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Abstract

MicroRNAs (miRNAs) play important roles in cell proliferation, differentiation, and survival and may be useful for
acute myeloid leukemia (AML) diagnosis and prognosis. In this study, we defined a novel miRNA, hsa-miR-12462,
through small RNA sequencing of the bone marrow (BM) cells from 128 AML patients. Overexpression of hsa-miR-
12462 in AML cells (U937 and HL-60) significantly decreased their growth rate when compared with those of the
wild-type and MOCK controls. In a xenograft mouse model, tumor weight and size in the mice bearing the U937
cells with hsa-miR-12462 overexpression were significantly reduced when compared with those bearing the mock
cells. The AML cells overexpressing hsa-miR-12462 had increased sensitivity to cytarabine chemotherapy. Combining
the data from the MIRDB, an online microRNA database (http://mirdb.org), with the RNA-sequencing results, SLC9AT
was predicted to be one of the targets of hsa-miR-12462. hsa-miR-12462 was further confirmed to bind exclusively
to the 3'UTR of SLC9AT in U937 cells, leading to downregulation of SLCOAT. In summary, a higher level of hsa-miR-

SLCYAT.

12462 in AML cells is associated with increased sensitivity to cytarabine chemotherapy via downregulation of
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To the Editor,

MicroRNAs (miRNAs) play important roles in cell pro-
liferation, differentiation, and survival and may be useful
for acute myeloid leukemia (AML) diagnosis and progno-
sis [1-4]. In this study, we defined a novel miRNA, hsa-
miR-12462, through small RNA sequencing of the bone
marrow (BM) cells from 128 newly diagnosed subjects
with AML (Supplementary Tablel-2). Based on 2016
World Health Organization (WHO) criteria, all subjects
were grouped into 2 cohorts: (1) those achieving a
complete remission (CR) with conventional induction
chemotherapy and remaining in CR > 6 months and (2)
those not achieving CR after 2 courses of standard
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induction chemotherapy (refractory) or relapsed in < 6
months after CR (relapsed) [5]. Small RNA sequencing of
these samples revealed different miRNA expression pro-
files between CR and refractory/relapsed (RR) AML pa-
tients [6]. One miRNA showed the highest differential
expression pattern in this analysis. This miRNA has never
been reported in the literature. We named this miRNA as
hsa-miR-12462 (Figure S1A). Next, we explored the bio-
logical activity of hsa-miR-12462 by overexpressing it in
AML cells using a lentiviral vector (Figure S1B). The
growth rate of the hsa-miR-12462 overexpressing cells
was significantly decreased when compared with those of
the wild-type and MOCK controls in both U937 and HL-
60 cells (Fig. 1a, Figure S1C). U937 cells were confirmed
using an EdU incorporation assay (Figure S1D-E).
Treatment of AML cells with cytarabine for up to 48 h
resulted in a lower proliferation of the hsa-miR-12462
overexpressing cells when compared with that of the
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Fig. 1 Overexpression of hsa-miR-12462 inhibits the growth of U937 cells and increases cytarabine sensitivity. a Growth rates of U937 wild-type,
MOCK-infected, and overexpressing cells (OF vs. MOCK P < 0.0001). b Growth inhibition of wild-type, MOCK-infected, and overexpressing U937 AML
cells treated with cytarabine (WT vs. OE P < 0.0001; MOCK vs. OE P < 0.0001). ¢ Growth inhibition of wild-type, MOCK-infected, and overexpressing
U937 cells treated with cytarabine at the ICso of 4 uM (WT vs. OE P < 0.005; MOCK vs. OE P < 0.005). d, e Percent apoptosis of MOCK-infected and
overexpressing U937 AML cells treated with cytarabine by FACS analysis (e, OE vs. MOCK P < 0.0001). f Representative histograms of cell cycle phases
in MOCK-infected and overexpressing U937 cells by FACS analysis. g The tumor tissues from the xenograft mouse model injected with wild-type
(MOCK) and hsa-miR-12462 overexpressing U937 cells (OF). h, i Tumor weights (h) and sizes (i) from mice injected with wild-type and overexpressing
U937 cells (MOCK vs. OE 1.11380 + 0.27820 g vs. 0.16000 + 0.02266 g, n = 6, P = 0.0057). j Axial anatomic image of mice injected with overexpressing
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controls (Fig. 1b, ¢, Figure S1F-G). The apoptosis rate of
the hsa-miR-12462 overexpressing cells was significantly
higher than that of the control (Fig. 1d, e, Figure S1LL)

as well. These differences were not seen in U937 cells
(Figure S1H,J) or HL-60 cells (Figure S1K) treated with
doxorubicin. We hypothesized that these different
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responses might reflect the effects of hsa-miR-12462 on
the cell cycle. Cell cycle analysis revealed that a greater
proportion of hsa-miR-12462-expressing cells were ad-
justed in Go/G; and S-phase when compared with
MOCK-transfected cells (Fig. 1f, Figure SIM).

We further studied the biological behavior of the hsa-miR-
12462 overexpressing U937 cells in a subcutaneous xenograft
mouse model (Fig. 1g). Tumor weight and size in the overex-
pressing cohort were decreased when compared with those
of the MOCK-transfected cohort (Fig. 1h, i). (MOCK vs. OE:
P = 0.0057). These differences were further confirmed by
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both magnetic resonance imaging (MR Fig. 1j) and histo-
pathology (Figure SIN-P).

Through RNA-sequencing analysis of hsa-miR-12462
overexpressing and MOCK-transfected U937 cells, 306
genes were identified with differential expressions (Fig. 2a,
S2A). Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment ana-
lyses were done as well (Figure S2B-C). Enrichment ana-
lysis of the KEGG pathway indicates the involvement of
the cAMP signaling pathway (Figure S2C) [7]. In addition,
CCNEI, E2F4, and TP53 involved in cell cycle regulation
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Fig. 2 hsa-miR-12462 acts via downregulation of SLC9AT. a Overview of mRNAs in OE and MOCK U937 cells. b-d CCNET (b), TP53 (c), and E2F4
(d) transcript expression in wild-type, MOCK-infected, and overexpressing U937 AML cells is shown (b, OE vs. MOCK P = 0.0001; ¢, OE vs. MOCK P
= 0.0001; d, OF vs. MOCK P = 0.0329). Primers were CCNE1 F: AGC GGT AAG AAG CAG AGC AG, R: TTT GAT GCC ATC CAC AGA AA; TP53 F: CCT
CAG CAT CTT ATC CGA GTG G, R: TGG ATG GTG GTA CAG TCA GAG G and E2F4 F: GAG TGG TCC CAT TGA GGT TC, R: GGC AGA GGT GGA GGT
GTA G. e Venn diagram of differentially expressed genes as determined by RNA-sequencing analysis. f Protein-protein interaction network of 15
target genes. g Expression of SLC9A1, ARRB1, and CHRNAG in U937 MOCK-infected and overexpressing U937 cells is shown (MOCK vs. OE P <
0.0001). h Expression of SLC9AT transcript in wild-type, MOCK-infected, and overexpressing U937 cells is shown. i Expression of SLC9AT, ARRBI,
and CHRNAG in U937 wild-type, MOCK-infected, and overexpressing cells by western blot. GAPDH is used as a control. j SLC9AT is a direct target
of hsa-miR-12462 confirmed by luciferase activity. Luciferase constructs containing the 3'UTR of SLC9AT or 3'UTR with point mutations
J
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were found significantly downregulated in the RNA-
sequencing analysis (Figure S2A). Q-RT-PCR analysis of
these genes confirmed the results from the RNA-
sequencing analysis (Fig. 2b—d). Combining the data from
the MiRDB, an online microRNA database (http://mirdb.
org) [8], with the RNA-sequencing results, 15 genes were
found to share predicted targets (Fig. 2e, f) including
SLC9A1, ARRBI, and CHRNA6 (Fig. 2g). SLC9AI
(NHE1), the most common isomer in the Na*/H* exchan-
ger family [9], is important in cell transformation [10]. -
arrestins (ARRBs) participate in mediating tumor prolifer-
ation and inflammation-induced cancer development [11],
whereas nicotinic acetylcholine receptors (CHRNSs) are
important regulators of tobacco-induced carcinogenesis
[12]. The mRNA and protein levels of SLC9A1, ARRBI,
and CHRNAG6 were inhibited by overexpression of hsa-
miR-12462 (Fig. 2h, i, S2D-E). Using a luciferase 3'UTR
reporter assay, we found that hsa-miR-12462 bound
exclusively to the 3'UTR of SLC9AI in U937 cells (Fig. 2j;
S2F-G). In summary, a higher level of hsa-miR-12462 in
AML cells is associated with increased sensitivity to cytar-
abine chemotherapy via downregulation of SLC9A1.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513045-020-00935-w.

Additional file 1: Table S1. Patient information. Table S2.
Demographic and AML - related features of the expression level of hsa-
miR-12462

Additional file 2: Figure S1. Hsa-miR-12462 inhibits growth of AML
both in cell lines and animal models. A.Schematic diagram of the second-
ary structure of mature hsa-miR-12462.Structure was predicted by
MFOLD. B. hsa-miR-12462 transcript expression in Wild-type, MOCK-
infected, and Over-expressing U937 cells (OE vs. MOCK P = 0.0005). C.
Growth rates of HL-60 Wild-type, MOCK-infected and Over-expressing
cells (OE vs. MOCK P < 0.0001). D-E. Cell growth of MOCK and Over-
expressing U937 OE vs. MOCK P = 0.0004) cells as measured by EdU. F.
Growth inhibition of Wild-type, MOCK infected and Over-expressing HL-
60 cells treated with cytarabine(OE vs. MOCK P=0.0428). G. Growth inhib-
ition of Wild-type, MOCK-infected, and Over-expressing HL-60 cells
treated with cytarabine at the IC5o = 2.9 uM (MOCK vs. OE P = 0.0042). H
. Growth inhibition rates of Wild-type, MOCK-infected and Over-
expressing U937 cells treated with doxorubicin 1Csq = 6 pM (OE vs. MOCK
vs. WT P > 0.05). |.L. Percent apoptosis of MOCK infected and Over-
expressing HL-60 cells treated with cytarabine by FACS analysis (L, OE vs.
MOCK P =0.0377). JK: Apoptosis percentage of MOCK-infected and Over-
expressing U937(J) and HL-60(K) cells treated with doxorubicin by FACS
analysis.( JJOE vs. MOCK P > 0.05.K:OE vs. MOCK P > 0.05) M. Quantifica-
tion of cell-cycle phases in MOCK-infected and over-expressing U937 cells
by FACS analysis. N. Hematoxylin and eosin (HE) staining and immune
histochemistry analyses of hsa-miR-12462 OE and MOCK tumor sections.
HE staining magnification: x20. MPO staining magnification: x20. Ki-67
staining magnification: x20.0-P. Percentage of myeloperoxidase (MPO)
and Ki-67 expression in OE and MOCK U937 cells (MOCK vs. OE: O, P<
0.0001. P, P<0.0001)

Additional file 3: Figure S2. The downstream targets of hsa-miR-
12462. A. Differential expression of selected genes in hsa-miR-12462 OE
and MOCK U937cells. B-C. (B) GO and (C) KEGG pathway enrichment ana-
lysis of differentially expressed genes after RNA-sequencing in U937 OE/
MOCK cells. D-E. Transcript expression of CHRNA6 (D) and ARRB1 (E) in
wild-type, MOCK-infected and OE U937 cells is shown. F-G. Luciferase
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reporter assay showing the 3'-UTR segments of (F) ARRBT and (G) CHRN
A6 do not contain hsa-miR-12462 binding sites. Error bars indicate + SD;
n=3 each. P values were obtained by the two-tailed Student t-test.

Additional file 4. Detailed materials and methods
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AML: Acute myeloid leukemia; SLC9AT: Solute carrier family 9 member AT;
cAMP: Cyclic adenosine monophosphate; CCNET: CyclinE1; E2F2: E2F
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