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Annotation‑free learning 
of plankton for classification 
and anomaly detection
Vito P. Pastore1,2*, Thomas G. Zimmerman1,2, Sujoy K. Biswas1,2 & Simone Bianco1,2

The acquisition of increasingly large plankton digital image datasets requires automatic methods 
of recognition and classification. As data size and collection speed increases, manual annotation 
and database representation are often bottlenecks for utilization of machine learning algorithms 
for taxonomic classification of plankton species in field studies. In this paper we present a novel set 
of algorithms to perform accurate detection and classification of plankton species with minimal 
supervision. Our algorithms approach the performance of existing supervised machine learning 
algorithms when tested on a plankton dataset generated from a custom-built lensless digital device. 
Similar results are obtained on a larger image dataset obtained from the Woods Hole Oceanographic 
Institution. Additionally, we introduce a new algorithm to perform anomaly detection on unclassified 
samples. Here an anomaly is defined as a significant deviation from the established classification. Our 
algorithms are designed to provide a new way to monitor the environment with a class of rapid online 
intelligent detectors.

Plankton are a class of aquatic microorganisms, composed of both drifters and swimmers, which can vary signifi-
cantly in size, morphology, and behavior. The exact number of plankton species is not known, but an estimation 
of oceanic plankton puts the number between 3,444 and 4,3751. Plankton are at the bottom of the aquatic food 
chain and marine phytoplankton are estimated to be responsible for over 50% of all global primary production2 
and play a fundamental role in climate regulation. Thus, changes in plankton ecology may have a profound 
impact on global climate, as well as deep social and economic consequences. It seems therefore paramount to 
collect and analyze real time plankton data to understand the relationship between the health of plankton and 
the health of the environment they live in. Traditionally, plankton are surveyed using either satellite remote sens-
ing, where leftover biomass is inferred indirectly through measurement of total chlorophyll concentration, or 
with large net tows via oceanic vessels3, with subsequent microscopic analysis of the preserved samples. Satellite 
imaging methods are extremely accurate in terms of global geographic association and very useful for broad 
species characterization but may present practical challenges in terms of accuracy of the performed counts, spe-
cies preservation and fine-grained characterization. The analysis of preserved samples, instead, allows for fine 
grained classification and accurate counting with narrow spatial sampling. More recently, real time observation 
of plankton species has been made possible by novel instruments for high-throughput in situ autonomous and 
semi-autonomous microscopy4. Such high-resolution imaging instruments make it possible to observe and study 
spatio-temporal changes in plankton morphology and behavior, which can be correlated with environmental 
perturbations. Sudden or unexpected changes in number, shape, aggregation patterns, population composition 
or collective behavior may be used to infer anomalous conditions related to potentially catastrophic events, 
either natural, like harmful algal blooms, or man-made, like industrial run offs or oil spills. Intelligent systems 
trained on curated data could help establish the characteristics of a healthy ecosystem and detect perturbations 
that may represent potential threats. More importantly, given the diversity of plankton morphology and behavior 
across species and the growing but still limited availability of high-quality labeled data sources, there is a need 
for algorithms which require minimal supervision to classify and monitor plankton species with a performance 
approaching that of supervised algorithms. Moreover, it is also desirable for such algorithms to aid the discovery 
of new plankton classes, which cannot generally happen with supervised classification techniques. In this paper 
we propose a set of novel algorithms to reliably characterize and classify plankton data. Our method is based 
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on an unsupervised approach to overcome the limits of supervised machine learning techniques and designed 
to dynamically classify plankton from instruments that continuously acquire plankton images. First, we evalu-
ate the performances of our algorithms on a mixture of ten freshwater plankton species imaged with a lensless 
microscope designed for in situ data collection5. Next, we evaluate the performance of our algorithms on an 
image dataset extracted from the Woods Hole Oceanographic Institution (WHOI) plankton database6. Machine 
learning methods are becoming a popular way to characterize and classify plankton7–14.

In15, the authors developed an automated analysis system for the identification of phytoplankton using neural 
networks. A recent paper16 explores the use of Convolutional Neural Networks to classify species of zooplankton, 
by introducing an architecture named ZooplanktoNet. The authors claim that their customized architecture can 
reach higher accuracy compared to standard deep learning configurations, like VGG, AlexNet, CaffeNet, and 
GoogleNet. In17 and 18, the authors use an SVM based algorithm to classify species with high accuracy from the 
WHOI dataset. In a recent Kaggle competition contest (https​://www.kaggl​e.com/c/datas​cienc​ebowl​), the authors 
developed a deep learning architecture named DeepSea19 to perform accurate classification of plankton collected 
with an underwater camera. In20 the authors combine features obtained with multiple kernel learning to achieve 
higher accuracy than classic machine learning algorithms. However, all these advancements use supervised 
learning algorithms that rely on large labeled training sets which are very difficult and time consuming to create. 
Although recent computational advances may reduce the annotation burden for large biological datasets21, a high-
performance unsupervised learning algorithm can provide an alternative for real time unbiased in situ analysis.

Results
Plankton classifier.  We developed an unsupervised customized pipeline for plankton classification and 
anomaly detection, that we named plankton classifier. The pipeline, shown in Fig. 1, is tested on a collection of 
videos containing ten freshwater species of plankton captured with a lensless microscope5. Each video is ten sec-
onds long and contains one or more species. As the method is unsupervised, no labels are provided to the clas-
sifier during training. The plankton classifier consists of four modules: an image processor, a feature extractor, 
an unsupervised partitioning module, and a classification module. The image processor examines each frame of 
video and generates cropped images of each plankter. The feature extractor examines each plankter image and 
generates a collection of features. The unsupervised partitioning module clusters samples by features into classes. 
The classification module comprises of a neural network-based anomaly detector to both perform classification 
based on the inferred labels and provide information to extend the database in an unsupervised manner. A sam-
ple is considered an anomaly with respect to a class if the extracted features are significantly different from the 
class average, as described below. The classification module also includes a standard neural network classifier, for 
performance comparison. See section materials and methods for a description of the modules in more details, 
along with the methods considered and tested that led to our final design.

Unsupervised partitioning performance.  First, the plankton classifier examines each frame of an 
acquired video and generates cropped images of each plankter A set of 131 features is then extracted, as described 
in Materials and Methods. The unsupervised partitioning module uses such features to place each plankton sam-
ple into one of Z classes. To automatically obtain the number of classes Z from the dataset, we have designed a 
custom algorithm based on Partition Entropy (PE). To ensure high confidence for the estimation, we perform 
ten iterations taking the mode of the resulting estimated number of clusters distribution as the predicted Z (see 
Materials and Methods). We evaluated the robustness of the implemented method on random subsets of the 
lensless dataset with different sizes, ranging from three to ten species. The box plot indicating the distribution for 
the estimated number of clusters Z among ten iterations is shown in Fig. 2e. The inferred number of classes, Z, is 
identified with high confidence in every case. A comparison of the performance of this algorithm against other 
existing methods is reported in the Supporting Information. Once we have obtained the number of clusters, we 
compared three clustering algorithms (see Supporting Information): k-Means, Fuzzy k-Means and Gaussian 
Mixture Model (GMM). Clustering accuracy is evaluated using purity (see materials and methods). The Fuzzy 
k-Means algorithm reaches a purity value of 0.934 (see Fig. 2a, b), outperforming the standard k-Means (purity 
value = 0.887) and GMM22 (purity value = 0.886). A posterior analysis of the results of the GMM reveals that this 
algorithm is not able to distinguish between Blepharisma americanum and Paramecium bursaria, due to their 
nearly identical appearance in the acquired videos. The Fuzzy k-Means algorithm is able to match the fuzziness 
exhibited by the plankton classes in parameter space which explains the lower accuracy of the crisp algorithms 
(k-Means and GMM). Therefore, we use the Fuzzy k-Means for our unsupervised classifier. A potentially impor-
tant effect on the performance of any clustering algorithm is the class imbalance. The lensless microscope dataset 
is composed of 500 training samples for each of the ten considered species. To evaluate the impact of class imbal-
ance, we performed the following experiment: We have built a dataset where the number of images of a species is 
a fraction (between 10 and 80%) of the number of images of the other species. We then evaluate the purity of this 
dataset and repeat the procedure for all the other species. Figure 2f reports the average performance over the ten 
datasets obtained as described above, as measured by the purity. The algorithm is always able to infer the correct 
number of species, without any overlap, with a minimum average purity value of 0.74 ± 0.09 (corresponding to 
80% of class imbalance) and a maximum average purity value equal to 0.90 ± 0.08 (corresponding to 10% of class 
imbalance), with a maximum purity value of 0.972. This result shows that our pipeline can accurately cluster the 
data even in the case of strong class imbalance.

Algorithm performance on features extracted using deep feature extraction.  Feature selection 
is an important part of any unsupervised learning pipeline. Indeed, hand engineering features introduces a 
degree of arbitrariness, which can be removed using a method of automated feature selection. Deep feature 
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extraction, which consists in training a neural network architecture on either in- or out-of-domain data and use 
the last layer before prediction to extract features9,23, is one such method. We trained the model described in 
section Convolutional Neural Network (CNN) for deep features extraction using the ten classes included in our 
lensless microscope dataset. The model reached 99% of training accuracy, 99% of validation accuracy and 98% 
of testing accuracy on the dataset obtained using our lensless microscope. Finally, the 128 neurons from the fully 
connected layers preceding the output are extracted and used as features for our pipeline. The PCA computed for 
the lensless microscope testing set among these features can be visualized in Fig. 2g. Figure 2h shows the results 
of the unsupervised partitioning procedure. The underlying structure of the data set is very accurately captured, 
with a purity value of 0.98. Despite the fact that the accuracy obtained using deep feature extraction is slightly 
higher than the one obtained using the hand engineered features (purity of 0.980 vs. 0.934), to preserve the 
unsupervised nature of the pipeline, we decide to use the interpretable features described in Table 1. Establishing 
a relationship between the morphology and the environmental perturbation can be achieved by using a subset 
of the hand-engineered features in Table 1 (e.g., the shape-based features or the color information), regardless of 
the feature extraction method. In fact, as shown in supplementary material (see Fig. S13), the whole set of hand 

Figure 1.   Schematic overview of the pipeline used to detect and classify plankton species with minimal 
supervision. Our preferred embodiment is represented by the red lines. 
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engineered features is only needed to maximize the classification accuracy. On the other hand, for the purpose 
of organism classification, the customized deep feature extraction algorithm we implemented is a very viable 
alternative to the one proposed.

Classification.  Supervised classifier.  At this stage of the pipeline, all samples have been assigned labels 
which have no correspondence to the actual plankton classes. We use the same trained clustering algorithm to 
classify the test samples, assigning each sample to the closest centroid. Using the trained Fuzzy k-means algo-
rithm we reach a testing accuracy of 89%. Alternatively, one can use the labels obtained by our unsupervised par-
titioning algorithm to train a supervised classifier. We evaluated two algorithms: An Artificial Neural Network 
(ANN) and a Random Forest (RF) classifier. Our ANN architecture consists of a collection of classifiers, each 
trained to detect one plankton class. The RF approach consists in a set of decision trees to separate the training 
step samples into the correct classes.

For comparison, a simple ANN classifier is trained using the labels provided by the unsupervised partitioning 
algorithm. The ANN is a massive parallel combination of single processing units which can learn the structure 
of the data and store the knowledge in its connections24. See Materials and Methods for further information and 
for a detailed description of the implemented architecture. The network is very shallow, providing an efficient 
feature selection process. The ANN classifier reaches a validation accuracy of 99% and a testing accuracy of 94.5%. 
Figure 3c,d report the ROC curves and the confusion matrix obtained by testing the trained ANN classifier on 
our ten species plankton dataset. The ROC curves are close to a perfect classifier and the confusion matrix is 
almost diagonal with minor overlap between two pairs of species: Blepharisma americanuum-Paramecium bur-
saria and Spirostomum ambiguum–Stentor coerouleus. This misclassification is primarily due to the similarity in 
the shape, size and texture of the two pairs of species, influencing both the unsupervised training clustering and 
the subsequent testing of the supervised classifier.

An alternative classifier method employs a Random Forest (RF) approach, a popular ensemble learning 
method used for classification and regression tasks.

We train an RF algorithm using the labels provided by the unsupervised classifier and reach an accuracy of 
94%. For comparison, we train the same RF algorithm using the actual labels (ground truth) of the training set 
and reach an accuracy around 98%, proving that our unsupervised classification approach performs comparably 
well with respect to the correspondent supervised approaches for the trained classifier. Since the ANN performs 
marginally better than the RF classifier, we propose the former for a pipeline.

Anomaly detector.  When deployed in the field, microscopes will encounter species that have never been seen 
before, so it is essential that such samples are detected and correctly identified as anomalies. For a given class, 
a sample is considered an anomaly if the sample features are significantly different from the feature average for 
the class. Algorithms for anomaly detection based on the separation of the features space have been success-
fully used to identify the intrusion in computer networks for security purposes25. Two anomaly detectors are 
implemented and compared; a state of the art one-class SVM and a customized neural network we call a Delta-
Enhanced Class (DEC) detector that combines classification with anomaly detection. The one-class SVM algo-
rithm uses a kernel to project the data onto a multidimensional space and can be interpreted as a two class SVM 
assigning the origin to one class and the rest of the data to another class. It then solves an optimization problem 
determining a hyperplane with maximum geometric margin, i.e., a surface where the separation between the 
two sets of points is maximal, that will be used as decision rule during the testing step.

A customized one-class SVM is implemented by normalizing the testing samples using the training data 
belonging to a single class. In this way, there will be a significant difference in the absolute value obtained for 
the anomaly (out-of-class) samples compared to the in-class samples, improving the accuracy of the SVM. The 
one-class SVM so designed reaches an average testing accuracy of (93.5 ± 6.0) %, with high accuracy in both 
anomaly detection and classification.

We now describe an alternative ANN-based approach that simultaneously performs classification and anom-
aly detection. As demonstrated above, a single layer ANN is able to satisfactorily classify plankton data from 
our in-house dataset. However, to effectively approach the anomaly detection step, we designed a deep neural 
network called Delta-Enhanced Class (DEC) detector (see materials and methods for further details). One DEC 

Figure 2.   Unsupervised clustering results. a,b We performed a PCA analysis on the lensless digital microscope 
dataset to provide a graphical representation of the data distribution into the features space. We plot the first 
three principal components that account for ~ 67% of the total variance. We assigned different colors to the 
different plankton species. a Species are assigned using ground truth labels. b Species are assigned to the most 
overlapping cluster resulting from the unsupervised partitioning procedure. c,d Same analysis and procedure 
applied on the WHOI dataset. c Species are assigned using ground truth labels. d Species are assigned to the 
most overlapping cluster, resulting from the unsupervised partitioning procedure. e Distribution of number of 
clusters computed using our PE algorithm for a random subset of species in the lensless microscope dataset. 
Results are reported for different initial number of species. f Effect of class imbalance. For each of the ten 
species included into the lensless microscope dataset, we simulated class imbalance by increasing the number of 
images available to the clustering algorithm for the considered species. g,h PCA analysis on the lensless digital 
microscope dataset provides a graphical representation of the data distribution into the deep features space. 
The unsupervised partitioning using deep features is highly accurate. The first three principal components are 
plotted and different colors to the different plankton species are assigned. g Species are assigned using ground 
truth labels. h Species are assigned to the most overlapping cluster resulting from the unsupervised partitioning.
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detector must be trained for each of the training species. Therefore, we train ten DEC detectors, one for each of 
the species of plankton identified in the unsupervised learning step. This procedure affords excellent accuracy 
on both classification and anomaly detection, on both real and simulated plankton data (see Fig. 4), with an 
average testing accuracy on real data of 98.8 ± 2.4%, an average anomaly detection testing accuracy of 99.2 ± 0.7% 
and an average overall testing accuracy of 99.1 ± 0.9% (see Fig. 4b for details). The confusion matrices in Fig. 4a 
demonstrate the discrimination power of our algorithm. The DEC detector outperforms the alternative one-class 
SVM classifier in both supervised (average accuracy equal to 95%) and unsupervised (average accuracy equal to 
93.5%) configurations. It is worth reporting that the unsupervised one-class SVM reached a minimum overall 
accuracy of 79%, compared to 97.2% for the DEC detector (minimum values correspond to Paramecium bursaria 
detector). To test the overall performance of our method, we produce a dataset of surrogate plankton organisms. 

Table 1.   List of morphological features extracted from the processed images. See Supporting Information for 
a detailed explanation.

Class Number Description

Geometric features 14 Area(pixels), Area (0-th order moment), perimeter, eccentricity, rectangularity, roundness, shape factor, width and height (minimum fitting 
rectangle), circularity, major and minor axis (fitting ellipse), equivalent diameter, convexity

Hu moments 7 Hu moments computed from normalized central image moments

Zernike moments 25 Zernike moments up to order 5

Image Intensity Features 8 Blue/green channels ratio, red/green channels ratio, red/blue channels ratio, gray levels histogram statistical features (skewness, kurtosis, 
mean value and standard deviation, entropy)

Haralick features 13 The first 13 Haralick descriptors computed from the Gray Scale Co-occurrence Matrix (GSCM)

Local binary patterns 54 Local binary patterns summarize structures of the image comparing each pixel to its neighborhood

Fourier descriptors 10 Fourier descriptors are contour-based features invariant with respect to rotation, translation and scaling

Figure 3.   Feature space representation and classification performances. a, b Multidimensional visualization of 
the geometric subset of the ten species in the lensless microscope dataset, obtained using the following methods 
(see Supporting Information): a Andrew’s curve. b Parallel coordinates. c ROC curves obtained for the neural 
network classifier trained on the labels provided by the clustering algorithm for the lensless microscope dataset. 
d Corresponding confusion matrix.
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For each different species, we test the corresponding DEC detector architecture using a surrogate species cre-
ated with a feature-by-feature weighted average of all the species in our dataset. Starting with a uniform weight 
distribution, we increase the weight for the species corresponding to the trained DEC detector architecture up 
to 0.9 (steps of 0.1), obtaining 9 different surrogate species (see Fig. 4d for an average parallel coordinates plot, 
showing the resulting distributions for the species Spirostomum ambiguum). The aim of this robustness test is to 
simulate the acquisition of an unknown species, whose features are increasingly closer to the features of the class 
correspondent to the detector, up to a maximum of 90% similarity. As Fig. 4e shows, our classifier can recognize 
the synthetic species as an anomaly with an average accuracy higher than 98% if the similarity between the 
synthetic and the real species is up to 30%, and it can maintain an average accuracy of over 82.6% if the species 

Figure 4.   Delta-enhanced class detector performances and results. a Confusion matrix corresponding to each 
of the ten neural networks trained on the lensless microscope dataset. b Overall testing accuracy performances 
for each of the ten testing classes. The number used on x axis to label each species correspond to the species 
number in panel a. c,d DEC detector anomaly detection performances tested on in silico generated data. c 
Testing accuracy performances for varying percentage values of in silico species similarity with the trained 
species. d Example of average features space parallel coordinates plot for the in-silico species obtained using 
the species Spirostomum Ambiguum. By increasing the similarity, the features of the surrogate species approach 
the features of the real species, resulting in an increased average anomaly misclassification rate, decreasing the 
overall accuracy levels. e Detection of unknown species. The panel shows the percentage of samples detected by 
all the DEC detectors as anomaly, when removing one training species from the set, for each of the ten training 
species. These numbers reflect the level of accuracy of the proposed algorithm in detecting unseen species. The 
number used on x axis to label each species correspond to the species number in panel a.
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similarity is up to 50%. Accuracy of anomaly detection severely decreases if the species similarity is over 50%, 
reaching the minimum value of 37.5%.

Plankton classifier performance on the WHOI dataset.  The WHOI provides a public dataset com-
prising millions of still monochromatic images of microscopic marine plankton, captured with an optical Imag-
ing FlowCytobot (https​://mclan​elabs​.com/imagi​ng-flowc​ytobo​t/). To use this dataset as a benchmark to test our 
unsupervised classifier, we extract a set of 128 features from a collection of 40 species of plankton (100 images 
per species, randomly selected), using both the segmented binary image and the portion of the gray-scale image 
containing the plankton cell body. A full description of the species selection process is reported in the Support-
ing Information. The features set is identical to the one used for the lensless microscope dataset, except for the 
absence of three-color features, as the lensless microscope is a color-based sensor, while the Imaging FlowCyto-
bot is monochromatic. Figure 2c, d show the results of our pipeline applied on the normalized features set. The 
algorithm reaches an overall purity value of 0.715 for the 40 WHOI species that we selected. The ability of our 
pipeline to distinguish between inter-species plankton morphology can be further observed comparing Fig. 2c, 
which represents the PCA space corresponding to a subset of 18 of the 40 species for the ground truth dataset, 
and Fig. 2d, which represents the corresponding PCA space resulting from the unsupervised partitioning algo-
rithm. A complete PCA representation for the 40 species can be found in Supporting Information. We trained 
a random forest algorithm using the labels provided by the unsupervised partitioning with a train-test ratio of 
80:20, obtaining a classification accuracy around 63%. We have also trained a supervised random forest algo-
rithm using the ground truth labels on the extracted features, obtaining a classification accuracy around 79%. As 
a comparison, in17 the authors obtained a classification accuracy around 87% on a fewer species subset extracted 
from the WHOI dataset (22 species), adopting a supervised SVM-based approach. In20, the authors obtained a 
classification accuracy around 88% using features obtained with multiple learning kernels, on the same dataset.

The plankton classifier can reveal unseen species.  We have demonstrated that our DEC neural net-
works are able to classify a sample as either a training class (i.e., the plankton species used to train the detec-
tor) or as an anomaly. If a sample is discarded by all the implemented detectors, it could either represent an 
intra-species anomaly (i.e., species included into the training set) or a sample belonging to an unseen species 
(i.e., species not included in the training set). The former represents the basis for using the proposed pipeline 
for real-time environmental monitoring, and its implications are discussed in the next section. We now test 
the potential of our pipeline to detect new species. We remove one class from our unsupervised partitioning 
ensemble set, consider it as never before seen and compute the number of testing samples detected as anomaly 
by all the remaining DEC detectors. This number indicates the algorithm accuracy in detecting new species. We 
repeat the procedure for each class. The average detection accuracy is 98.3 ± 10.1% (see Fig. 4e), demonstrating 
the ability of the pipeline to detect the presence of a new species. If two or more unseen species are detected, they 
will be stored as anomalies. As this group of anomalies grows, a human expert may determine offline the actual 
labels for these new species, thus allowing a DEC detector to be trained for each new species. Alternatively, the 
samples corresponding to unseen species may be clustered and classified by the unsupervised partitioning step 
of our pipeline, reducing the number of new species that must be examined by a human.

Discussion
The plankton classifier described in this paper provides the foundation for a robust, accurate and scalable mean 
to autonomously survey plankton in the field. We have identified interpretable and non-interpretable image 
features that work with our algorithms to perform an efficient clustering and classification on plankton data 
using minimal supervision and with a performance accuracy comparable to supervised learning algorithms17. 
Instead of labeling thousands of samples, an expert need only identifying one member of cluster to label all the 
samples of the cluster.

We introduced a neural network that performs classification by learning the shape of the feature space and 
uses this information to identify anomalies. The network uses a novel unbiased methodology of feature-to-
feature comparison of a test sample to a random set of training samples. While most of the existing classifica-
tion methods require various degrees of user input, our method is automated, without sacrificing performance 
accuracy or efficiency.

All features the plankton classifier relies upon are extracted from static images. However, our custom lensless 
microscope captures 2D and 3D dynamic of plankton. While this dynamic information is not considered in the 
analysis presented here, motion data can increase the dimensionality of the feature space, by adding spatio-
temporal “behavioral” components, and may improve the performance of classifiers and anomaly detectors. This 
is particularly valuable in cases where species have considerable overlap in morphology feature space, as seen 
with Blepharisma americanuum and Paramecium bursaria, and Spirostomum ambiguum and Stentor coerouleus, 
shown in the confusion matrices in Fig. 3d. Currently, existing large plankton datasets, like the WHOI used in 
our validation experiments, are based on static images, but as the cost of video-based in situ microscopes drops 
and their deployment increases, we believe datasets that include spatio-temporal data will become available and 
the use of such features will gain importance.

Deploying smart microscopes capable of real-time continuous monitoring will give biologist an unprec-
edented view of plankton in situ. The adoption of an unsupervised unbiased pipeline is a significant step ahead 
in the development of a real-time “smart” detector for environmental monitoring. Several high-resolution acqui-
sition systems for real-time plankton imaging already exist26 and could adopt the pipeline proposed into this 
paper. Figure 5 shows a high-level representation of a continuous environmental monitoring system in the form 
of a flow chart, showing an example of how the detector could be coupled to the computational pipeline we 

https://mclanelabs.com/imaging-flowcytobot/
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designed. Once the descriptors have been extracted from the acquired videos, it is possible to use them to build 
a set of DEC detectors. It is important to stress that the size of the data likely to be acquired, or already present 
in the databases, makes neural networks the obvious choice to carry out the analysis due to their unsurpassed 
scalability. Our newly designed and customized DEC detector neural architecture for plankton classification 
and anomaly detection is a functional and efficient example of such algorithm. Moreover, neural algorithms can 
infer non-linear relationships between features (input) and correlate them with the class description (output) 
without making any assumptions on the underlying learning model. Hence, the classification depends only on 
the extracted features. Every time the network identifies a species belonging to a specific class, the average set 
of morphological features is then updated, thereby further qualifying the class morphology phase space. If an 
anomaly is detected, it may be sent to an expert for a supervised examination. The expert will determine whether 
that sample could be a species not represented in the training set, or if it belongs to an existing training class, 
but its morphological features deviate significantly from the average features space of the corresponding class. 
In the former case, a new smart detector will be trained offline, so that the training set is dynamically expanded, 
and the system will provide a continuous monitoring of the aquatic environment using the human expert-in-
the-loop paradigm. In the latter case, the identified anomalies may represent local environmental perturbations, 
either natural or man-made. Further work is needed to assess the validity of such hypothesis. An additional 
re-training step may be necessary to update the algorithms. Our pipeline is based on local analysis using a low 
powered device, capable of image capture and processing, classification and anomaly detection. Coupling such 
platform with a local (laptop, server) or cloud-based system where the training step may occur could provide 
the flexibility and resources needed to close the loop and generate the training data the low power platform can 
use for classification. Examples of systems that use this paradigm are already present in the literature27, and we 
hope the availability of computational paradigms like the one we propose may increase the research in the field. 
Moreover, a desirable property of an unsupervised learning pipeline for classification is to be able to function 
across modalities of data acquisition. While our algorithms are optimized for the experimental apparatus we have 
developed, our results support wider applicability to datasets acquired with different instruments, with an accu-
racy not too far below more computationally taxing supervised machine learning methods. A high-resolution 
plankton acquisition system placed in the water and powered with our unsupervised pipeline may enable the 
development of real time continuous smart environmental monitoring systems that are fundamentally needed 
to stakeholders and decision-making bodies to monitor plankton microorganisms and, consequently, the entire 
aquatic ecosystem28.

Finally, it is interesting to consider if such unsupervised approach can be utilized for different data types, thus 
widening the potential applicability and interest of the technique. While an extensive analysis of the performance 
of our pipeline on diverse set of data is beyond the scope of this work, it is worth commenting that the algorithms 
we use are general and pose no evident drawback to their application to other cell types. Particularly, the features 
our classifier uses to cluster the images do not include anything specific to plankton species (e.g. detection and 
estimation of number of flagella or other organelles.) Moreover, the proposed Deep Feature extraction method 
is even less dependent on the kind of data under study and may increase the applicability to other cell types. 
Thus, we expect the method to be potentially useful to other biological imaging fields.

Figure 5.   Proposed real-time smart environmental monitoring pipeline.
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Material and methods
Description of the experimental apparatus and comparison with WHOI acquisition.  The lens-
less microscope5 captures shadows of plankton swimming on top of an image sensor (OV5647, 3.76 × 2.74 mm, 
2,592 × 1,944 pixels). Build with commodity components, the microscope does not require any optics or focus-
ing adjustments, simplifying the construction, operation and cost of the device. To construct the microscope, 
the lens of a Raspberry Pi Camera was removed and replaced with PVC card (0.8 mm thick). A 12 mm square 
hold punched in the center of the PVC card provided a well for plankton samples. A single white LED was 
mounted at the top of a 100 mm black 38 mm diameter PVC tube, approximating a point light source, casting 
shadows of plankton onto the image sensor. Videos of plankton samples were recorded at HD 1,080p resolution 
(1,920 × 1,080 @ 30 fps).

The WHOI dataset was created using a submersible flow cytometer29 The device produces shadow images 
(1,380 × 1,034) of individual plankton as they flow through a quartz imaging vessel. The flow cytometer produces 
higher resolution images than the lensless microscope. The flow cytometer illuminates plankton with a one-
microsecond flash to minimize blurring and uses optical lenses to focus light rays onto an image sensor. The len-
less microscope records video with continuous light source (non-strobed) with a minimum shutter speed of 200 
microseconds. Diffraction is exacerbated by the distance between the plankton and the image sensor (~ 2 mm). 
The main advantage of the lensless microscope is cost, less than $100 in materials, compared to ~ $150,000 for 
a commercial flow cytometer30.

Description of the pipeline.  The proposed unsupervised pipeline (i.e., the plankton classifier) shown in 
Fig. 1, consists of four modules: an image processor, a feature extractor, an unsupervised partitioning module 
and a classification module. In the following paragraphs we provide a description of the modules in more details, 
along with the methods considered and tested that led to our final design.

Image processing.  Each video consists of ten seconds of color video (1,920 × 1,080) captured at 30 frames 
per second. Background subtraction is applied to each frame to detect the swimming plankton in the image. A 
contour detector is applied to the processed image to create a bounding box around each plankter. Because of 
instrument design, organisms can swim in and out of the field of view (FOV) during acquisition. Our algorithm 
automatically selects organisms which are fully contained inside the FOV by checking whether the bounding 
box touches the borders of the FOV. In this way, the images we obtain will be only of fully visible organisms. 
The resulting cropped image is then saved. From this collection of images, a training set of 640 images (500 
training and 140 testing) is selected for each class. An image processor module for static images has also been 
implemented for benchmarking the plankton classifier on existing plankton datasets (e.g., the WHOI dataset; 
See Supporting Information for further details.).

Feature extraction.  For each plankter image, 131 features are extracted from four categories: geometric 
(14), invariant moments (32), texture (67) and Fourier descriptors (10). Geometric features include area, eccen-
tricity, rectangularity and other morphological descriptors, that have been used to distinguish plankton by shape 
and size17. The invariant Hu31 (7) and Zernike moments32 (25) are widely used in shape representation, recogni-
tion and reconstruction. Texture based features encode the structural diversity of plankton. Fourier Descriptors 
(FD) are widely used in shape analysis as they encode both local fine-grained features (high frequency FD) and 

Figure 6.   Deep features extraction. Deep CNN implemented for the purpose of deep features extraction. 
The blue layers represent convolutional layers, the grey ones represent a max pooling 2D operation. The fully 
connected layer with 128 neurons output has been used as feature set to the subsequent modules in our pipeline.
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global shapes (low frequency FD). A full list of the features we have selected is reported in Table 1. These features 
span a 131-dimensional space, capturing the biological diversity of the acquired plankton images. Figure 3a, b 
demonstrate as an example, the discriminating power of the geometrical features for the ten evaluated species.

Convolutional neural network (CNN) for deep features extraction.  We implemented a deep CNN 
using eight convolutional layers and two fully connected layers, as described in Fig. 6. We customized our archi-
tecture to be invariant with respect to rotation, similar to what has been done in19. Each input sample is rotated 
four times at multiples of 90 degrees, and all the tensors resulting from the features extraction module are con-
catenated and used to train the fully connected layers. The neural network has been trained for 60 epochs, using 
stochastic gradient descent with learning rate equal to 10−5, using data augmentation by means of translation, 
zooming, and rotation. It is worth noticing that the implemented rotational invariance module actually performs 
a data augmentation operation, and it is indeed useful when partial training data are available.

Unsupervised partitioning.  Partition entropy (PE).  The partition entropy (PE) coefficient is defined as:

The coefficient is computed for every j in [0, K] and takes values in range [0, log(K)]. The estimated number 
of clusters is assigned to the index j* corresponding to the maximum PE value, PE(j*). The lower the PE(j*), 
the higher the uncertainty of the clustering. We repeat this procedure ten times and obtain a distribution of j*. 
Finally, the estimation of the number of clusters Z is the mode of this distribution.

Clustering accuracy.  Clustering accuracy is evaluated using purity:

where the class k is associated to the cluster j with the highest number of occurrences. A purity value of one 
corresponds to clusters that perfectly overlap the ground truth. Purity decreases when samples belonging to the 
same class are split between different clusters, or when two or more clusters overlap with the same species. We 
have implemented a purity algorithm capable of checking for these occurrences and automatically adapt to the 
correct number of non-overlapping clusters (see Supporting Information).

Classification algorithms.  Random forest.  Random forests (RF) is a popular ensemble learning method33 
used for classification and regression tasks, introduced in 2001 by Breiman. Random forests model providing 
estimators of either the Bayes classifier or the regression function. Basically, RF work building several binary 
decision trees using a bootstrap subset of samples coming from the learning sample and choosing randomly at 
each node a subset of features or explanatory variables34. Random forests are often used for classification of large 
set of observations. Each observation is given as input at each of the decision tree, which will output a predicted 
class. The model outputs the class that is the mode of the class output by individual trees35.

Let us consider a set of observations x1, x2, …, xn, with x ∈ Rm . The decision tree is designed as follows: we 
extract N times from the set of training observations (with replacement), for each of the total number of decision 
tree. We specify the number of features m* to consider for the tree growing, with m* ≪ m. For each of the nodes in 
the tree, the algorithm randomly selects m* features and calculates the best split for that node. The trees are only 
grown and not pruned (as in a normal tree classifier36. The split’s aim is to reduce the classification error at each 
branch. In detail, the algorithm considers an entropy-based measure trying to reduce the amount of entropy at 
each branch, selecting, with such a procedure, the best split. A possible choice is the Gini index:

where Gm is the Gini Index for branch at level m in the decision tree, and pim is the proportion of observations 
assigned to class i. Minimizing Gm, means to decrease the heterogeneity at each branch, i.e., a best split will 
correspond to a lower number of class in the children nodes. The algorithms continue in growing trees until 
convergence on the entropy-based on the generalization error35.

Neural networks.  An artificial neural network (or multi-layer perceptron) is a massive parallel combina-
tion of single processing unit which can acquire knowledge from environment through a learning process and 
store the knowledge in its connections24. Classification is one of the most active research and application areas 
of neural networks. In this work we used an artificial neural network to build a classifier able to predict the spe-
cies for each observation extracted using the shadow microscope. Figure 2 shows the developed architecture. 
The network is very shallow, with two hidden layers of 40 neurons and an output layer with as much neurons 
as the number of species to classify. As reported in the main text of this manuscript, we used a training dataset 
with 10 species, thus the output layer is made up of k neurons, where k is the number of clusters obtained using 
the unsupervised clustering. As Fig. 7 shows, the developed NN uses RELU activation function and dropout to 
reduce the overfitting. The network was trained using 200 epochs, Root mean square as an optimizer, a learning 
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rate λ = 0.005 and categorical cross-entropy as loss function. The training requires 50 s on a MAC book PRO, 
core i7—2.9 GHz, solid state disk and 16 GB of RAM. The neural network has been implemented using KERAS, 
a powerful high-level neural network API running on top of TensorFlow.

Anomaly detection.  One class SVM.  We adopted the one class SVM described by Scholpoff in37. Let us 
consider a set of N observations: 

{

xi , yi
∣

∣ ∈ Rm, yi = +1
}

 . Where xi is a m-dimensional real vector and yi =  + 1 
simply imply that the set contains normal observations belonging to a certain class. The one-class SVM is a clas-
sification algorithm returning a function which takes + 1 in a “small” region capturing most of the data points, 
and − 1 elsewhere. Let φ be a feature map that map our observations set xi, into an inner product space such as 
the inner product for the image of φ can be evaluated using some simple kernel:

The strategy of the one class SVM is to map the data into the kernel space and separate the data from the origin 
with maximum margin, defining a hyperplane as:

Meaning that we want to maximize the ratio ρ
‖w‖ , corresponding to the hyperplane’s distance from the origin. In 

order to solve this maximization problem, we have to solve a quadratic problem:

where φ(x) is the feature mapping function that maps observations x into a feature space, ξi is a slack variable for 
outlier that allows observations to fall on the other side of the hyperplane ν ∈ [0, 1) is a regularization parameter 
determining the bounding for the fractions of outliers and support vectors.

If w and ρ solve this problem, then the decision function:

will be positive for most of the training observation, while w will be still small. The parameter influences the 
trade-off between the reported properties. To solve the quadratic form, we can use Lagrangian multipliers, 
obtaining:

and set the derivatives with respect to w, ξ and ρ and expanding using the kernel expression yields:
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Figure 7.   ANN architectures implemented for classification based on the extracted features.
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We used a Radial Basis Function kernel (RBF):

and then the original quadratic problem is solved substituting Eq. 9 into Eq. 8, yielding:

under the constraint of Eqs. (9b) and (9c).
We finally use the support vectors xi to recover the parameter ρ needed to compute the hyperplane:

DEC detectors.  We designed a deep neural network that we named Delta-Enhanced Class (DEC) detec-
tor for the purpose of anomaly detection. The DEC detector’s architecture is represented in Fig. 8, and shows a 
2-neurons output, indicating that the sample is a member of the class or is an anomaly (i.e. not a member of the 
class). For each observation, we train such neural network with the actual features vector and extract randomly 
select a set of points from the training class in our dataset. For each of these selected points, we define a custom 
network layer (delta layer) that computes the difference in absolute value (as a vector, feature by feature) between 
the actual observation and the extracted random set. The vector of differences and the actual observations are 
used as inputs to the neural network (Fig. 8), which assigns the proper weights to either one during training. The 
set of points to select is a hyperparameter which needs to be tuned. Through testing we determine that 25 points 
is the optimal tradeoff accuracy and computational cost.

Code availability
The full source code accompanying this paper has been made available under EPL license at the following link: 
https​://githu​b.com/sbian​co78/Unsup​ervis​edPla​nkton​Learn​ing.
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Figure 8.   Schematic representation of DEC detector architecture.
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