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Abstract

Mathematical models that are based on differential equations require detailed knowledge about the 

parameters that are included in the equations. Some of the parameters can be measured 

experimentally while others need to be estimated. When the models become more sophisticated, 

such as in the case of multiscale models of hepatitis C virus dynamics that deal with partial 

differential equations (PDEs), several strategies can be tried. It is possible to use parameter 

estimation on an analytical approximation of the solution to the multiscale model equations, 

namely the long-term approximation, but this limits the scope of the parameter estimation method 

used and a long-term approximation needs to be derived for each model. It is possible to transform 

the PDE multiscale model to a system of ODEs, but this has an effect on the model parameters 

themselves and the transformation can become problematic for some models. Finally, it is possible 

to use numerical solutions for the multiscale model and then use canned methods for the parameter 

estimation, but the latter is making the user dependent on a black box without having full control 

over the method. The strategy developed here is to start by working directly on the multiscale 

model equations for preparing them toward the parameter estimation method that is fully coded 

and controlled by the user. It can also be adapted to multiscale models of other viruses. The new 

method is described and illustrations are provided using a user-friendly simulator that incorporates 

the method.
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1 Introduction

Multiscale models have been introduced in recent years (Guedj et al., 2013a; Rong et al., 

2013; Rong and Perelson, 2013; Quintela et al., 2018) to improve the modeling of hepatitis 

C viral (HCV) dynamics. Chronic HCV infection affects approximately 70 million people 

worldwide. It is the primary cause of liver cirrhosis, liver cancer and liver transplant (World 

Health Organization, 2014). There is no vaccine for HCV and for more than a decade the 

standard-of-care consisted of pegylated interferon-alpha (IFN) and ribavirin. The recent 

advent of direct-acting antivirals (DAAs) provided interferon-free, all-oral treatment 

yielding cure rates exceeding 90% with pangenotypic activity, shorter durations of therapy 

(8–24 weeks). Compared to IFN-based therapy (24–48 weeks) it is considered one of the 

greatest achievements in medicine (AASLD/IDSA HCV Guidance Panel, 2015). However, 

despite these highly effective DAAs, many challenges remain, such as finding an optimal 

approach to current DAA failures and reducing HCV infection and DAAs cost, which is a 

significant barrier in treating the populations that are most affected by HCV.

Mathematical modeling of HCV provides important insights. It has improved our 

understanding of intracellular viral genome dynamics (Guedj et al., 2013a; Dahari et al., 

2009b, 2007; Neumann et al., 2010). The standard model for HCV kinetics during treatment 

has profoundly contributed to our assessment of the effectiveness and to our understanding 

of the mechanism of action of interferon-alpha and ribavirin (reviewed in (Dahari et al., 

2009c, 2011)). The models were able to retrospectively predict the duration of treatment 

needed for HCV eradication under IFN-based therapies (Snoeck et al., 2010; Dixit et al., 

2004; Guedj and Perelson, 2011) and more recently under IFN-free all oral DAAs (Dahari et 

al., 2016; Canini et al., 2017a; Gambato et al., 2018). Notably, the models were able to 

prospectively (i.e, in real time) predict the duration of IFN-free therapy needed to achieve 

cure (Dahari et al., 2015; Etzion et al., 2018). In the age of DAAs, new models have been 

developed to meet the challenges of these new agents such as drug resistance (Rong et al., 

2010). Notably, the first age-based multiscale mathematical model for HCV kinetics was 

developed (Guedj et al., 2013a,b; Rong et al., 2013) and provided a comprehensive 

understanding of the nature of viral kinetic patterns observed in patients treated with IFN, 

HCV protease inhibitors (telaprevir and danoprevir), or HCV NS5A inhibitor daclatasvir and 

their modes of action. Mathematical models are also valuable in understanding the in vivo 

dynamics of viruses that trigger both persistent infection (e.g. HIV-1 (Perelson, 2002; Ho et 

al., 1995; Perelson et al., 1996; Burg et al., 2009), hepatitis B virus (Ciupe et al., 2007; 

Dahari et al., 2009d; Nowak et al., 1996), hepatitis D virus (Koh et al., 2015; Guedj et al., 

2014; Canini et al., 2017b), Theiler murine encephalomyelitis virus (Zhang et al., 2013), 

herpes simplex virus (Schiffer et al., 2009) and HCV (Dahari et al., 2009a, 2005; Neumann 

et al., 1998)) and acute infection (e.g., influenza A (Baccam et al., 2006; Pawelek et al., 

2012; Beauchemin and Handel, 2011) and ebola (Madelain et al., 2015)).
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Multiscale models for HCV kinetics are an extension to the classical biphasic model 

(Neumann et al., 1998). The biphasic model treated the infected cell as a “black box”, 

producing virions but without any consideration of the intercellular viral RNA replication 

and degradation within the infected cell (Dahari et al., 2007, 2009b; Guedj and Neumann, 

2010). It is a set of three ordinary differential equations (ODEs) with three variables: 

uninfected target cells (T), productively infected cells (I), and free virus (V). The multiscale 

models consider the intercellular viral RNA in an additional equation for the variable (R), 

with the introduction of age-dependency in addition to time-dependency, making it a partial 

differential equation (PDE) model. They are considerably more difficult to solve and to 

perform parameter estimation on compared to the biphasic model. Unlike the construction of 

numerical schemes in other applications, for example in the nonlinear diffusion of digital 

images (Weickert et al., 1998; Barash et al., 2001; Barash, 2005) where accuracy can be 

limited, herein it is advisable to construct a stable and efficient scheme that belongs to the 

Runge-Kutta family with a higher accuracy than in nonlinear diffusion. Our numerical 

solution strategy was outlined in (Reinharz et al., 2017, 2018) and herein, we continue 

(Reinharz et al., 2018) by providing a parameter estimation method that follows this 

strategy.

Parameter estimation (or callibration) of multiscale HCV models with HCV kinetic data 

measured in treated patients are challenging. To overcome this, several strategies were 

employed. The first strategy, employed in (Rong et al., 2013), utilizes an analytical solution 

named long-term approximation for solving the model equations along with calling the 

Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) as a canned method for 

performing the fitting. The second strategy, employed in (Kitagawa et al., 2018), transforms 

the multiscale model to a system of ODEs and as such, simple parameter estimation methods 

can be used in the same manner as for the biphasic model. The third strategy, employed in 

(Quintela et al., 2018), is based on the method of lines and utilizes canned methods for both 

the numerical solution of the resulting equations (Matlab’s ode45) and for performing the 

fitting (Matlab’s fmincon). In contrast from all these approaches, our strategy does not rely 

on any canned method but fully implements our own Levenberg-Marquardt routine, thus 

making it suitable to other multiscale model equations by modifications inside the routine 

and an early preparation of the multiscale equations by taking their deriatives with respect to 

the parameters we would like to estimate. In the continuation, we will discuss why this 

strategy is advantageous.

The aim of this paper is to improve on parameter estimation methods for multiscale models 

that up until now, used canned routines (routines called from by a command within a 

program that is written in a higher level langauage such as Matlab and Mathematica, or 

Python) in a limited way that does not exert full control by the user. This makes the 

framework for parameter estimation as explained herein and distributed free of charge along 

with a user-friendly GUI a flexible and robust entity alongside the previous methods. Up 

until now the previous methods were sufficient for specific cases worked out for a particular 

multiscale model or a numerical solution with small timesteps, but they may likely suffer 

from problematic issues when coping with more extended simulations and diverse cases, 

without a simulator to experiment with. Starting from a description of the parameters and 

simulated data from patients, we first re-visit the numerical solutions and corresponding 
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notations that were worked out in (Reinharz et al., 2018), extending the Jacobian matrix and 

providing a detailed description of Levenberg-Marquardt for our application. We then 

describe in a step-by-step procedure how to prepare the multiscale model equations for our 

parameter estimation method by taking their derivatives with respect to the various 

parameters. Along with showing the results using our built-in simulator with a user friendly 

GUI, we discuss the results reached and the advantages of our strategy in performing 

parameter estimation directly from the equations of the multiscale models.

2 Multiscale Models for HCV Dynamics

A multiscale model for HCV infection and treatment dynamics (Figure 1) was introduced in 

(Rong et al., 2013; Guedj et al., 2013a; Rong and Perelson, 2013). Intracellular HCV RNA 

plays a biologically significant role during the HCV replication and mutliscale models are 

considering it by additional equations for the RNA that are age-dependent, with the most 

complete model to date that was recently put forth in (Quintela et al., 2018). Figure 1 

contains all the parameters that were used in the multiscale model described in (Rong et al., 

2013), which forms an example of our parameter estimation calibration method for PDE 

models developed herein that can easily be extended to include additional parameters. All 

the parameters of the models can be seen in Table 1.

2.1 Model Equations

The multiscale model (Rong et al., 2013; Guedj et al., 2013a; Rong and Perelson, 2013) can 

be formulated as follows:

dT t
dt = s − dT t − βV t T t (1a)

∂I a, t
∂t + ∂I a, t

∂a = − δI a, t (1b)

dV t
dt = 1 − εs 0

∞
ρR a, t I a, t da − cV t (1c)

∂R a, t
∂t + ∂R a, t

∂a = 1 − εα αe−γt − 1 − εs ρ + κμ R a, t . (1d)

The four variables this model keeps track of are the target cells T, in Eq. (1a), the infected 

cells I in Eq. (1b), the free virus V in Eq. (1c) and the intracellular viral RNA R in an 

infected cell, in Eq. (1d).

The target cells T are produced at constant rate s, and decrease by the number of cells 

infected by virus in blood V at constant rate β and their death at per capita rate d. The 

infected cells I die at constant per capita rate δ. The quantity of intracellular viral RNA R 
depends on its production α and its degradation μ and expulsion from the cell ρ. The 

quantity of free virus V depends on the number of assembled and released virions and their 
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clearance rate c. The parameter γ represents the decay of replication template under therapy. 

The decrease in viral RNA synthesis is represented by εα, the reduction in secretion by εs 

and the increase in viral degradation by κ ≥ 1.

An important consideration in this model is that the treatment starts after the infection has 

reached its steady state. We denote by t the time since the beginning of treatment, which is 

set to zero at the beginning of our simulation. Another different time is a, which represents 

the age of the cell. The steady states of the different variables are R(a), I (a), V  and T . The 

term N represents the total number of virions produced by infected cells.

At steady state, the initial and boundary conditions are: T (0) = T , V (0) = V , I(0, t) = 

βV(t)T(t), I(a, 0) = I (a), R(0, t) = 1, and R(a, 0) = R(a).

These values have been previously derived in (Rong et al., 2013) and can be expressed as 

follows:

T = c/βN (2a)

V = βNs − dc / βc (2b)

I a = βV T e−δa (2c)

R a = α
ρ + μ + 1 − α

ρ + μ e− ρ + μ a (2d)

N = ρ α + δ
δ ρ + μ + δ (2e)

Additionally, the equations for I(a, t) and R(a, t) can be solved by the method of 

characteristics to yield:

I a, t = βV t − a T t − a e−δa a < t
I a − t e−δt = βV Te−δa = βNs − dc / βN e−δa a > t

(3)

and

R a, t =

1 − εα αe−γt

1 − εs ρ + κμ − γ + 1 − 1 − εα αe−γ t − a

1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ a a < t

1 − εα αe−γt

1 − εs ρ + κμ − γ + α
ρ + μ + 1 − α

ρ + μ e− ρ + μ a − t − 1 − εα α
1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ t a > t

(4)
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The main goal of these equations is to allow us to predict the number of virions present after 

a certain time t of treatment, when all the parameters are known. The challenge we would 

like to tackle is whether given the change in the virion load of a patient, we can estimate the 

treatment parameters (εs, εα, γ, and κ) and thereby understand how the treatment works.

2.2 Model Parameters and Data from Patients

The multiscale model was calibrated with data from treated patients by (Rong et al., 2013). 

The data points to fit the model and on which the error is computed are only V. While the 

raw data is not available, we used the freely accessible tool by (Rohatgi, 2018) to retrieve it 

from a figure directly. The result for one patient is displayed in Fig. 2. We set V  as the pre-

treatment viral load observed in the patient.

In our method, we mostly use the default parameters from (Rong et al., 2013) that are shown 

in Table 2. To maintain the equality of Eq. (2b) we must change one parameter. Inspired by 

the method of (Rong et al., 2013), we chose to fix all parameters except s. For a patient the 

value of s is determined by its V  and by Eq. (2b), such that s = (V βc + dc)/(βN), where N is 

taken from Eq. (2e).

To verify that we can fix s given V , we show in Figure 3 how a system starting with 1 × 108 

target cells and 100 virions reaches steady state depending on the value of s. In blue the 

parameter s is set to 130 000 as in (Rong et al., 2013) and in orange to 475 573. This latter 

value was computed with the strategy described in the previous paragraph. As observed, 

both curves have the same shape, and the steady state reached by setting s to 475 573 is 

consistent with the extracted data.

Because T is also unknown and we assume that we start at a steady state, we compute it 

using the default parameters and Eq. (2a).

2.3 Analytical approximations and Numerical Solutions of the Multiscale Model Equations

As discussed in (Reinharz et al., 2018), the analytical approximations for the multiscale 

model have some limitations. The long-term approximation that is used in practice is an 

underestimate of the amount of HCV RNA in the model since some infection events are 

being ignored. Moreover, for each multiscale model the long-term approximation needs to 

be derived analytically. Thus, numerical solutions provide an attractive alternative and could 

be easier to adjust when introducing changes to the model. A more general and 

comprehensive approach to parameter fitting without relying on analytical approximations 

would be useful. And although it was recently shown that it is possible to transform the PDE 

multiscale model to a system of ODEs (Kitagawa et al., 2018), this transformation 

problematically introduces some of the boundary conditions, e.g. ζ, as new parameters 

inside the model equations. A numerical approach to parameter fitting of multiscale models 

was recently put forth and described in (Quintela et al., 2018), by the use of the method of 

lines and canned methods that are available in Matlab. Our new numerical approach that 

originated in (Reinharz et al., 2018) and described herein does not rely on canned methods, 

with considerable benefits that will be discussed in the continuation.
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For the numerical solution of the multiscale model equations, we showed in (Reinharz et al., 

2018) that the full implementation of the Rosenbrock method is preferable over the use of a 

canned solver in terms of efficiency and stability. Therefore the Rosenbrock method has 

been implemented for the purpose of our parameter fitting method as well. In order to apply 

the Rosenbrock method, it is simplest to represent the system to be solved as a vector f of 

two functions:

y′ = f t, y = dT
dt , dV

dt = s − dT − βV T , 1 − εs 0

∞
ρR a, t I a, t da − cV , (5)

where y is a vector with the values of [T, V]. This representation has originated in (Reinharz 

et al., 2018) for convenience with formulating the numerical schemes described in that 

reference. This function depends on 3 variables, t, V and T. While V and T are the values at 

the time point we are evaluating, inside the equation of I the function V(t − a) and T(t − a) 

do depend on t directly. In our implementation, when computing the integral, we need to 

divide into two cases. If a > t, we analytically determine the values of R(a, t) and I(a, t) for 

small time steps a. When a < t, the system was previously solved at times τ0, …, τn. 

Therefore we evaluate the integrals at times a0 = t − τ0, …, an = t − τn, ensuring that the 

required values of V(t − a) and T(t − a) are already known, following the scheme presented 

in (Reinharz et al., 2018).

The Rosenbrock method additionally requires the Jacobian matrix, denoted by f′. While in 

(Reinharz et al., 2018) the integral terms were ignored in the Jacobian, we now explicitly 

include them since in some cases their values cannot be ignored for the purpose of parameter 

estimation, as will be discussed in Sec. 3.2.

The fully derived Jacobian matrix is:

f′ =
−d − βV −βT

1 − εs
0

t
ρR a, t × ∂I a, t

∂T da 1 − εs
0

t
ρR a, t × ∂I a, t

∂V da − c (6)

where we have

∂I a, t
∂T = β ∂V t − a

∂T T t − a + V t − a ∂T t − a
∂T e−δa a < t

0 a > t
(7)

and

∂I a, t
∂V = β ∂V t − a

∂V T t − a + V t − a ∂T t − a
∂V e−δa a < t

0 a > t
. (8)

If we let Ta := T(t−a), then we may regard Ta as a function of t via T by writing Ta = 

Ta(T(t)). Then 
dTa
dt =

dTa
dT

dT
dt =

∂Ta
∂T

dT
dt , so that 

∂Ta
∂T =

dTa
dt / dT

dt , and ∂T (t − a)
∂T = dT (t − a)

dt / dT
dt . 
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Analogously, ∂V (t − a)
∂V = dV (t − a)

dt / dV
dt , ∂V (t − a)

∂T = dV (t − a)
dt / dV

dt , and ∂T (t − a)
∂V = dT (t − a)

dt / dV
dt . 

All these values are directly calculated with eq (5).

Because we are starting from the steady state then some of the derivatives, for example dT
dt , 

are initially zero. We observe that this singularity is only present in the first time step. In 

previous work (Reinharz et al., 2018) we noticed that omitting the integral term from the 

Jacobian still allows us to reach an approximation of the PDE system that is very close to the 

long-term approximation. Therefore only for the first time step, when the singularity is 

present, we set the integral term to zero.

Additionally, we need to add the term ∂f
∂t , which is expressed as follows. We note that ∂I

∂t = 0

when a > t since from Eq. (3) the value of I does not in that case depend on t.

∂f
∂t = 0, 1 − εs

0

∞
ρ ∂R a, t

∂t I a, t + R a, t ∂I a, t
∂t da , (9)

where:

∂I a, t
∂t = β ∂V a, t

∂t T t − a + V t − a ∂T t − a
∂t e−δa a < t

0 a > t
(10)

By definition of the ordinary and partial derivatives in this case, we find that 
∂T (t − a)

∂t = dT (t − a)
dt  and ∂V (t − a)

∂t = dT (t − a)
dt , which allows us to evaluate ∂T (t − a)

∂t  and 

∂V (t − a)
∂t  directly from Eq. (1a) and Eq. (1c), respectively. Additionally,

∂R a, t
∂t =

−γ 1 − εα αe−γt

1 − εs ρ + κμ − γ + γ 1 − εα αe−γ t − a

1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ a a < t

−γ 1 − εs αe−γt

1 − εs ρ + κμ − γ
+ ρ + μ 1 − α

ρ + μ e− ρ + μ a − t e− 1 − εs ρ + κμ t

+ α
ρ + μ + 1 − α

ρ + μ e− ρ + μ a − t − 1 − εα α
1 − εs ρ + κμ − γ

× (εs − 1)ρ − κμ e− 1 − εs ρ + κμ t

a > t

(11)

3 Issues of Parameter Estimation and Optimization Procedure

3.1 Preliminaries

The HCV multiscale model described in (Rong et al., 2013) has 12 parameters (Table 1) and 

the nonlinear differential equations that comprise it are stiff (Reinharz et al., 2018). In 

addition, the integral term in the equation complicates matters, as described in (Reinharz et 
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al., 2018). Parameter fitting is known to be a difficult problem in general and for multiscale 

models, in particular, one needs to approach it carefully with the use of robust techniques for 

the optimization.

The widely used Levenberg–Marquardt method (Levenberg, 1944; Marquardt, 1963) allows 

to fit an ensemble of parameters and has been shown to produce convincing results in 

simpler models than multiscale models. It does not guarantee that one will find a global 

optimum but given a set of reasonable starting points, in practice a sufficiently good local 

minimum can be found. Previous results as in (Rong et al., 2013) have shown the suitability 

of the Levenberg–Marquardt method for the optimization of multiscale models. 

Additionally, the implementation of the Rosenbrock method (Rosenbrock, 1963) by 

(Reinharz et al., 2018) can be extended to obtain the terms required by the Levenberg–

Marquardt method, as explained in Sec. 3.2. We present in Fig. 4 a flow diagram of the 

procedure.

3.2 Optimization by Levenberg–Marquardt

The Levenberg–Marquardt method is implemented in our newly introduced parameter 

estimation method as a major component. It is an iterative numerical method that leverages 

the gradient vector and the Jacobian matrix to find a local minimum depending on the 

starting parameters.

The general method can be summarized as follows (Press et al., 1997). Given are a vector m 
of m data points with a measure of uncertainty of the ith measurement σi (i ∈ [1, ⋯, m]) and 

a vector p of parameters. If a solution to Eq. (5) is y (the vector [T, V]), the model to be 

fitted is:

y = y t p , (12)

where ti, i ∈ [1, ⋯, m] are the m times associated with m.

To evaluate the quality of p, a dimensionless number χ2 is used as a merit function and is 

defined as:

χ2 =
i = 1

m yi − y ti p
σi

2
, (13)

where yi is the observed value of the parameter y at time ti.

At each iteration, a tentative new vector p+δp is computed and depending on χ2 the value is 

accepted or rejected. The change in parameter l of p, denoted by δpl, is computed by solving 

the system of linear equations:

l = 1

m
ζklδpl = ξl, (14)
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where ξl, defined as − 1
2

∂χ2
∂δpl

, depends on the gradients of y as a function of the parameters 

and ζkl, defined as 1
2

∂2χ2
∂δpk∂δpl

, depends on the partial derivatives of χ2 as a function of the 

parameter pl.

The following observations allow to determine the gradients of y as a function of any 

parameter. Solving Eq. (5) returns y, therefore we can take ∂y
∂pl

 to be the solution of 

∂y′
∂pl

= ∂f
∂pl

(t, ypl), which is:

∂f
∂pl

t, ypl =
∂ dT

dt
∂pl

,
∂ dV

dt
∂pl

= ∂
∂pl

s − dT − βV T ,

∂
∂pl

1 − εs 0

∞
ρR a, t I a, t da − cV ,

(15)

where ypl is the vector T , V ∂T
∂pl

, ∂V
∂pl

. From Clairaut’s theorem on the equality of mixed 

partial derivatives, we have that 
∂ dT

dt
∂pl

,
∂ dV

dt
∂pl

=
d ∂T

∂pl
dt ,

d ∂V
∂pl
dt , which allows us to solve with 

respect to t to compute the values of the partial derivatives.

The partial derivative of the second term could cause a problem due to the integral term. In 

practice, the integration is performed over 0 to 100, the maximal age of a cell. Therefore, by 

the Leibniz integral rule, we can exchange the integral and the derivative to obtain:

∂f
∂pl

t, ypl = ∂
∂pl

s − dT − βV T ,
0

∞ ∂
∂pl

1 − εs ρR a, t I a, t da

− ∂
∂pl

cV .
(16)

It should be noticed that in the multiscale model the integral term in the Jacobian matrix is 

negligible, being dominated by the value of β in I(a, t), which is of the order of 10−8. This is 

not true when generalized for the ensemble of parameters that need to be solved since the 

integral in Eq. (16) can become quite complex. As an example, the case where the parameter 

β needs to be fitted will necessarily have a term without it in the integral. This case is shown 

in the Appendix.

Due the large difference in the scale of the number of virions over a few days, fitting only 

for the value of V would not return accurate results since the fitting would mostly consider 

the first few data points. While for the value of log V we can solve Eq. (1c) and simply take 

the log, we must take an extra step when computing the derivatives in our scheme. This can 

be resolved with the observation that:
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∂log V
∂p = 1

V
∂V
∂p . (17)

Because our method solves the equations for V and ∂V
∂p  simultaneously, we apply before 

using the results the log to V and divide ∂V
∂p  by V, therefore obtaining the correct values.

3.3 Parameter Estimation Performed Directly from the Equations

To fit any parameter, an ensemble of equations needs to be directly implemented by taking 

their derivatives. We provide the implementation for the following 10 parameters: s, d, β, ρ, 
εs, εα, κ, c, δ, and γ.

Two of the model parameters were not included, α and μ. This is due to the fact that in the 

model we always have (1 − εα)α and κμ. Therefore fitting one or the other parameter is 

sufficient because it is impossible to know which of the two parameters should actually 

change.

For each parameter, the equations are different, but the same procedure needs to be applied 

to derive all of them. For illustration, we provide the procedure for the parameters ρ, s, γ.

3.3.1 Parameter ρ—The main observation is that in order to fit the parameter ρ on the 

function V, we must be able to compute the partial derivative of V with respect to ρ, denoted 

by ∂V
∂ρ . To do so, we can leverage our implementation of the Rosenbrock method for solving 

V. It follows from Eq. (5) that:

∂f
∂ρ t, yρ = −d∂T

∂ρ − β ∂V
∂ρ T + V ∂T

∂ρ , 1 − εs

0

∞
R a, t I a, t + ρ∂R a, t

∂ρ I a, t + ρR a, t ∂I
∂ρ a, t da − c∂V

∂ρ ,
(18)

where yρ is a vector with the values of T , V ∂T
∂ρ , ∂V

∂ρ .

The initial and boundary conditions can be derived by taking the partial derivative on each 

term. Thus, we have ∂T
∂ρ (0) = ∂T

∂ρ , ∂V
∂ρ (0) = ∂V

∂ρ , ∂I
∂ρ (0, t) = β ∂V

∂ρ (t)T (t) + V (t)∂T
∂ρ (t) , 

∂I
∂ρ (a, 0) = ∂I

∂ρ (a), ∂R
∂ρ (0, t) = 0, and ∂R

∂ρ (a, 0) = ∂R
∂ρ (a).

Given that:

∂N
∂ρ = α + δ

δ ρ + μ + δ − δρ α + δ
δ ρ + μ + δ 2 (19)

the other terms can be simplified as follows:
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∂T
∂ρ = − cδ μ + δ

β α + δ ρ2
∂V
∂ρ = s α + δ μ + δ

cδ ρ + μ + δ 2

∂I
∂ρ a = β ∂V

∂ρ T + V ∂T
∂ρ e−δa

∂R
∂ρ a = −α

ρ + μ 2 + α
ρ + μ 2e− ρ + μ a − a 1 − α

ρ + μ e− ρ + μ a

(20)

The values of V  and T  are as in Eq. (2). Additionally, we need to compute ∂I
∂ρ (a, t), which can 

be directly derived from (3) as:

∂I a, t
∂ρ =

β ∂V
∂ρ t − a T t − a + V t − a ∂T

∂ρ t − a e−δa a < t

dcδ μ + δ
β α + δ ρ2 e−δa a > t

(21)

In the same way ∂R
∂ρ (a, t) is derived from (4) as:
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∂R a, t
∂ρ =

− 1 − εs
1 − εs ρ + κμ − γ 2 (1 − εα)αe−γt

+ 1 − εs
1 − εs ρ + κμ − γ 2 (1 − εα)αe−γ(t − a)e−((1 − εs)ρ + κμ)a

− 1 − εs a 1 − 1 − εα αe−γ t − a

1 − εs ρ + κμ − γ e−((1 − εs)ρ + κμ)a

a < t

− 1 − εs
1 − εs ρ + κμ − γ 2 (1 − εα)αe−γt

+ − α
(ρ + μ)2 + α

(ρ + μ)2e−(ρ + μ)(a − t) + 1 − α
ρ + μ (t − a)e−(ρ + μ)(a − t)

+ (1 − εα)α(1 − εs)
(((1 − εs)ρ + κu) − γ)2 e−((1 − εs)ρ + κμ)t

− 1 − εs t α
ρ + μ + 1 − α

ρ + μ e−(ρ + μ)(a − t) − 1 − εα α
1 − εs ρ + κμ − γ e−((1 − εs)ρ + κμ)t

a > t

(22)

To solve this problem, the Rosenbrock method can be applied at once to the set of four 

equations obtained by combining those describing V in Eq. (5) and those describing ∂V
∂ρ  in 

Eq. (18). The Jacobian of those combined equations, f′ρ, is therefore of dimension 4 × 4. 

The upper left 2 × 2 block is the same as the Jacobian f′ shown in Eq. (6). The four values in 

the upper right 2 × 2 block are:

fρ, 2 × 2′ =

0 0

1 − εs
0

t

ρR a, t × ∂I a, t
∂ ∂T

∂ρ
da 1 − εs

0

t

ρR a, t × ∂I a, t
∂ ∂V

∂ρ
da

(23)

where

∂I a, t
∂ ∂T

∂ρ
= β ∂V t − a

∂ ∂T
∂ρ

T t − a + V t − a ∂T t − a
∂ ∂T

∂ρ
e−δa a < t

0 a > t

, (24)
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∂I a, t
∂ ∂V

∂ρ
= β ∂V t − a

∂ ∂V
∂ρ

T t − a + V t − a ∂T t − a
∂ ∂V

∂ρ
e−δa a < t

0 a > t

. (25)

The third row, denoted by f′ρ,3, are the four partial derivatives of the first equation of ∂f
∂ρ  as a 

function of T, V, ∂T
∂ρ  and ∂V

∂ρ . It is given by:

fρ, 3′ = −β ∂V
∂ρ , − β ∂T

∂ρ , − d − βV , − βT (26)

The fourth row, f′ρ,4, can be derived analogously to Eq. (26). It results in:

fρ, 4′ tr =

1 − εs
0

t

R a, t ∂I a, t
∂T + ρ∂R(a, t)

∂ρ
∂I(a, t)

∂T + ρR(a, t)
∂ ∂I(a, t)

∂ρ
∂T da,

1 − εs
0

t

R a, t ∂I a, t
∂V + ρ∂R(a, t)

∂ρ
∂I(a, t)

∂V + ρR(a, t)
∂ ∂I(a, t)

∂ρ
∂V da,

1 − εs
0

t

R a, t ∂I a, t
∂ ∂T

∂ρ
+ ρ∂R(a, t)

∂ρ
∂I(a, t)

∂ ∂T
∂ρ

+ ρR(a, t)
∂ ∂I(a, t)

∂ρ
∂ ∂T

∂ρ
da,

1 − εs
0

t

R a, t ∂I a, t
∂ ∂V

∂ρ
+ ρ∂R(a, t)

∂ρ
∂I(a, t)

∂ ∂V
∂ρ

+ ρR(a, t)
∂ ∂I(a, t)

∂ρ
∂ ∂V

∂ρ
da − c,

(27)

The new ensemble of ODEs to solve contains four equations, the two of Eq. (5) and the two 

of Eq. (18). We also need the additional four equations:
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∂ ∂I a, t
∂ρ

∂T =

β
∂V t − a

∂ρ
∂T T t − a + ∂V t − a

∂ρ
∂T t − a

∂V + ∂V t − a
∂V

∂T t − a
∂ρ + V t − a

∂ ∂T t − a
∂ρ

∂V e−δa a < t

0 a > t

,

(28)

∂ ∂I a, t
∂ρ

∂V =

β
∂ ∂V t − a

∂ρ
∂V T t − a + ∂V t − a

∂ρ
∂T t − a

∂V + ∂V t − a
∂V

∂T t − a
∂ρ + V t − a

∂ ∂T t − a
∂ρ

∂V e−δa a < t

0 a > t

,

(29)

∂ ∂I a, t
∂ρ

∂ ∂T
∂ρ

=

β
∂ ∂V t − a

∂ρ
∂ ∂T

∂ρ
T t − a + ∂V t − a

∂ρ
∂T t − a

∂ ∂T
∂ρ

+ ∂V t − a
∂ ∂T

∂ρ

∂T t − a
∂ρ + V t − a

∂ ∂T t − a
∂ρ

∂ ∂T
∂ρ

e−δa a < t

0 a > t

,

(30)

and

∂ ∂I a, t
∂ρ

∂ ∂V
∂ρ

=

β
∂ ∂V t − a

∂ρ
∂ ∂V

∂ρ
T t − a + ∂V t − a

∂ρ
∂T t − a

∂ ∂V
∂ρ

+ ∂V t − a
∂ ∂V

∂ρ

∂T t − a
∂ρ + V t − a

∂ ∂T t − a
∂ρ

∂ ∂V
∂ρ

e−δa a < t

0 a > t
.

(31)

The scheme requires the derivative of those equations with respect to t. As with the 

Jacobian, this can be seen as extending the term ∂f
∂t  of Eq. (9) with the partial derivative of 

∂f
∂ρ  (Eq. (18)) with respect to t, which is:
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∂ ∂f
∂ρ

∂t = 0, 1 − εs
0

∞
∂R a, t

∂t I a, t + R a, t ∂I a, t
∂t

+ ρ
∂ ∂R a, t

∂ρ
∂t I a, t + ∂R a, t

∂ρ
∂I a, t

∂t + ρ ∂R a, t
∂t

∂I a, t
∂ρ + R a, t

∂ ∂I a, t
∂ρ

∂t

da ,

(32)

to obtain the vector [∂f
∂t ,

∂ ∂f
∂ρ
∂t ], which replaces Eq. (9).

Here 
∂ ∂I

∂ρ
∂t  is derived from Eq (21) as:

∂ ∂I a, t
∂ρ

∂t =

β
∂ ∂V

∂ρ
∂t t − a T t − a + ∂V

∂ρ t − a ∂T
∂t t − a + ∂V

∂t t − a ∂T
∂ρ t − a + V t − a

∂ ∂T
∂ρ

∂t t − a e−δa a < t

0 a > t

(33)

where ∂T
∂t (t − a) and ∂V

∂t (t − a) are computed as for Eq. (10). As described in generality below 

Eq. (15), 
∂ ∂V

∂ρ
∂t (t − a) (resp. 

∂ ∂T
∂ρ
∂t (t − a)) is equivalent to 

∂ dV
dt

∂ρ (t − a) (resp. 
d∂T

∂t
dρ (t − a)), and 

these values are computed directly from Eq. (18).

The last unknown in this equation is 
∂ ∂R

∂ρ
∂t , which is derived from Eq. (22) and results in:
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∂ ∂R a, t
∂ρ

∂t =

γ 1 − εs
1 − εs ρ + κμ − γ 2 1 − εα αe−γt

− γ 1 − εs
1 − εs ρ + κμ − γ 2 1 − εα αe−γ t − a e− 1 − εs ρ + κμ a

− γ 1 − εs a 1 − εα αe−γ t − a

1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ a

a < t

γ 1 − εs
1 − εs ρ + κμ − γ 2 1 − εα αe−γt

+ ρ + μ α
ρ + μ 2e− ρ + μ a − t + 1 − α

ρ + μ e− ρ + μ a − t

+ ρ + μ 1 − α
ρ + μ t − a e− ρ + μ a − t e− 1 − εs ρ + κμ t

− 1 − εs ρ + κμ − α
ρ + μ 2 + α

ρ + μ 2e− ρ + μ a − t

+ 1 − α
ρ + μ t − a e− ρ + μ a − t

+ 1 − εα α 1 − εs
1 − εs ρ + κμ − γ 2 e− 1 − εs ρ + κμ t

− 1 − εs
α

ρ + μ + 1 − α
ρ + μ e− ρ + μ a − t

− 1 − εs α
1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ t

− 1 − εs t ρ + μ 1 − α
ρ + μ e− ρ + μ a − t e− 1 − εs ρ + κμ t

+ 1 − εs ρ + κμ 1 − εs t α
ρ + μ

+ 1 − α
ρ + μ e− ρ + μ a − t

− 1 − εα α
1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ t

a > t

(34)

3.3.2 Parameter s—As in Section 3.3.1 we derive the equations for fitting the parameter 

s. The differential equations are:

∂f
∂s t, ys = 1 − d∂T

∂s − β ∂V
∂s T + V ∂T

∂s , 1 − εs
0

∞

ρR a, t ∂I
∂s a, t da − c∂V

∂s

,

(35)

where ys is the vector T , V , ∂T
∂s , ∂V

∂s .
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The initial and boundary conditions can be derived by taking the partial derivative on each 

term. Thus, we have ∂T
∂s (0) = 0, ∂V

∂s (0) = N /c, ∂I
∂s (0, t) = β ∂V

∂s (t)T (t) + V (t)∂T
∂s (t) , 

∂I
∂s (a, 0) = ∂I

∂s (a), ∂R
∂s (0, t) = 0, and ∂R

∂s (a, 0) = 0. Here we have ∂I
∂s (a) = βV Ne−δa/c.

The function ∂I
∂s (a, t) can be directly computed as:

∂I a, t
∂s =

β ∂V
∂s t − a T t − a + V t − a ∂T

∂s t − a e−δa a < t

e−δa a > t
(36)

and we can notice that ∂R
∂s (a, t) is always zero. As before, the Jacobian can be reduced to the 

upper right block matrix:

fs, 2 × 2′ =

0 0

1 − εs
0

t

ρR a, t × ∂I a, t
∂ ∂T

∂s
da 1 − εs

0

t

ρR a, t × ∂I a, t
∂ ∂V

∂s
da

(37)

where

∂I a, t
∂ ∂T

∂s
=

β ∂V t − a
∂ ∂T

∂s
T t − a + V t − a ∂T t − a

∂ ∂T
∂s

e−δa a < t

0 a > t

, (38)

∂I a, t
∂ ∂V

∂s
=

β ∂V t − a
∂ ∂V

∂s
T t − a + V t − a ∂T t − a

∂ ∂V
∂s

e−δa a < t

0 a > t

, (39)

and the two vectors are

fs, 3′ = −β ∂V
∂s , − β ∂T

∂s , − d − βV , − βT (40)

and
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fs, 4′ tr =

1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂s
∂T da,

1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂s
∂V da,

1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂s
∂ ∂T

∂s
da,

1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂s
∂ ∂V

∂s
da − c

, (41)

where

∂ ∂I a, t
∂s

∂T =

β
∂ ∂V t − a

∂s
∂T T t − a + ∂V t − a

∂s
∂T t − a

∂T + ∂V t − a
∂T

∂T t − a
∂s + V t − a

∂ ∂T t − a
∂s

∂T e−δa a < t

0 a > t

(42)

∂ ∂I a, t
∂s

∂V =

β
∂V t − a

∂s
∂V T t − a + ∂V t − a

∂s
∂T t − a

∂V + ∂V t − a
∂V

∂T t − a
∂s + V t − a

∂ ∂T t − a
∂s

∂V e−δa a < t

0 a > t

(43)

∂ ∂I a, t
∂s

∂ ∂T
∂s

=

β
∂ ∂V t − a

∂s
∂ ∂T

∂s
T t − a + ∂V t − a

∂s
∂T t − a

∂ ∂T
∂s

+ ∂V t − a
∂ ∂T

∂s

∂T t − a
∂s + V t − a

∂ ∂T t − a
∂s

∂ ∂T
∂s

e−δa a < t

0 a > t

(44)
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∂ ∂I a, t
∂s

∂ ∂V
∂s

=

β
∂ ∂V t − a

∂s
∂ ∂V

∂s
T t − a + ∂V t − a

∂s
∂T t − a

∂ ∂V
∂s

+ ∂V t − a
∂ ∂V

∂s

∂T t − a
∂s + V t − a

∂ ∂T t − a
∂s

∂ ∂V
∂s

e−δa a < t

0 a > t

(45)

The last needed equation is the derivative of ∂f
∂s  with respect to t, which is:

∂ ∂f
∂s

∂t = 0, 1 − εs
0

∞

ρ ∂R a, t
∂t

∂I
∂s a, t + R a, t

∂ ∂I a, t
∂s

∂T da , (46)

where

∂ ∂I a, t
∂s

∂T =

β
∂ ∂V t − a

∂s
∂t T t − a + ∂V t − a

∂s
∂T t − a

∂t + ∂V t − a
∂t

∂T t − a
∂s + V t − a

∂ ∂T t − a
∂s

∂t e−δa a < t

0 a > t
.

(47)

3.3.3 Parameter γ—We now present the equation for the derivative with respect to the 

parameter γ:

∂f
∂γ t, yγ = − d∂T

∂γ − β ∂V
∂γ T + V ∂T

∂γ ,

1 − εs ρ
0

∞
∂R a, t

∂γ I a, t da +
0

t

R a, t ∂I a, t
∂γ da − c∂V

∂γ

(48)

where yγ is the vector T , V , ∂T
∂γ , ∂V

∂s .

The initial and boundary conditions can be derived as in the previous sections. We have 
∂T
∂γ (0) = 0, ∂V

∂γ (0) = 0, ∂I
∂γ (0, t) = β ∂V

∂γ (t)T (t) + V (t)∂T
∂γ (t) , ∂I

∂γ (a, 0) = 0, ∂R
∂γ (0, t) = 0, and 

∂R
∂γ (a, 0) = 0.

It follows that ∂I(a, t)
∂γ  is:
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∂I a, t
∂γ = β ∂V

∂γ t − a T t − a + V t − a ∂T
∂γ t − a e−δa a < t

0 a > t
(49)

and that ∂R(a, t)
∂γ  is:

∂R a, t
∂γ =

−t 1 − εα αe−γt

1 − εs ρ + κμ − γ

+ 1 − εα αe−γt

1 − εs ρ + κμ − γ 2

+ t − a 1 − εα αe−γ t − a

1 − εs ρ + κμ − γ − 1 − εα αe−γ t − a

1 − εs ρ + κμ − γ 2

× e− 1 − εs ρ + κμ a

a < t

−t 1 − εα αe−γt

1 − εs ρ + κμ − γ

+ 1 − εα αe−γt

1 − εs ρ + κμ − γ 2

− 1 − εα α
1 − εs ρ + κμ − γ 2e− 1 − εα ρ + κμ t

a > t

. (50)

The Jacobian is then defined by the upper right block matrix:

fγ, 2 × 2′ =

0 0

1 − εs
0

t

ρR a, t × ∂I a, t
∂ ∂T

∂γ
da 1 − εs

0

t

ρR a, t × ∂I a, t
∂ ∂V

∂γ
da

(51)

where

∂I a, t
∂ ∂T

∂γ
= β ∂V t − a

∂ ∂T
∂γ

T t − a + V t − a ∂T t − a
∂ ∂T

∂γ
e−δa a < t

0 a > t

(52)

∂I a, t
∂ ∂V

∂γ
= β ∂V t − a

∂ ∂V
∂γ

T t − a + V t − a ∂T t − a
∂ ∂V

∂γ
e−δa a < t

0 a > t

(53)

the vectors

fγ, 3′ = −β ∂V
∂γ , − β ∂T

∂γ , − d − βV , − βT (54)
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and

fγ, 4′ tr =

1 − εs
0

t

ρ ∂R a, t
∂γ

∂I t − a
∂T + R a, t

∂ ∂I a, t
∂γ

∂T da,

1 − εs
0

t

ρ ∂R a, t
∂γ

∂I t − a
∂V + R a, t

∂ ∂I a, t
∂γ

∂V da,

1 − εs
0

t

ρ ∂R a, t
∂γ

∂I t − a
∂ ∂T

∂γ
+ R a, t

∂ ∂I a, t
∂γ

∂ ∂T
∂γ

da,

1 − εs
0

t

ρ ∂R a, t
∂γ

∂I t − a
∂ ∂V

∂γ
+ R a, t

∂ ∂I a, t
∂γ

∂ ∂V
∂γ

da − c

, (55)

where

∂ ∂I a, t
∂γ

∂T =

β
∂ ∂V t − a

∂γ
∂T T t − a + ∂V t − a

∂γ
∂T t − a

∂T + ∂V t − a
∂T

∂T t − a
∂γ + V t − a

∂ ∂T t − a
∂γ

∂T e−δa a < t

0 a > t

(56)

∂ ∂I a, t
∂γ

∂V =

β
∂ ∂V t − a

∂γ
∂V T t − a + ∂V t − a

∂γ
∂T t − a

∂V + ∂V t − a
∂V

∂T t − a
∂γ + V t − a

∂ ∂T t − a
∂γ

∂V e−δa a < t

0 a > t

(57)

∂ ∂I a, t
∂γ

∂ ∂T
∂γ

=

β
∂ ∂V t − a

∂γ
∂ ∂T

∂γ
T t − a + ∂V t − a

∂γ
∂T t − a

∂ ∂T
∂γ

+ ∂V t − a
∂ ∂T

∂γ

∂T t − a
∂γ + V t − a

∂ ∂T t − a
∂γ

∂ ∂T
∂γ

e−δa a < t

0 a > t

(58)
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∂ ∂I a, t
∂γ

∂ ∂V
∂γ

=

β
∂ ∂V t − a

∂γ
∂ ∂V

∂γ
T t − a + ∂V t − a

∂γ
∂T t − a

∂ ∂V
∂γ

+ ∂V t − a
∂ ∂V

∂γ

∂T t − a
∂γ + V t − a

∂ ∂T t − a
∂γ

∂ ∂V
∂γ

e−δa a < t

0 a > t

(59)

The derivative of ∂f
∂γ  with respect to t is:

∂ ∂f
∂γ

∂t = 0, 1 − εs
0

∞

ρ
∂ ∂R a, t

∂γ
∂t I a, t + ∂R a, t

∂γ
∂I a, t

∂t + ∂R a, t
∂t

∂I a, t
∂γ

+ R a, t
∂ ∂I a, t

∂γ
∂t da .

(60)

where

∂ ∂I a, t
∂γ

∂t =

β
∂ ∂V t − a

∂γ
∂t T t − a + ∂V t − a

∂γ
∂T t − a

∂t + ∂V t − a
∂t

∂T t − a
∂γ + V t − a

∂ ∂T t − a
∂γ

∂t e−δa a < t

0 a > t

(61)

The last needed equation is 
∂ ∂R

∂γ
∂t , which is:
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∂ ∂R a, t
∂γ

∂t =

− 1 − εα αe−γt

1 − εs ρ + κμ − γ + γt 1 − εα αe−γt

1 − εs ρ + κμ − γ

− γ 1 − εα αe−γt

1 − εs ρ + κμ − γ 2

+ 1 − εα αe−γ t − a

1 − εs ρ + κμ − γ − γ(t − a) 1 − εα αe−γ t − a

1 − εs ρ + κμ − γ

+ γ 1 − εα αe−γ t − a

1 − εs ρ + κμ − γ 2

× e− 1 − εs ρ + κμ − γ a

a > t

− 1 − εα αe−γt

1 − εs ρ + κμ − γ + γt 1 − εα αe−γt

1 − εs ρ + κμ − γ

− γ 1 − εα αe−γt

1 − εs ρ + κμ − γ 2

+ 1 − εs ρ + κμ − γ 1 − εα α
1 − εs ρ + κμ − γ)2e− 1 − εs ρ + κμ t

a < t

(62)

3.4 Related Works

In the seminal works that developed the multiscale model (Rong et al., 2013; Rong and 

Perelson, 2013; Guedj et al., 2013a), the importance of parameter estimation to the model 

was already noted. It was addressed in (Rong et al., 2013) and attempts to come up with 

improved strategies were tried thereafter in (Kitagawa et al., 2018) and in (Quintela et al., 

2018).

3.4.1 Parameters change when transforming a PDE multiscale model to a 
system of ODEs—A recent attempt appearing in (Kitagawa et al., 2018) showed how a 

PDE multiscale model of hepatitis C virus can be transformed to a system of ODEs. In 

principle, parameter estimation should then become easier, avoiding the complications in 

dealing with the PDE multiscale model. However, there are side effects introduced in such a 

transformation, as can be noticed in Eq. 9 of (Kitagawa et al., 2018) where the boundary 

condition R(t, 0) = ζ gets inside the differential equations. Consequently, as admitted in the 

discussion of that reference, all parameters in Eqs. 7–10 must be estimated including ζ. The 

inclusion of boundary conditions as new parameters inside the model equations is a 

drawback compared to parameter estimation performed on the original multiscale model 

equations before the transformation. Another drawback from the perspective of parameters 

change is the fact that the simplest PDE multiscale model appearing in (Guedj et al., 2013a) 

was used in the transformation to ODEs, but important additions such as the inclusion of 

parameter γ as in (Rong et al., 2013) are not taken into account. It is not obvious how to 

include the parameter γ and other developments to the multiscale model inside the system of 

ODEs. Finally, any information regarding the age of the cell since infection is lost. Thus, if 

one would wish, for example, to vary the parameter a from infection to a certain time, this is 

not possible. For HBV, this is a critical limitation and the system of ODEs cannot be easily 
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extended to account such information. In summary, while the transformation works for the 

simplest multiscale model, it is limited in considering developments to the multiscale model 

and the parameters in the system of ODEs are not the same as the parameters in the 

multiscale model.

3.4.2 Problematic issues in strategies relying on canned methods—The 

previous strategies for parameter fitting of the multiscale model are all relying on canned 

methods. The two main strategies depicted in Figures 5 and 6 are the ones worked out in 

(Rong et al., 2013) and in (Quintela et al., 2018), illustrated by a flow chart.

In (Rong et al., 2013), as illustrated in Figure 5, the long-term approximation is used for the 

solution of the mutliscale model equations and Levenberg–Marquardt is used as a canned 

method. One drawback of such an approach is that it is limited to the multiscale model under 

treatment. In addition, the analytical approximation would change when various mutliscale 

models are introduced and the elaborative derivations would need to be carried for each one, 

with restrictions that are incorporated by the approximation being used. Finally, as discussed 

in the next paragraph, the use of a canned method is distancing the user away from having 

control over the main optimization procedure and the ability to tune it from the 

programming standpoint.

In (Quintela et al., 2018), a more extensive multiscale model is introduced, and a different 

strategy is being carried out for both the model equations solution and the parameter 

estimation. The model equations are solved numerically using the method of lines and 

Matlab’s ODE solver ode45, which implements a standard explicit 4th order Runge-Kutta. 

For small time steps, this is a perfectly valid approach, also it was noted in (Reinharz et al., 

2018) that because of the integral in the multiscale model equations there would be no 

advantage in using a more sophisticated ODE solver such as Matlab’s ode23tb for stiff 

equations instead of ode45 for non-stiff equations. However, as was shown in (Reinharz et 

al., 2018), the multiscale model equations are stiff and if an increase in the time step is 

desired for efficiency considerations in longer time simulations, this approach remains 

limited in the time steps that are recommended to be taken. Moreover, for parameter 

estimation, the minimization procedure in (Quintela et al., 2018) is carried out with Matlab’s 

fmincon selecting its interior-point algorithm. While for the cases in (Quintela et al., 2018) 

this procedure appears successful, there are instances reported that are more problematic 

(e.g., https://groups.google.com/forum/#!topic/comp.soft-sys.matlab/SuNzbhEun1Y). Thus, 

for distributing a simulator to the community like the one that has started being developed 

herein, it would probably be a good practice to be able to implement protections inside the 

software and answer users concerns directly without relying on a black box from a third 

party vendor. For non-multiscale models, this would not present a problem, but for 

multiscale models as was demonstrated in (Reinharz et al., 2018) there is advantage in 

having the ability to penetrate inside the solver and optimizer routines, because of the 

complexity of the models.

3.4.3 Limitations of our method—The method introduced herein prepares the 

multiscale model equations for parameter fitting by working on them directly as an initial 

step. This strategy is beneficial in postponing approximations to later steps and ensuring full 
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control of the user during the whole fitting procedure. Still, limitations exist and 

improvements to overcome them can be addressed in future work.

The main drawback of our method is that in its current implementation it is rather slow and 

may take a few hours on a parameter estimation problem with several parameters to be fitted 

at the same time, as in Figure 2, on a standard computer. The results in terms of the fitting 

performance are good but the user needs to wait patiently until the calculations are finished. 

Relatedly, the Rosenbrock method for the numerical solution of the multiscale model 

equations is an adaptive time step method. Thus, there are time steps taken in which the 

Rosenbrock method fluctuates just before a newer, more suitable time step is performed. 

Such a fluctuation has a pronounced effect during the optimization step by Levenberg-

Marquardt. Without imposing a restriction to small time steps for the numerical solution of 

the equations, it is possible that the Backward-Differentiation Formula (BDF) would be 

found advantageous over the Rosenbrock method for the specific purpose of parameter 

fitting, a numerical solution method which will profoundly be examined in general in future 

work as suggested in (Reinharz et al., 2018). Additionally, the Levenberg-Marquardt method 

does not allow to set bounds on the parameters. This is another insight that can be exploited 

since we know that they must all be positives, and in the case of ε8 and εα those are upper 

bounded by 1. To leverage this knowledge, interior-point methods have been tried and it was 

found that they are time consuming because of Hessian evaluations, therefore derivative-free 

optimization methods such as Constrained Optimization by Linear Approximation 

(COBYLA) should be explored in future work. Another limitation is that for each parameter 

introduced in future multiscale models, the derivative with respect to the new parameter 

needs to be taken and more equations need to be derived, as performed at the beginning of 

this section and in the supplementary material.

3.5 Results

Parameter estimation is a necessary procedure in all models, ranging from the biphasic 

model of (Neumann et al., 1998) to multiscale models (Guedj et al., 2013a; Rong et al., 

2013; Rong and Perelson, 2013; Quintela et al., 2018). We present results for these two 

types of models worked out by a user-friendly simulator that we have developed in 

(Reinharz et al., 2017) for the solution of the multiscale model and extended herein towards 

parameter estimation for both biphasic and multiscale models. The simulator with a GUI is 

freely available at http://www.cs.bgu.ac.il/~dbarash/Churkin/SCE/Parameter_Estimation 

(with the option to either select the biphasic or the multiscale model).

3.5.1 Parameter estimation in the biphasic model—The simplest model for HCV 

dynamics to perform parameter estimation on is Neumann et al.’s biphasic model (Neumann 

et al., 1998). Although it is nonlinear, it can be solved analytically when assuming that the 

target cells T variable is constant. We incorporated the analytical solution to our simulator 

and performed parameter estimation using a nonlinear solver to solve the minimum least 

squares problem (Press et al., 1997) after noticing that a linear solver is insufficient. The 

nonlinear solver runs multiple iterations, there is a damping factor, and derivatives are 

calculated by varying the parameters a small amount from the previous guess. The nonlinear 

solver is taken from the Java least squares fitting library available at https://github.com/
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odinsbane/least-squares-in-java and it resembles Levenberg–Marquardt but unlike 

Levenberg–Marquardt, the damping is non-adaptive, which is sufficient for a good 

performance of parameter estimation results in this simple model. Figures 7, 8 and 9 present 

fitting results from three patients (Pts). Figures 6,7 correspond to Pt MBH4 who was treated 

with sofosbuvir combined with ledipasvir and Pt H3 who was treated with sofosbuvir with 

daclatasvir, respectively (Dahari et al., 2016). Figure 9 corresponds to Pt P2 who was treated 

with asunaprevir combined with daclatasvir (Canini et al., 2017a). A webpage with user 

instructions is available at http://www.cs.bgu.ac.il/~dbarash/Churkin/SCE/

Parameter_Estimation/Biphasic.

3.5.2 Parameter estimation in the multiscale model—The multiscale model for 

HCV dynamics to perform parameter estimation on is taken from (Rong et al., 2013). As 

previously outlined and depicted in Figure 3, in our simulator we solved the model equations 

using the Rosenbrock method (Reinharz et al., 2017) and performed parameter estimation 

after preparing the derivative equations using a full implementation of the Levenberg-

Marquardt without reverting to canned methods.

To illustrate the tool we provide, we first show in Figure 10 the result of fitting to generated 

data points from the default values the parameter ρ, when first started at 40. The predicted 

value of 8.152 is very close to the real value of 8.18. In Figure 11 we show the result of 

fitting the parameter γ, which is also worthwhile noting that it is not a parameter available in 

the simplified model of (Kitagawa et al., 2018). Starting from a value of 1 the result of 

0.23909 is also very close to the real value of 0.24.

To compare our method with the long-term approximation we fitted the four treatment 

parameters κ, εs, εα and γ. All the other parameters were selected with the values of Table 

2. We show in Table 3 the different values of those four parameters and sum of squared-

errors fitted with the two different scenarios to the data emanating from a patient. We also 

show in parenthesis the standard deviations. In the leftmost column we fitted the long-term 

approximation with the retrieved data points using the scipy.optimize.curve_fit method, 

which is a Python implementation of a simple Levenberg-Marquardt scheme as a canned 

method. In the rightmost column are the values obtained by our method.

For comparison of the results between the line fit when the retrieved data points are fitted to 

the long-term approximation equation and our method, we compute the sum of squares of 

the errors for each data point. It is shown that our method achieved slightly better results. To 

further illustrate the tool we provide, we show in Figure 12 the starting configuration after 

the data was inserted as input and in Figure 13 the final result. In Figure 14 we present the 

same curve compared with the line fit of the long term approximation, as in Table 3. A 

webpage with user instructions is available at http://www.cs.bgu.ac.il/~dbarash/

Churkin/SCE/Parameter_Estimation/Multiscale.

4 Concluding Remarks

Parameter estimation is a challenging problem for mathematical models that are based on 

differential equations. In the context of viral dynamic models, even a simple model such as 
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the biphasic model (Neumann et al., 1998) requires a nonlinear method for the least squares 

minimization because a linear method is not sufficient, as was experimented by us and 

demonstrated with our simulator for the biphasic model in the Results section. The 

development of more complicated models such as viral dynamic models that consider 

intracellular viral RNA replication, namely age-structured PDE multiscale models to study 

viral hepatitis dynamics during antiviral therapy (Rong et al., 2013; Rong and Perelson, 

2013; Guedj et al., 2013a; Quintela et al., 2018), presents a need for more sophisticated 

strategies that perform parameter estimation while solving the model equations 

simultaneously. Simply transforming the PDE multiscale models to a set of ODEs (Kitagawa 

et al., 2018), while possibly having other merits, requires a change in the parameters and 

therefore does not offer a comprehensive solution to the problem.

From the parameter estimation standpoint, as previously outlined, multiscale models are 

considerably more challenging than the biphasic model. Not only that conducting a search in 

at least a 10-parameter search space is more difficult than in a 4-parameter search space, also 

the task of solving the model equations themselves and how to connect the equations 

solution to the optimization procedure requires more sophistication. Previously, this was 

approached in (Rong et al., 2013) by using the long-term approximation along with a canned 

method for Levenberg-Marquardt, and in (Quintela et al., 2018) by the method of lines and 

then employing Matlab’s 4th order Runge-Kutta solver along with a canned method 

available in Matlab called fmincon for the optimization. While these strategies work 

sufficiently well for specific cases, because of their use of canned methods they are 

problematic from the standpoint of the user’s capability to access and control them. Thus far, 

no source code has been released free of charge for the benefit of the community and while 

these strategies were described coherently in the context of presenting multiscale models, 

they were not intended to provide to the user a comprehensive solution of their own. It 

requires considerable implementation efforts by the user (e.g., in reading documentation 

about Matlab’s fmincon after purchasing a license to use the Optimization Toolbox). There 

is clearly a need to provide the user with a free of charge simulator that is effortless to 

operate and a code that can be accessed for dissemination and future development.

The strategy we presented herein requires no canned methods utilization. It works directly 

on the multiscale model equations, preparing them in advance for the optimization 

procedure by taking their derivatives with respect to the parameters, in contrast to solving 

them first by an analytical approximation or performing the method of lines as a first step. 

For the solution of the model equations, the Rosenbrock method described in (Reinharz et 

al., 2017) is employed, as was shown to be advantageous in comparison to other solution 

schemes in (Reinharz et al., 2018). For the optimization procedure, Levenberg–Marquardt is 

employed in full (not as a canned method) such that the user has access to the source code at 

each point in the procedure. The whole method is provided in a form of a multiscale model 

simulator with a user-friendly GUI.

The method is rather slow in most scenarios, which may take several hours or more to reach 

the desired solution on a standard computer. Nevertheless, fitting at once the four parameters 

κ, εs, εα and γ yields good results and can be computed in less than a day. Future work will 

be devoted to improve these limitations. To date, this is the first time that a parameter 
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estimation method for multiscale models is distributed free of charge with its source code to 

the community within a user-friendly tool, which by itself will be helpful to practitioners. 

The new method is based on flexible components that can be easily accessed and modified 

by developers who are interested in other research modeling areas such as the dynamics of a 

viral population over both space and time (e.g., modeling spatial aspects of within-host viral 

spread (Gallagher et al., 2018; Kumberger et al., 2018)). The method can be generalized 

with regards to the outlined model parameters, such as ρ, δ, and α, which can be made 

dependent on the age a. For example, we can utilize our method when the constant 

production rate α is replaced by an age-dependent logistic function. The method is also 

achieving convincing results as was demonstrated herein in comparison to other strategies 

and will be beneficial among the arsenal of methods that were developed for parameter 

estimation in multiscale models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

In this appendix we briefly show the derivation of the equations that constitute a preparatory 

step before the optimization procedure for the other seven parameters that were not included 

in the main text (three were already shown starting from Section 3.3.1). For more details the 

interested reader is referred to Section 3.3.1).

Parameter d :

The derivative of the general function f (the vector [T, V]) with respect to d is:

∂f
∂d t, yd = −T − d∂T

∂d − β ∂V
∂d T + V ∂T

∂d 1 − εs 0
∞

ρR a, t ∂I
∂d a, t da − c∂V

∂d

where yd =

T
V
∂T
∂d
∂V
∂d

.

Furthermore:

∂R a, t
∂d = 0,
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∂T
∂d = 0,

∂V
∂d = − 1/β,

∂I a, t
∂d =

β ∂V
∂d t − a T t − a + V t − a ∂T

∂d t − a e−δa a < t

−c/ βN e−δa a > t
,

The upper right block matrix of the Jacobian is:

fd, 2 × 2′ =

0 0

1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂T
∂d

da 1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂V
∂d

da

and the transposed last two rows of the Jacobian are:

fd, 3′ tr, fd, 4′ tr :=

−1 − β ∂V
∂d 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂d
∂T da

−β ∂T
∂d 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂d
∂V da

−d − βV 1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂d
∂ ∂T

∂d
da

−βT 1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂d
∂ ∂V

∂d
da − c

,

∂ ∂f
∂d
∂t = 0, 1 − εs

0

∞

ρ ∂R a, t
∂t

∂I
∂d a, t + R a, t

∂ ∂I a, t
∂d
∂t da .

Parameter β:

The derivative of the general function f (the vector [T, V]) with respect to β is:
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∂f
∂β t, yβ = −d∂T

∂β − V T + β ∂V
∂β T + βV ∂T

∂β

1 − εs 0
∞

ρR a, t ∂I a, t
∂β da − c∂V

∂β

where yβ =

T
V
∂T
∂β
∂V
∂β

.

Furthermore:

∂R a, t
∂β = 0,

∂T
∂β = − c/ β2N ,

∂V
∂β = d/β2,

∂I a, t
∂β =

V t − a T t − a + β ∂V
∂β t − a T t − a + βV t − a ∂T

∂β t − a e−δa a < t

dc/ β2N e−δa a > t
,

The upper right block matrix of the Jacobian is:

fβ, 2 × 2′ =

0 0

1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂T
∂β

da 1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂V
∂β

da

and the transposed last two rows of the Jacobian are:
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fβ, 3′ tr, fβ, 4′ tr :=

− V + β ∂V
∂β 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂β
∂T da

− T + β ∂T
∂β 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂β
∂V da

−d − βV 1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂β
∂ ∂T

∂β
da

−βT 1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂β
∂ ∂V

∂β
da − c

,

∂ ∂f
∂β
∂t = 0, 1 − εs

0

∞

ρ ∂R a, t
∂t

∂I
∂β a, t + R a, t

∂ ∂I a, t
∂β
∂t da .

Parameter εs:

The derivative of the general function f (the vector [T, V]) with respect to εs is:

∂f
∂εs

t, yεs = −d ∂T
∂εs

− β ∂V
∂εs

T + V ∂T
∂εs

, −
0

∞
ρR a, t I a, t da + 1 − εs 0

∞
ρ∂R a, t

∂εs
I a, t da

+ 1 − εs 0
t
ρR a, t ∂I

∂εs
a, t da − c ∂V

∂εs

where yεs =

T
V
∂T
∂εs
∂V
∂εs

.

Furthermore:
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∂R a, t
∂εs

=

ρ
1 − εα αe−γt

1 − εs ρ + κμ − γ 2

−ρ
1 − εα αe−γ t − a

1 − εs ρ + κμ − γ 2e− 1 − εs ρ + κμ a

+ρa 1 −
1 − εα αe−γ t − a
1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ a

a < t

ρ
1 − εα αe−γt

1 − εs ρ + κμ − γ 2

−ρ
1 − εα α

1 − εs ρ + κμ − γ 2e− 1 − εs ρ + κμ t

+ρt α
ρ + μ + 1 − α

ρ + μ e− ρ + μ a − t −
1 − εα α

1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ t

a > t

,

∂T
∂εs

= 0,

∂V
∂εs

= 0,

∂I(a, t)
∂εs

=
β ∂V

∂εs
t − a T t − a + V t − a ∂T

∂εs
t − a e−δa a < t

0 a > t
,

The upper right block matrix of the Jacobian is:

fεs, 2 × 2′ =

0 0

1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂T
∂εs

da 1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂V
∂εs

da

and the transposed last two rows of the Jacobian are:
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fεs, 3′ tr, fεs, 4′ tr :=

−β ∂V
∂εs

−
0

t
ρR a, t ∂I a, t

∂T da + 1 − εs

0

t

ρ∂R a, t
∂εs

∂I a, t
∂T da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂εs
∂T da

−β ∂T
∂εs

−
0

t
ρR a, t ∂I a, t

∂V da + 1 − εs

0

t

ρ∂R a, t
∂εs

∂I a, t
∂V da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂εs
∂V da

−d − βV −

0

t

ρR a, t ∂I a, t
∂ ∂T

∂εs

da + 1 − εs

0

t

ρ∂R a, t
∂εs

∂I a, t
∂ ∂T

∂εs

da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂εs
∂ ∂T

∂εs

da

−βT −

0

t

ρR a, t ∂I a, t
∂ ∂V

∂εs

da + 1 − εs

0

t

ρ∂R a, t
∂εs

∂I a, t
∂ ∂V

∂εs

da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂εs
∂ ∂V

∂εs

da − c

,

∂ ∂f
∂εs
∂t = 0, −

0
∞

ρ ∂R a, t
∂t I a, t + R a, t ∂I a, t

∂t da + 1 − εs

0

∞

ρ
∂ ∂R a, t

∂εs
∂t I a, t + ∂R a, t

∂εs
∂I a, t

∂t da

+ 1 − εs

0

t

ρ ∂R a, t
∂t , ∂I a, t

∂εs
+ R a, t

∂ ∂I a, t
∂εs
∂t da

where:

Reinharz et al. Page 34

Bull Math Biol. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∂ ∂R a, t
∂εs
∂t =

−γρ
1 − εα αe−γt

1 − εs ρ + κμ − γ 2

+γρ
1 − εα αe−γ t − a

1 − εs ρ + κμ − γ 2e− 1 − εs ρ + κμ a

+γρa
1 − εα αe−γ t − a
1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ a

a < t

−γρ
1 − εα αe−γt

1 − εs ρ + κμ − γ 2

+ 1 − εs ρ + κμ ρ
1 − εα α

1 − εs ρ + κμ − γ 2e− 1 − εs ρ + κμ t

+ρ α
ρ + μ + 1 − α

ρ + μ e− ρ + μ a − t −
1 − εα α

1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ t

+ ρ + μ ρt 1 − α
ρ + μ e− ρ + μ a − t e− 1 − εs ρ + κμ t

+ 1 − εs ρ + κμ ρt α
ρ + μ + 1 − α

ρ + μ e− ρ + μ a − t −
1 − εα α

1 − εs ρ + κμ − γ
× e− 1 − εs ρ + κμ t

a > t
.

Parameter εα:

The derivative of the general function f (the vector [T, V]) with respect to εα is:

∂f
∂εα

t, yεα = −d ∂T
∂εα

− β ∂V
∂εα

T + V ∂T
∂εα

, 1 − εs 0
∞

ρ∂R a, t
∂εα

I a, t da + 1 − εs 0
t
ρR a, t ∂I

∂εα
a, t da

− c ∂V
∂εα

where yεα =

T
V
∂T
∂εα
∂V
∂εα

.

Furthermore:

∂R a, t
∂εα

=
− αe−γt

1 − εs ρ + κμ − γ + αe−γ t − a
1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ a a < t

− αe−γt
1 − εs ρ + κμ − γ + α

1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ t a > t
,

∂T
∂εα

= 0,

∂V
∂εα

= 0,
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∂I a, t
∂εα

=
β ∂V

∂εα
t − a T t − a + V t − a ∂T

∂εα
t − a e−δa a < t

0 a > t
,

The upper right block matrix of the Jacobian is:

fεα, 2 × 2′ =

0 0

1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂T
∂εα

da 1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂V
∂εα

da

and the transposed last two rows of the Jacobian are:

fεα, 3′ tr, fεα, 4′ tr :=

−β ∂V
∂εα

1 − εs

0

t

ρ∂R a, t
∂εα

∂I a, t
∂T da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂εα
∂T da

−β ∂T
∂εα

1 − εs

0

t

ρ∂R a, t
∂εs

∂I a, t
∂V da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂εα
∂V da

−d − βV 1 − εs

0

t

ρ∂R a, t
∂εs

∂I a, t
∂ ∂T

∂εα

da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂εα
∂ ∂T

∂εα

da

−βT 1 − εs

0

t

ρ∂R a, t
∂εs

∂I a, t
∂ ∂V

∂εα

da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂εα
∂ ∂V

∂εα

da − c

,

∂ ∂f
∂εs
∂t = 0, 1 − εs

0

∞

ρ
∂ ∂R a, t

∂εα
∂t I a, t + ∂R a, t

∂εα
∂I a, t

∂t da

+ 1 − εs

0

t

ρ ∂R a, t
∂t , ∂I

∂εα
a, t + R a, t

∂ ∂I a, t
∂εα
∂t da

where:

∂ ∂R a, t
∂εα
∂t =

γ αe−γt
1 − εs ρ + κμ − γ − γ αe−γ t − a

1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ a a < t

γ αe−γt
1 − εs ρ + κμ − γ − 1 − εs ρ + κμ α

1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ t a > t
.

Parameter κ:
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The derivative of the general function f (the vector [T, V]) with respect to κ is:

∂f
∂κ t, yκ = −d∂T

∂κ − β ∂V
∂κ T + V ∂T

∂κ , 1 − εs 0
∞

ρ∂R a, t
∂κ I a, t da + 1 − εs 0

t
ρR a, t ∂I

∂κ a, t da − c∂V
∂κ

where yκ =

T
V
∂T
∂κ
∂V
∂κ

.

Furthermore:

∂R a, t
∂κ
∂t =

−μ
1 − εα αe−γt

1 − εs ρ + κμ − γ 2

+μ
1 − εα αe−γ t − a

1 − εs ρ + κμ − γ 2e− 1 − εs ρ + κμ a

−μa 1 −
1 − εα αe−γ t − a
1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ a

a < t

−μ
1 − εα αe−γt

1 − εs ρ + κμ − γ 2

+μ
1 − εα α

1 − εs ρ + κμ − γ 2e− 1 − εs ρ + κμ t

−μt α
ρ + μ + 1 − α

ρ + μ e− ρ + μ a − t −
1 − εα α

1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ t

a > t

,

∂T
∂κ = 0,

∂V
∂κ = 0,

∂I a, t
∂κ = β ∂V

∂κ t − a T t − a + V t − a ∂T
∂κ e−δa a < t

0 a > t
,

The upper right block matrix of the Jacobian is:

fκ, 2 × 2′ =

0 0

1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂T
∂κ

da 1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂V
∂κ

da

and the transposed last two rows of the Jacobian are:
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fκ, 3′ tr, fκ, 4′ tr :=

−β ∂V
∂κ 1 − εs

0

t

ρ∂R a, t
∂κ

∂I a, t
∂T da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂κ
∂T da

−β ∂T
∂κ 1 − εs

0

t

ρ∂R a, t
∂κ

∂I a, t
∂V da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂κ
∂V da

−d − βV 1 − εs
0

t

ρ∂R a, t
∂κ

∂I a, t
∂ ∂T

∂κ
da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂κ
∂ ∂T

∂κ
da

−βT 1 − εs
0

t

ρ∂R a, t
∂κ

∂I a, t
∂ ∂V

∂κ
da + 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂κ
∂ ∂V

∂κ
da − c

,

∂ ∂f
∂κ
∂t = 0, 1 − εs

0

∞

ρ
∂ ∂R a, t

∂κ
∂t I a, t + ∂R a, t

∂κ
∂I a, t

∂t da

+ 1 − εs
0

t

ρ ∂R a, t
∂t , ∂I a, t

∂κ + R a, t
∂ ∂I a, t

∂κ
∂t da

where:

∂ ∂R a, t
∂κ
∂t =

+γμ
1 − εα αe−γt

1 − εs ρ + κμ − γ 2

−γμ
1 − εα αe−γ t − a

1 − εs ρ + κμ − γ 2e− 1 − εs ρ + κμ a

−γμa
1 − εα αe−γ t − a
1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ a

a < t

−γμ
1 − εα αe−γt

1 − εs ρ + κμ − γ 2

− 1 − εs ρ + κμ μ
1 − εα α

1 − εs ρ + κμ − γ 2e− 1 − εs ρ + κμ t

−μ α
ρ + μ + 1 − α

ρ + μ e− ρ + μ a − t −
1 − εα α

1 − εs ρ + κμ − γ e− 1 − εs ρ + κμ t

− ρ + μ μt 1 − α
ρ + μ e− ρ + μ a − t e− 1 − εs ρ + κμ t

+ 1 − εs ρ + κμ μt α
ρ + μ + 1 − α

ρ + μ e− ρ + μ a − t −
1 − εα α

1 − εs ρ + κμ − γ
× e− 1 − εs ρ + κμ t

a > t
.

Parameter c:

The derivative of the general function f (the vector [T, V]) with respect to c is:
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∂f
∂c t, yc = −d∂T

∂c − β ∂V
∂c T + V ∂T

∂c , 1 − εs 0
∞

ρR a, t ∂I
∂c a, t da − V + c∂V

∂c

where yc =

T
V
∂T
∂c
∂V
∂c

.

Furthermore:

∂R a, t
∂c = 0,

∂T
∂c = 1/ βN ,

∂V
∂c = − Ns/c2,

∂I a, t
∂c =

β ∂V
∂c t − a T t − a + V t − a ∂T

∂c t − a e−δa a < t

−d/ βN e−δa a > t
,

The upper right block matrix of the Jacobian is:

fc, 2 × 2′ =

0 0

1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂T
∂c

da 1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂V
∂c

da

and the transposed last two rows of the Jacobian are:
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fc, 3′ tr, fc, 4′ tr :=

−β ∂V
∂c 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂c
∂T da

−β ∂T
∂c 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂c
∂V da − 1

−d − βV 1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂c
∂ ∂T

∂c
da

−βT 1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂c
∂ ∂V

∂c
da − c

,

∂ ∂f
∂c
∂t = 0, 1 − εs

0

∞

ρ ∂R a, t
∂t

∂I
∂c a, t + R a, t

∂ ∂I a, t
∂c
∂t da

Parameter δ:

The derivative of the general function f (the vector [T, V]) with respect to δ is:

∂f
∂δ t, yδ = −d∂T

∂δ − β ∂V
∂δ T + V ∂T

∂δ , 1 − εs 0
∞

ρR a, t ∂I
∂δ a, t da − c∂V

∂δ

where yδ =

T
V
∂T
∂δ
∂V
∂δ

.

Furthermore:

∂R a, t
∂δ = 0,

∂T
∂δ =

∂ 1
N

∂δ c/β,

∂V
∂δ = ∂N

∂δ s/c,
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∂N
∂δ = ρ δ ρ + μ + δ − α + δ ρ + μ + δ − δ α + δ

δ2 ρ + μ + δ 2 ,

∂ 1
N

∂δ = ρ + μ + δ α + δ + δ α + δ − δ ρ + μ + δ
ρ α + δ 2 ,

∂I a, t
∂δ =

β ∂V
∂δ t − a T t − a + V t − a ∂T

∂δ t − a − aV t − a T t − a e−δa a < t

−
∂ 1

N
∂δ dc/β − a βNs − dc / βN e−δa a > t

,

The upper right block matrix of the Jacobian is:

fδ, 2 × 2′ =

0 0

1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂T
∂δ

da 1 − εs 0
t
ρR a, t × ∂I a, t

∂ ∂V
∂δ

da

and the transposed last two rows of the Jacobian are:

fδ, 3′ tr, fδ, 4′ tr :=

−β ∂V
∂δ 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂δ
∂T da

−β ∂T
∂δ 1 − εs

0

t

ρR a, t
∂ ∂I a, t

∂δ
∂V da

−d − βV 1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂δ
∂ ∂T

∂δ
da

−βT 1 − εs
0

t

ρR a, t
∂ ∂I a, t

∂δ
∂ ∂V

∂δ
da − c

,

∂ ∂f
∂δ
∂t = 0, 1 − εs

0

∞

ρ ∂R a, t
∂t

∂I
∂δ a, t + R a, t

∂ ∂I a, t
∂δ
∂t da
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Fig. 1. 
A schematic diagram of the HCV multiscale model and the inclusion of the virus RNA 

replication in the model.
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Fig. 2. 
Datapoints retrieved with the WebPlotDigitizer tool by (Rohatgi, 2018). Data was extracted 

from (Rong et al., 2013) for a patient that was treated with the HCV protease inhibitor 

danoprevir.
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Fig. 3. 
Virions change reaching the steady states with two different values of s. In blue with s = 130 

000 as reported in (Rong et al., 2013). In orange with s = 475573 as computed with Eq. (2b) 

given V  the baseline observed in the patient, shown as a blue x.
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Fig. 4. 
Flow diagram of the strategy with the implemented parameter estimator. The inputs are a list 

of data values dataValues taken at different times dataTimes. It also requires an initial guess 

for the ensemble of parameters parameterValues and the vector of functions f that are needed 

to perform the fitting. The χ2 merit function refers to the error given parameterValues.
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Fig. 5. 
Flow diagram of the strategy with the long-term approximation. The inputs are a list of data 

values dataValues taken at different times dataTimes. It also requires an initial guess for the 

ensemble of parameters parameterValues but instead of a vector of functions, it reduces the 

canonical multiscale models to analytical approximations.
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Fig. 6. 
Flow diagram of the strategy using the method of lines, after which canned methods are 

employed with Matlab. The same list of data values dataValues, times dataTimes and an 

initial guess for the ensemble of parameters parameterValues are required. The system of 

equations this time requires an implementation of the method of lines for the PDEs and the 

integrals inside them.
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Fig. 7. 
Biphasic model fitting example with data taken from (Dahari et al., 2016) of a patient who 

was treated with sofosbuvir combined with ledipasvir.
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Fig. 8. 
Biphasic model fitting example with data taken from (Dahari et al., 2016) of a patient who 

was treated with sofosbuvir combined with daclatasvir.
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Fig. 9. 
Biphasic model fitting example with data taken from (Canini et al., 2017a) of a patient who 

was treated with asunaprevir combined with daclatasvir.
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Fig. 10. 
Fitting the parameter ρ to generated data points.
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Fig. 11. 
Fitting the parameter γ to generated data points.
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Fig. 12. 
Start fit that emanates from data of a patient reported in (Rong et al., 2013)
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Fig. 13. 
End fit that emanates from data of a patient reported in (Rong et al., 2013)
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Fig. 14. 
Comparison between the line fits of the long-term approximation and our method on the 

retrieved data points that are shown.
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Table 1

The 12 parameters of the model.

s (cells mL−1) Influx rate of new hepatocytes

d (d−1) Target cell loss/death rate constant

β (mL d−1 virion−1) Infection rate constant

δ (d−1) HCV-infected cell loss/death rate constant

ρ (d−1) Virion assembly / secretion rate constant

c (d−1) Virion clearance rate constant

α (vRNAd−1) vRNA synthesis rate

μ (d−1) vRNA degradation

κ Enhancement of intracellular viral RNA degradation

γ (d−1) Loss rate of vRNA replication complexes

εs Treatment vs secretion / assembly effectiveness

εα Treatment vs production effectiveness
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Table 2

Default parameters that are used herein. Parameter s comes from Eq. (2b), taking V  as the max Virions value.

α 40 d−1 β 5 × 10−8 mL d−1

c 22.3 d−1 δ 0.14 d−1

μ 1 d−1 d 0.01 d−1

ρ 8.18 d−1 s (V βc + cc)/(βN)cells/mL
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Table 3

Values of the parameters when fitted to the patient digitized data, standard deviation shown between 

parenthesis. The long-term column has the values when the retrieved data points are fitted to the long-term 

approximation equation. The rightmost column contains the fitted parameters values by our method, which 

combines the Levenberg–Marquardt and Rosenbrock numerical schemes. The fixed parameters have the 

values shown in Table 2.

Long-term approximation Rosenbrock+Levenberg–Marquardt

εs 0.60 (0.198) 0.60 (0.992)

εα 0.994 (0.002) 0.994 (0.009)

κ 6.16 (0.947) 6.218 (4.640)

γ(d−1) 0.14 (0.039) 0.139 (0.178)

sum error2 0.53 0.51
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