontal resolution, 

and simulations for the three nested domains (i.e., NCP, FWP and CYR) used finer 

resolution of 9 km by 9 km. Modeling was performed for January, April, July and October in 

2017 to represent winter, spring, summer and fall, respectively. O3 concentrations were 

analyzed based on afternoon averages (12:00pm-6:00pm local time), and PM2.5 

concentrations were based on daily or monthly averages.

The emission data were developed by Tsinghua University based on a bottom-up method 

with high spatial and temporal resolution. Meteorological fields were based on simulations 

with the Weather Research and Forecasting (WRF, version 3.7) model. The configurations of 

the WRF and CMAQ models matched those of our previous study43–44. The performance of 
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the CMAQ model for predicting O3 and PM2.5 concentrations was thoroughly evaluated 

using ambient measurements43–44 and shown to be acceptable based on recommended 

benchmarks for comparisons with ground-based observations.

(2) pf-RSM Configuration

Our previous study suggested that nonlinear response of O3 and PM2.5 concentrations to 

precursor emission controls can be represented by a set of polynomial functions (i.e., pf-

RSM)35. The structure of the polynomial function is expressed as follows:

ΔConc = ∑i = 1
n Xi ∙ ENOx

ai ∙ ESO2
bi ∙ ENH3

ci ∙ EVOCs
di (E1)

Where ΔConc is the response of the O3 and PM2.5 concentrations (i.e., change relative to the 

baseline concentration) calculated from a polynomial function of five variables (ENOx, ESO2, 

ENH3, EVOCs); ENOx, ESO2, ENH3, and EVOCs are the ratios of emission changes relative to 

baseline emissions for NOx, SO2, NH3, and VOC, respectively; and ai, bi, ci, and di represent 

the nonnegative integer powers of ENOx, ESO2, ENH3, and EVOCs, respectively. Xi (the 

coefficient of term i) is determined by fitting the polynomial function for each spatial grid 

cell in the pf-RSM using 20 to 40 CTM simulations. The 14 terms used to represent the 

PM2.5 and O3 responses to emission controls were determined previously in designing the 

pf-RSM and are shown in Figure 1.

(3) Neural Network Training

The CNN was selected as the neural network in this study because of its advantages in 

analyzing image data45–46, and the similarity of spatial distributions of ambient pollution 

concentrations to image data. Also, CNNs are relatively good at representing complex 

nonlinear behavior compared with other machine learning methods, and are therefore 

suitable for representing the O3 and PM2.5 response functions.

Dataset.—We collected pollutant concentrations from CTM modeling for 480 days (four 

domains × four months × 30 days per month) for 40 emission control scenarios plus the 

baseline- and clean-conditions simulations (42 simulations overall; see Table S1). We 

conducted numerical experiments to test DeepRSM performance on each of the four spatial 

domains. To evaluate the temporal transfer capabilities of the DeepRSM (-TT experiments), 

we used the first 25 days in each month as the training dataset and the last five days in each 

month as the test dataset. To evaluate the domain transfer capabilities of the DeepRSM (-DT 
experiments), we used all 360 days from the three domains that were not being tested as the 

training dataset and the last five days in all months (20 days in total) from the domain being 

evaluated as the test dataset. For -DT experiments with fine-tuning, we included in the 

training dataset an additional 5 or 20 days that were randomly selected from the first 25 days 

in each month from the domain being evaluated.

More training data could lead to an improved CNN model, while the computational cost of 

numerical air quality model is too heavy to create abundant training data. Data augmentation 

has shown its ability in improving the performance of CNN with low-level task (i.e., the 

output value at each location is only related to the input values spatially close to the 
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location)45–46 which is also the case for atmospheric concentration response to emissions we 

studied here. Therefore, we randomly cropped the indicator maps by size of 96 for data 

augmentation to improve the CNN performance.

DeepRSM training strategy.—Since the relative change in pollutant concentration is the 

metric often used by policymakers, we adopt an objective function that measures the relative 

loss between predicted and simulated concentrations:

ℒ y, y = 1
NHWC ∑n = 1

N ∑i, j, c
|yi, j, c

n − yi, j, c
n  |

1
yi, j, c

n , (E2)

where y and y denote the DeepRSM-predicted and CTM-simulated pollutant concentrations, 

respectively. The variable N denotes the number of samples, and H,W and C denote the 

height, width, and number of channels of y, with i ∈ [0,H], j ∈ [0,W],c ∈ [0,C]. All model 

hyper-parameters were chosen using holdout validation datasets. The objective function is 

optimized using Adam47 with β1 = 0.9, β2 = 0.999 and a mini-batch size of 32. The learning 

rate starts from 0.0002 and linearly decay to zero at the end of training. To reduce the risk of 

over-fitting, we applied L2 weight regularization on all trainable parameters during training 

and fine-tuning. For each simulated day, one group of indicators (i.e., the concatenated 

baseline and clean-condition indicators) corresponds to one group of coefficients in the 

polynomial response function. However, 40 concentration labels are available that 

correspond to the 40 emission control scenarios simulated with CMAQ. To achieve 

computationally efficiency with the deep CNN, we calculate the average of the objective 

function over all emission control scenarios in one day, and then backpropagate the gradients 

of the average loss to update our model and complete one epoch. The DeepRSM and 

DeepRSM+ models are trained for 5000 epochs in -TT and -DT experiments and are fine-

tuned for another 1000 epochs in fine-tuning experiments.

Evaluation metric.—Validation of the model performance is critical48. For consistency 

with the performance evaluation of the benchmark model30–31, 34, the performance of the 

DeepRSM was evaluated using two statistical indices, namely the MeanNE and the 95th 

MaxNE, which are also commonly used in evaluating the performance of atmospheric 

numerical modeling49. They are calculated as follows:

MeanNE = 1
N ∑i = 1

N Mi − Oi
Oi

(E3)

MaxNE = max Mi − Oi
Oi

(E4)

Where Mi and Oi are the DeepRSM-predicted and CMAQ-simulated value of the ith data in 

the series, and ThN represents the number of records (i.e., number of datasets multiplied by 

the number of grid cells)

Xing et al. Page 6

Environ Sci Technol. Author manuscript; available in PMC 2021 July 21.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Results

(1) The principle of the DeepRSM

The basic principle of the DeepRSM is that the coefficients in the response functions for 

PM2.5 and O3 from the pf-RSM can be accurately estimated from indicator species rather 

than by fitting results of CTM simulations based on random samples of emission scenarios. 

This design eliminates the need for a large number of computationally expensive CTM 

simulations as in the previous pf-RSM approach. To deploy the DeepRSM, only two CTM 

simulations are required: one for baseline emission levels and one for “clean” emission 

levels, where all anthropogenic PM2.5 and O3 precursor emissions are fully controlled.

The key design elements of the DeepRSM are the selection of the O3 and PM2.5 response 

indicators (i.e., concentrations of relevant chemical species under baseline and clean 

conditions) and the architecture of the CNN. To ensure the efficiency of the DeepRSM, we 

selected 18 chemical indicators that are relatively important to O3 and PM2.5 formation from 

the 130+ chemical species that are simulated in the CMAQ model. The indicators are either 

products or reactants in chemical reactions involving O3 or PM2.5 and are represented in all 

major CTMs. The pf-RSM model predicts strong correlations between the coefficients of the 

14 terms in the PM2.5 and O3 response functions and the changes in indicator concentrations 

between the baseline and clean emission simulations. These correlations are consistent with 

current knowledge in atmospheric chemistry. For example, the coefficient of the linear term 

for NOx emissions in the O3 response function exhibits the strongest positive correlation 

with H2O2 concentrations (r = 0.8) but negative correlation with concentrations of the 

nitrogen species (r = −0.3 ~ −0.6) (Figure 1a). These relationships reflect the behavior that 

NOx emission control tends to reduce O3 when H2O2 is high and NOx is low (NOx-limited 

regime50) but increase O3 when NOx is high and H2O2 is low (VOC-limited regime).

The strong correlations between indicators and response function coefficients in Figure 1 

imply that valuable information for predicting the response functions for PM2.5 and O3 is 

contained in the indicators. However, extracting this information is challenging because the 

coefficient of each term is positively or negatively correlated with multiple indicators. For 

example, the PM2.5 components (SO4, NO3, NH4, and SOC) are highly correlated with the 

majority of coefficients in both the O3 and PM2.5 response functions (Figure 1). Such 

collinearity among the chemical indicators motivates use of neural network technology, 

which has advantages over traditional statistical regression in resolving complex 

relationships.

Deep neural networks have led to a series of breakthroughs in a wide range of fields due to 

their powerful expressive ability to approximate complex nonlinear functions51–52. A deep 

CNN with residual connection53 is employed here for four reasons. First, deep neural 

networks can efficiently solve highly nonlinear regression problems and are therefore 

potentially suitable for resolving the collinearity among chemical indicators. Second, CNNs 

can effectively use spatial relationships among nearby chemical indicators that may 

contribute to local pollutant concentrations. Third, CNNs with the convolutional kernel 

applied over space can well represent the common atmospheric processes and reactions 

occurring across the domain. Finally, residual connection is indispensable for modern deep 
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CNN models, and a deep network is needed to provide high accuracy in modeling the 

complex processes that influence atmospheric chemistry.

The architecture of the DeepRSM model is illustrated in Figure 2. We use spatial 

concentration fields of 18 chemical indicators under baseline and clean conditions to 

represent the predictive features of the system. We concatenate the indicator fields for both 

scenarios before feeding them into our DeepRSM model. The first convolutional layer of the 

DeepRSM model transforms the 36 input channels of indicator maps into 128 channels of 

feature maps. This layer is followed by eight residual blocks and one convolutional layer 

through which the number of channels is maintained at 128 to increase the expressiveness of 

the network. The last convolutional layer transforms the number of channels from 128 to 14, 

which represent the coefficients in the standard polynomial function based on prior 

knowledge from pf-RSM development. O3 and PM2.5 concentrations are calculated as the 

inner product of the coefficients in the last layer and the corresponding response function 

terms based on the specific emission control scenario. We use a LeakyReLU54 as the 

nonlinear activation function because it preserves negative gradients and performs well in 

low-level regression tasks. Our results suggest that the DeepRSM (trained with the CN27 

dataset as one example) can well reproduce the spatial and seasonal variations in the 

coefficients of the PM2.5 and O3 response functions, with results similar to those of the pf-

RSM (Figure S2).

Although the polynomial function in the pf-RSM was carefully designed in our previous 

study, uncertainty still exists in the functional form of air quality responses to precursor 

emission changes. Therefore, in addition to the DeepRSM based on the 14 terms of the pf-

RSM response function, we developed the DeepRSM+ model that augments the polynomial 

function with 50 additional implicit terms to reduce the approximation error. The additional 

terms are automatically learned from the emission control factor vector using a compensated 

polynomial term model (CPT Model in Figure 2) and are not associated with an analytical 

functional form. The CPT Model uses three fully connected layers of width 128 to learn the 

nonlinear transformation from the emission control factor vector to the values of the 

additional 50 terms. The total number of terms in the augmented polynomial function is 64, 

which equals the number of coefficient maps and channels in the last convolutional layer of 

the DeepRSM+ model.

(2) The DeepRSM is effective across time periods and spatial domains

A key advantage of the DeepRSM is that the trained deep CNN is generally transferable 

across time periods (i.e., temporal transfer, TT) and spatial regions (i.e., domain transfer, 

DT). To examine the temporal transfer capabilities, we trained the DeepRSM model using 

data from the first 25 days in each of four months and applied it to predict concentration 

responses in the last five days of each month on the same domain (i.e., -TT experiment in 

Table S2 for PM2.5 and O3, Figure 3 for PM2.5, and Figure S3 for O3). Evaluation of the 

DeepRSM predictions against CTM results demonstrates good performance, with mean 

normalized error (meanNE) less than 5% and 95th maximal NE (95th MaxNE) less than 

10%. The performance of the DeepRSM based on two CTM simulations in the –TT 
experiment is significantly better than that of the pf-RSM, which is based fitting with 20 
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CTM scenarios, and demonstrates the transferability of the DeepRSM to time periods not 

included in the training data.

To examine the transferability of the DeepRSM to different spatial domains, the air quality 

response predicted in one domain was evaluated based on the DeepRSM model trained with 

data from the other three domains (i.e., -DT experiment in Table S2, Figure 3, and Figure 

S3). The -DT experiment is a greater test for the DeepRSM than the -TT experiment, 

because differences in air quality simulated for different regions and grid resolutions are 

much larger than for air quality simulated for different days for the same region and 

resolution. Despite the greater challenge, the DeepRSM performance is only slightly 

degraded in the -DT experiment compared to the -TT experiment. The DeepRSM exhibits 

similar or slightly better performance than pf-RSM in the -DT experiment in all domains 

except for CN27.

Predicting concentrations on the CN27 domain is relatively challenging using the DeepRSM 

based on training data from the three smaller domains that do not fully encompass the CN27 

domain. However, the DeepRSM performance can be readily improved as necessary using a 

fine-tuning procedure in which the model is dynamically updated using very little additional 

training data. To demonstrate the performance improvement, we fine-tuned the DeepRSM 

models trained in the -DT experiments using an additional 5 or 20 days of data from the test 

domain and a relatively small number of epochs (i.e. -DTF5 and -DTF20 cases in Figure 3 

and Table S2). The fine-tuning method is especially effective for reducing prediction bias for 

the CN27 domain.

DeepRSM predictions of the daily variation in air quality response was also evaluated for the 

-DT experiment in which no data for the test domain was used in training (Figure S4 for 

PM2.5 and Figure S5 for O3). The results indicate that the daily variations in air quality 

response predicted by the DeepRSM are similar to those simulated with CMAQ across all 

four months and domains. Moreover, the spatial distributions of air quality responses are 

also consistent with CMAQ simulations, as shown in Figure S6–S9 for PM2.5 and Figure 

S10–S13 for O3. The results of the -TT and -DT experiments demonstrate that the 

DeepRSM can efficiently and reliably capture variations in PM2.5 and O3 response across 

space and time.

To further examine the ability of the DeepRSM to predict the nonlinear response of air 

quality to emission changes, we generated PM2.5 and O3 isopleths for DeepRSM predictions 

in the -DT experiment for simultaneous changes in emissions of two precursors (Figure 

S14–S15): PM2.5 response to NOx and VOC emissions (Figure S14a), PM2.5 response to 

SO2 and NH3 emissions (Figure S14b), O3 response to NOx and VOC emissions (Figure 

S15a), and O3 response to SO2 and NH3 emissions (Figure S15b). We included 25 colored 

dots in the isopleths that correspond to CMAQ predictions that were not used in model 

training for comparison with the DeepRSM predictions. We also compared isopleths based 

on pf-RSM predictions with those based on the DeepRSM. These comparisons indicate that 

the DeepRSM generally captures the nonlinear response of O3 and PM2.5 to precursor 

emission changes across seasons. For instance, the DeepRSM predicts that O3 chemistry is 

strongly VOC-limited in January and NOx-limited in July and that the PM2.5 response to 

Xing et al. Page 9

Environ Sci Technol. Author manuscript; available in PMC 2021 July 21.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



NOx and VOC emission changes has a similar, but weaker, dependence on oxidant 

abundance as O3. The DeepRSM results also suggest that the effectiveness of NOx and NH3 

emission controls for PM2.5 reduction increases with increasing control (from 1 to 0 in 

Figure S14). The concentration responses predicted by the DeepRSM generally agree well 

with those simulated by CMAQ, and the DeepRSM isopleths are consistent with the pf-RSM 

isopleths, despite use of only two CTM simulations by the DeepRSM.

As mentioned above, the performance of the DeepRSM can be further improved by 

optimizing the polynomial structure using the DeepRSM+ model. The DeepRSM+ model 

adopts 50 additional terms that are learned from the emission control factor vector using the 

CPT model to reduce the approximation error of the polynomial function. In all experiments, 

the DeepRSM+ model with optimized polynomial structure based on fine-tuning with an 

additional 20 simulation days (i.e., -PolyF20 experiment in Table S2, Figure 3, and Figure 

S3) exhibits the best performance, with MeanNE < 5% and 95th MaxNE < 10% across all 

months and domains. The value of the compensation terms is also evident in the isopleth 

comparison displayed in Figure 4. The compensation terms adjust the DeepRSM toward the 

CTM simulation results, particularly along edges of the isopleths where emission control 

factors are close to 0 (fully-controlled) or 2 (doubled). These conditions are relatively hard 

to resolve using the DeepRSM model based on the 14-term polynomial function alone.

(3) Interpretability of the DeepRSM for prediction of air quality response

The success of the DeepRSM implies that information from only two states (i.e., baseline 

and fully-controlled scenarios) is needed to fit the curved concentration surface in four-

dimensional space (i.e., emission changes of NOx, SO2, NH3 and VOCs) using the trained 

deep CNN. Concentrations throughout the four-dimensional space cannot be predicted 

accurately using only PM2.5 or O3 concentrations from the two states; however, rich 

information for the prediction of PM2.5 and O3 is contained in the states in the form of the 

chemical indicators. Therefore, the DeepRSM predictions are not based only on PM2.5 and 

O3 concentrations at two points, but two pairs of vectors including the full suite of chemical 

indicators in addition to PM2.5 and O3 concentrations. The set of indicators contain 

sufficient information to represent the key atmospheric chemical and physical processes 

independent of spatial location or time period. The DeepRSM represents the atmospheric 

processes by linking the coefficients of the air quality response functions and the indicators 

in an efficient way, as follows.

If we consider a single grid cell in a CTM as a box model, the concentration change over 

time can be written as follows:

d P
dt = ∑

i
fi ki, I1, …, s (E5)

where [P] is the concentration of air pollutant (i.e., PM2.5 or O3); fi is the numerical function 

of process i (e.g., transport, chemistry, deposition) that contributes to the pollutant 

concentration; ki is related to geographic (e.g., land cover) and meteorological variables 

(e.g., temperature, solar radiation, wind) but independent of concentrations; and [Is] is the 

concentration of reactant s in bi- or tri- molecular reaction. The ambient concentrations of 
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the gaseous precursors for O3 and PM2.5 (i.e., [Ip], where p = NOx, SO2, NH3, and VOCs) 

are approximately proportional to their emissions (Ep), as follows:

Ip ∝ Ep  (E6)

Although the forms of the fi terms differ significantly for different processes, they can all be 

approximated with polynomial functions. Using the precursor emissions as independent 

variables, E1 can be represented as a polynomial function of precursor emissions, as follows:

d P
dt = ∑

j
gj kj,   I1, …, r ,  Ep   (E7)

where gj is the jth term in the polynomial function of precursor emissions.

The average concentration of P over an integration period can be estimated based on E3 

according to the following:

P = ∑
j

gj kj,   I1, …, r ,  Ep   (E8)

Equation E4 is of the same form as the polynomial function used in the pf-RSM. Therefore, 

the accuracy of the pf-RSM suggests that the coefficient of each term is roughly constant 

and unrelated to the variation of Ep, but still related to the constant ki and concentration of 

reactant [Is]. Thus, we can conclude that the coefficient of each term is only determined by 

the concentration of reactants and the geographic or meteorological factors. Since the 

coefficient of each term is constant in the response function and does not change with 

emissions, the concentration of reactants can be determined from a single baseline-emission 

simulation to develop the response functions. Considering the challenges in representing the 

geographic and meteorological factors, we additionally use the concentration of reactants 

under clean conditions (fully-controlled scenario) to further represent such influence. More 

importantly, the difference in concentrations from the two scenarios (baseline and fully-

controlled) can be used to indicate the influence of the controllable fraction of the total 

emissions, since some emissions cannot be readily controlled (e.g., biogenic sources and 

regional emissions from outside the target area).

To promote interpretability of the machine-learning results, we examined the relative 

contribution of each indicator to the coefficients in the PM2.5 response function (Figure 5). 

In general, the wide range of the contribution of each indicator to the coefficients 

demonstrates the advantage of machine learning for feature extraction from the raw 18 

indicators. The coefficient for the linear NH3 emission term (Term 2) is strongly determined 

by the indicators HNO3, nitrate (NO3), ammonium (NH4), and PM2.5. The coefficient for the 

linear SO2 emission term (Term 5) is strongly determined by the indicators OH, sulfate 

(SO4), and ammonium (NH4). For high order NOx emission terms (Terms 8, 12, 13, 14), the 

coefficients are most influenced by indicators associated with complex free radical oxidation 

reactions. These relationships are consistent with known mechanisms of atmospheric 
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chemistry and indicate that the DeepRSM based on deep learning is scientifically reasonable 

in addition to performing with high accuracy and efficiency.

Our study is the first to apply deep-learning technology in predicting the air quality response 

to emission changes by linking CNN and RSM technologies using a carefully selected set of 

chemical indicators and novel model design. The new DeepRSM developed in this study 

significantly improves the real-time prediction of air quality for the full range of policy-

relevant control strategies, compared to previous methods such as the original RSM.

Since the DeepRSM links the coefficients of the PM2.5 and O3 response functions with 

chemical indicators independent of time and space, it can be applied for any study period or 

domain. The good performance of the CNN for days (-TT experiments) and spatial domains 

(-DT experiments) not represented in the training data supports this use. Compared to 

traditional regression methods (e.g., the pf-RSM benchmark case), the DeepRSM has higher 

efficiency and accuracy, and thus can be applied for real-time air quality response prediction 

in integrated assessment systems to inform long-term air quality management. It can also be 

applied for daily air quality forecasting to inform emergency actions to protect public health 

using a combination of short-term pollutant controls.

The scientific implications of our study are that the ambient concentrations of the chemical 

indicators are key factors for determining the nonlinear response of air quality to emission 

changes. This finding does not imply that other factors are unimportant, since factors such as 

meteorology and geographic characteristics are likely somehow already considered in the 

CNN through the change in indicator concentrations between the clean and baseline 

conditions. This study also reveals an important fact that, for systems that can be represented 

deterministically (e.g., atmospheric air pollution), we can interpret the full pathway using 

information from the initial and final states alone. However, training networks to adequately 

represent such systems is a major challenge, which requires full knowledge of the relevant 

factors (indicators) and ample training data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation among the 14 coefficients (row) of terms in the response functions for O3 (a) and 

PM2.5 (b) and the incremental change in concentrations of the indicators (column) between 

the baseline and clean-condition simulations for the CN27 domain.
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Figure 2. 
The CNN architecture of the DeepRSM with optimized polynomial structure for predicting 

the air quality response functions. Conv3×3BN: 3×3 convolution followed by batch 

normalization; LeakyReLU: leaky rectified linear unit activation function; FC: fully 

connected layer
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Figure 3. 
pf-RSM and DeepRSM performance in predicing PM2.5 responses to emissions in different 

numerical experiments. -TT: training based on same spatial domain but different days than 

testing; -DT: training based on different spatial domains than testing; -DTF5, -DTF20, and -

PolyDTF20: -DT experiments based on fine-tuning procedure. Results are based on Jan. 30 

for control scenario #35 in Table S1 (emission change ratios of NOx, SO2, NH3 and VOC 

are 92.0%, −84.2%, −98.0%, and −33.6%, respectively).
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Figure 4. 
The isopleths of PM2.5 response to NOx/VOC (a) and SO2/NH3 (b) emission change 

(baseline = 1) predicted by pf-RSM and DeepRSM for the CN27 domain (the values are 

averages of all grid cells and days; the color dots represent the simulated value in CMAQ)
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Figure 5. 
The relative contribution of each indicator to the coefficients of 14 terms in PM2.5 response 

function (from the highest shown as Red, to the lowest shown as Blue)
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