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ABSTRACT Antimicrobial resistance is an ongoing issue in the treatment of typhoid
fever. Resistance to first-line antimicrobials and extensively drug resistant (XDR) Sal-
monella Typhi isolates in Pakistan have left azithromycin as the only remaining effec-
tive oral treatment. Here, we report the emergence of organisms with a single point
mutation in acrB gene, implicated in azithromycin resistance, in a S. Typhi isolate
from Pakistan. The isolation of this organism is worrisome and highlights the signifi-
cance of the introduction of typhoid conjugate vaccine in South Asia.

IMPORTANCE The emergence of XDR Salmonella Typhi in Pakistan has left azithro-
mycin as the only viable oral treatment option. Here, we report the detection of an
azithromycin resistance-associated mutation in one S. Typhi isolate. This finding is
important because any possible spread of azithromycin resistance in S. Typhi isolates
would make it nearly impossible to treat in outpatient settings due to the need of
injectable antibiotics. Our findings also signify the importance of introduction of ty-
phoid conjugate vaccine in regions of endemicity such as Pakistan.

KEYWORDS Salmonella Typhi, typhoid fever, antimicrobial resistance, azithromycin
higher MIC, Pakistan

Typhoid fever, the disease caused by the bacterium Salmonella Typhi, is responsible
for an estimated 11.8 million infections and 128,200 deaths annually worldwide (1).

S. Typhi is a human-restricted pathogen that is transmitted via the fecal-oral route.
Typhoid mortality ranged from 10 –30% of cases in the preantimicrobial era (2), but
when treated with effective antimicrobials, typhoid has a case fatality rate of �1% (3).
The rise of multidrug resistance (MDR) in the 1990s (4), followed by fluoroquinolone
resistance (5), resulted in limited treatment options. The emergence and spread of an
extensively drug-resistant (XDR) S. Typhi variant in Pakistan (6, 7), which is resistant to
chloramphenicol, ampicillin, co-trimoxazole, streptomycin, fluoroquinolones, and third-
generation cephalosporins, has left azithromycin as only realistic option for typhoid
treatment in Pakistan (8). The recent report of azithromycin-resistant S. Typhi in
Bangladesh highlights the issues associated with the reliance on this drug and signals
the potential of untreatable typhoid (9).

Typhoid is notifiable in Pakistan, and the Aga Khan University has conducted standard-
ized prospective facility and laboratory-based blood culture surveillance in outpatient and
inpatient wards at Aga Khan University Hospital and Kharadar General Hospital between
September 2016 and September 2019 through the Surveillance for Enteric fever in Asia
Project (SEAP). These hospitals serve �30 million people, including densely populated
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informal urban settlements. Subjects presenting to outpatient clinics living in predefined
catchment areas with three consecutive days of fever for whom a study clinician recom-
mended a blood culture were enrolled. Inpatients with clinical suspicion of typhoid or with
nontraumatic ileal perforation were also enrolled. After blood culture, serologically con-
firmed S. Typhi isolates were subjected to antimicrobial susceptibility testing against
azithromycin, ampicillin, co-trimoxazole, chloramphenicol, ciprofloxacin, levofloxacin, ceftri-
axone, cefepime, cefixime, and ceftazidime by disk diffusion; resistant organisms (according
to CLSI guidelines) were confirmed by Etest (bioMérieux, France) (10).

Between the specified dates, 10,080 patients were enrolled in SEAP in Karachi; 2,104
had a positive blood culture for S. Typhi, and 139 had a positive blood culture for S.
Paratyphi A. Six S. Typhi isolates exhibited potential azithromycin resistance by disc
diffusion (diameter � 12 mm). Upon MIC testing, one failed to revive, four isolates had
azithromycin MICs ranging between 1 and 2 �g/ml and one S. Typhi isolate had an MIC
of 12 �g/ml (CLSI susceptibility breakpoint � 16 �g/ml) (10). This places this isolate at
the upper range of the wild-type azithromycin susceptibility distribution, with addi-
tional resistance to chloramphenicol, fluoroquinolones, and co-trimoxazole, but it was
susceptible to third-generation cephalosporins.

We aimed to investigate the genetic basis of the higher azithromycin MIC and place this
organism into phylogenetic context with contemporaneous S. Typhi through whole-
genome sequencing (WGS). Genomic DNA was extracted and subjected to WGS on a
Hiseq2500 (Illumina, San Diego, CA) to generate 125-bp paired-end reads. The resulting
sequence data were mapped against the CT18 reference sequence (accession no.
AL513382) using the RedDog mapping pipeline to identify single-nucleotide variants
(SNVs) and to confirm the S. Typhi genomes were within H58 lineage I (4.3.1.1) (7, 9,
11–19). (https://github.com/katholt/genotyphi). After removing repetitive sequences
and recombination (20), we generated a final alignment 7,661 chromosomal SNVs for
664 isolates (see Table S1 in the supplemental material). Maximum-likelihood phylo-
genetic trees were inferred from the chromosomal SNV alignments with RAxML (v8.2.9)
(21) and visualized in Microreact (22) (https://microreact.org/project/8FjPCdisk) and the
ggtree package in R (23). SRST2 (24) was used with ARGannot (25) and PlasmidFinder
(26) to identify antimicrobial resistance genes and plasmid replicons, respectively.
Mutations in gyrA, and parC, as well as the R717Q mutation in acrB, were detected using
GenoTyphi (https://github.com/katholt/genotyphi).

This higher azithromycin MIC S. Typhi isolate (MIC of 12 �g/ml), was typed as genotype
4.3.1.1 (H58 lineage I), which is the same sublineage at the XDR clade circulating in Pakistan.
The organism additionally had single mutation in gyrA (S83F), resulting in reduced fluoro-
quinolone susceptibility. The apparent mechanism of higher MIC against azithromycin was
an R717Q mutation in the gene encoding AcrB, a mutation identical to the recently
described azithromycin resistant (MIC of �32 �g/ml) S. Typhi 4.3.1.1 in Bangladesh (9). The
identification of this mutation in S. Typhi in Pakistan raises the possibilities that this was
either a de novo mutation in the Pakistan-specific 4.3.1.1 cluster or an organism that was
part of larger, internationally disseminating, azithromycin-resistant clone. To determine
which was more likely, we used a collection of 663 South Asian 4.3.1.1 (H58 lineage I)
sequences to contextualize S. Typhi isolate FQ2181 (7, 9, 11–19). The resulting phylogenetic
tree demonstrated that this was a spontaneous mutation which emerged in Pakistan, since
it was distantly related (relative within H58 lineage I) to the organisms with acrB mutations
in Bangladesh, and independent of the proximal XDR sublineage (Fig. 1).

Typically, the isolation of a single S. Typhi exhibiting resistance to the primary treatment
would not be a major cause for concern. However, this isolate demonstrates an additional,
independent acquisition of the same mutation that has been observed in Bangladesh (9).
Given the reliance of azithromycin for the treatment of typhoid and other bacterial
infections and the “fluoroquinolone experience,” we predict that we are likely to see more
of these homoplasies arising. It is too early to predict how these particular organisms may
spread, and it is encouraging that these mutations have not yet been reported in XDR S.
Typhi. However, given the nature of these mutations, one could arise in XDR S. Typhi,
and/or the XDR plasmid may be mobilized into an azithromycin-resistant lineage.
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Pakistan has initiated a nationwide typhoid conjugate vaccine (TCV) rollout pro-
gram, which began with a mass vaccination in Sindh province in November 2019 (27).
Now, there is in a race against time in the prevention of untreatable typhoid fever. With
one World Health Organization prequalified manufacturer of TCV supplying vaccine for
Gavi-eligible countries and several additional manufacturers in late-stage clinical de-
velopment (28), there is reason to be optimistic about typhoid control. However, the
vaccine is not yet available in all countries of endemicity, and effective treatment is still
paramount for typhoid control. Consequently, we need to progress with additional
intervention strategies and not overlook that antimicrobials have a substantial impact

FIG 1 South Asian H58 lineage I (genotype 4.3.1.1) phylogenetic tree (n � 664 genomes). Branches are colored by
source country according to the inset legend and first color bar. The second color bar indicates genomes
containing the acrB-R717Q mutation. The third color bar indicates mutations in the quinolone resistance deter-
mining region (QRDR) of genes gyrA, and parC. The final color bar indicates MDR and XDR sequences.
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on typhoid disease control. In addition, as part of this sustained effort, we need to
continue to track phenotypic and genotypic antimicrobial resistance in S. Typhi to
inform best practices for antimicrobial prescribing and the impact of TCV implemen-
tation.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TABLE S1, XLSX file, 0.1 MB.
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