
An EEG-fNIRS Hybridization Technique in the Four-Class 
Classification of Alzheimer’s Disease

Pietro A. Cicalesea,†, Rihui Lia,†, Mohammad B. Ahmadia, Chushan Wangb, Joseph T. 
Francisa, Sudhakar Selvarajc, Paul E. Schulzc, Yingchun Zhanga,*

aDepartment of Biomedical Engineering, University of Houston, Houston, USA

bGuangdong Provincial Work Injury Rehabilitation Hospital, Guangzhou, China

cUniversity of Texas Health Science Center, Houston, USA

Abstract

Background: Alzheimer’s disease (AD) is projected to become one of the most expensive 

diseases in modern history, and yet diagnostic uncertainties exist that can only be confirmed by 

postmortem brain examination. Machine Learning (ML) algorithms have been proposed as a 

feasible alternative to the diagnosis of several neurological diseases and disorders, such as AD. An 

ideal ML-derived diagnosis should be inexpensive and noninvasive while retaining the accuracy 

and versatility that make ML techniques desirable for medical applications.

New Methods: Two portable modalities, Electroencephalography (EEG) and functional Near-

Infrared Spectroscopy (fNIRS) have been widely employed in constructing hybrid classification 

models to compensate for each other’s weaknesses. In this study, we present a hybrid EEG-fNIRS 

model for classifying four classes of subjects including one healthy control (HC) group, one mild 

cognitive impairment (MCI) group, and, two AD patient groups. A concurrent EEG-fNIRS setup 

was used to record data from 29 subjects during a random digit encoding-retrieval task. EEG-

derived and fNIRS-derived features were sorted using a Pearson correlation coefficient-based 

feature selection (PCCFS) strategy and then fed into a linear discriminant analysis (LDA) 

classifier to evaluate their performance.

Results: The hybrid EEG-fNIRS feature set was able to achieve a higher accuracy (79.31%) by 

integrating their complementary properties, compared to using EEG (65.52%) or fNIRS alone 
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(58.62%). Moreover, our results indicate that the right prefrontal and left parietal regions are 

associated with the progression of AD.

Comparison with existing methods: Our hybrid and portable system provided enhanced 

classification performance in multi-class classification of AD population.

Conclusions: These findings suggest that hybrid EEG-fNIRS systems are a promising tool that 

may enhance the AD diagnosis and assessment process.

Keywords

Electroencephalography (EEG); functional near-infrared spectroscopy (fNIRS); Alzheimer’s 
disease; Machine learning

1. Introduction

Alzheimer’s disease (AD), the most common and severe age-associated neurodegenerative 

disease, currently affects 5.8 million Americans and is expected to affect 13.8 million 

individuals in the US alone by 2050, with individual end-of-life costs exceeding those of 

heart disease and cancer (Assoc, 2018; Kelley et al., 2015). The only medically confirmed 

diagnosis for AD has been through autopsy, highlighting the urgent need to develop 

innovative and effective diagnostic tools (Assoc, 2018). While deposits of aggregated 

amyloid beta (Aβ) and neurofibrillary tangles of hyper-phosphorylated tau protein are the 

two hallmarks of AD, disruption of synaptic spines due to the detrimental binding of small 

Aβ oligomers is key in triggering cognitive decline (Serrano-Pozo et al., 2011). The synaptic 

failure induced by the binding of Aβ oligomers is widely considered to be one of the first 

dysfunctional events driving symptomatic AD, suggesting that cortical imaging techniques 

could capture information that is unique to AD patients (Selkoe, 2002; Teipel et al., 2015).

One of the main interests in machine learning (ML) research is the rapid and accurate 

diagnosis and assessment of neurodegenerative diseases, such as AD, through relatively 

simple experimental setups (Ahmadian et al., 2018; An et al., 2018). Imaging modalities that 

can collect the data needed to train the classifiers are preferred to be non-invasive, versatile, 

and inexpensive; qualities that would make them realistically applicable in the clinical 

setting. Several groups have shown that the implementation of an ML model in AD 

classification studies could achieve clinically acceptable accuracies (Katako et al., 2018; 

Klöppel et al., 2008; Wang et al., 2015). For instance, Klöppel et al. were able to achieve 

89% accuracy when classifying patients as AD positive or healthy controls by using 

magnetic resonance imaging (MRI) data (Klöppel et al., 2008). Although they achieved a 

clinically compatible result with their classification accuracy, the high cost and 

environmental sensitivity associated with MR imaging can potentially compromise the 

clinical applicability of their method (Biasutti et al., 2012; Turner, 2016). Positron emission 

tomography (PET) has also been investigated as a potential source of data with Katako et al. 

achieving an accuracy of 84% through the support vector machine (SVM) (Katako et al., 

2018). While PET imaging provided highly sensitive and accurate data, it is difficult to 

effectively combine the technique with other imaging modalities such as computed 

tomography (CT) and MRI (Vaquero and Kinahan, 2015). This therefore limits the 
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applicability of PET in hybrid models that combine data from various imaging modalities to 

enhance overall classification performance.

Advanced neuroimaging techniques, including Electroencephalography (EEG), functional 

near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI), 

have been extensively utilized by the research community to develop high-performance 

classification models (Houmani et al., 2018; Karamzadeh et al., 2016; Li et al., 2017; Sato et 

al., 2015; Wang et al., 2015). All these imaging modalities present specific challenges which 

can often compromise their applicability in a clinical setting. Electroencephalography (EEG) 

utilizes scalp electrodes to measure fluctuations in voltage caused by the electrical activity of 

the neurons present on the cortical surface of the brain (Binnie and Prior, 1994). EEG 

recordings offer a high temporal resolution while suffering from a relatively low spatial 

resolution that is primarily caused by the conductivity distribution of the human head 

(Lachaux et al., 1999; Schoffelen and Gross, 2009). EEG is also noted for being sensitive to 

environmental noise and easily corruptible by motion artifacts (Reis et al., 2014), making the 

technique difficult to independently implement in the field of neurodegenerative disease 

research.

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that measures 

hemodynamic responses on the cortical surface associated with neuronal behavior. It 

accomplishes this by dynamically measuring the changes in both oxygenated hemoglobin 

(HbO) and deoxygenated hemoglobin (HbR) concentrations with optical signals of distinct 

wavelengths (Scholkmann et al., 2014). The portability and low cost of fNIRS systems have 

accentuated the potential clinical value of this imaging modality in the research community 

(Arenth et al., 2007; Mihara et al., 2010; Obrig, 2014). In contrast to EEG, fNIRS is noted 

for having a higher spatial resolution but a lower temporal resolution (Quaresima et al., 

2012). A significant advantage that fNIRS holds over EEG is the negligible cross-talk effect 

when the activation region distance is greater than one centimeter (Strangman et al., 2003). 

The imaging modality is made resilient to motion artifacts through signal processing, 

making it an attractive tool to collect clinical data from patients with neurological illnesses 

(Balardin et al., 2017). However, a critical shortcoming of fNIRS with respect to EEG is the 

delay in the captured hemodynamic signal; for instance, it usually takes four to six seconds 

after stimulus onset to reach its peak response and another six to ten seconds to reach its 

negative post-stimulus undershoot (PSU) peak (Buxton et al., 2004; Cohen, 1997; Mayer et 

al., 2014). The low penetration of infrared light further limits the detection of the 

hemodynamic response to the superficial volume of the cortical mass (Quaresima et al., 

2012).

Despite the limitations of these two imaging modalities, EEG coupled with fNIRS yields an 

augmented temporal and spatial resolution, thus allowing researchers to develop novel ML 

algorithms that utilize the complementary information that is collected (Li et al., 2017). In 

addition, both the EEG and fNIRS systems are highly portable and compatible with each 

other, which greatly reduce the measurement constraints to the patients and significantly 

expand the application scenarios of the multi-modal system (Li et al., 2019). Therefore, 

integrated EEG and fNIRS data has been applied in a number of classification studies, 
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including workload assessment, motor function and auditory function (Hong and Santosa, 

2016; Li et al., 2017; Omurtag et al., 2017).

Several groups using EEG have been able to accurately distinguish between healthy controls 

and mild cognitive impairment (MCI) subjects, or AD patients (Houmani et al., 2018; Wang 

et al., 2015). Other groups have shown that fNIRS could be a valuable source of information 

for AD studies (Li et al., 2018a; Li et al., 2018b). Houmani et al. were able to achieve a 

binary (AD and Subjective Cognitive Impairment (SCI)) classification accuracy of 91.6% 

using EEG data while achieving a three class (AD, SCI, and other patients) classification 

accuracy of 81.8% to 88.8% (Houmani et al., 2018). Li et al. were able to show that fNIRS 

data could be utilized to distinguish between various stages of AD when comparing the 

hemodynamic response of mild and severe cases (Li et al., 2018b). These works highlight 

the importance of the AD-specific information that can be captured using the EEG and 

fNIRS imaging modalities. Utilizing fNIRS and EEG to train multiclass ML models should, 

therefore, be investigated further to expand upon previous findings in the field.

The primary objective of this study is to evaluate the feasibility of utilizing hybrid EEG-

fNIRS data to classify subjects at different stages of AD. Specifically, subjects from four 

groups were recruited, including healthy controls (HC), patients with mild cognitive 

impairment (MCI), mild AD (MAD), and moderate/severe AD (MSAD). Concurrent EEG 

and fNIRS measurement were employed to collect data from subjects during a random digit 

memorization task. We utilized a computationally inexpensive Pearson correlation 

coefficient-based feature selection (PCCFS) algorithm to optimize feature selection and 

achieve higher classification accuracy using hybrid EEG-fNIRS features. To our knowledge, 

this is the first hybrid EEG-fNIRS-based study to perform classification among healthy 

controls and patients at different stages of AD.

2. Materials and method

2.1. Participants

Twenty-nine subjects were recruited and participated in the study, including eight healthy 

controls, eight MCI patients, six mild AD patients, and seven moderate/severe AD patients. 

All subjects were right-handed and above 50 years of age. The experiment was approved by 

the local ethics committee (Guangdong Provincial Work Injury Rehabilitation Center, 

China), and was performed in accordance with the Declaration of Helsinki. Each subject (or 

caregivers in severe cases) was fully informed about the purpose of the research and 

provided written, informed consent prior to the beginning of the experiment. All patients 

recruited in this study were able to follow the study instructions independently. All 

participants were naïve to the experimental task and to the recording systems. The mental 

state of each subject was examined using the Mini-Mental State Examination (MMSE), and 

all rating scores were recorded. The demographic information and clinical rating scores of 

all subjects are summarized in Table1.
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2.2. Experimental Paradigm

All experiments were conducted in a shielded room meant to minimize environmental noise. 

The subjects were instructed to sit in a comfortable chair and were told to remain still and 

relaxed. The subjects were given visual instruction from a screen placed one meter in front 

of their eyes. The paradigm used in this study consisted of 30 random trials. Each trial began 

with a ten-second encoding task, where the subject was asked to memorize a number 

sequence (four, five, and six digits, ten trials for each digit length) presented on the screen 

followed by a ten second resting period. The subject would then be instructed to retrieve the 

number sequence from the previous encoding task and verbally repeat the sequence within 

ten seconds, followed by an additional ten seconds of rest (Figure 1(A)). We define patient 

performance as being the number of correct responses during the retrieval task. We defined a 

block of data as the EEG and fNIRS signals collected for each of the memorization digit 

lengths (for a total of 3 blocks × 10 trials).

2.3. Experimental Setup

EEG and fNIRS data were simultaneously recorded during the entire experiment. EEG data 

were recorded using a BrainAmp DC EEG recording system (Brain Products GmbH, 

Germany) with a sampling rate of 500 Hz. As shown in Figure 1(B), we selected channel 

FCz as the reference and CPz as the ground channel. Thirty-two additional EEG electrodes 

were placed on the scalp over the left and right hemispheres. A NIRScout system (NIRx 

Medizintechnik GmbH, Germany) with 16 sources and 15 detectors was used to collect 

fNIRS data. The inter-optode distance was 3 cm, and a total of 46 fNIRS channels were 

symmetrically distributed over the left and right hemispheres, encompassing the frontal and 

parietal regions of the cortical surface (Hong et al., 2018). Lights with wavelengths of 760 

and 850 nm were used to detect the change in oxygenated and deoxygenated hemoglobin 

concentrations. fNIRS data were collected at a sampling rate of 3.91 Hz.

2.4. Data Preprocessing

Raw EEG signals were preprocessed using BrainVision Analyzer software (Brain Products 

GmbH, Germany). Data was first filtered from 0.5 to 40 Hz using a third order Butterworth 

band-pass filter. Powerline noise (50 Hz) was removed using a third order notch filter. 

Ocular artifact correction was accomplished using independent component analysis (ICA) 

followed by the manual removal of the artifact signals. Re-referencing was conducted using 

the common average reference method and data from the FCz channel was retrieved for 

further analysis. Single-trial EEG data for each encoding task was segmented from two 

seconds before task onset to ten seconds after the task onset. All segmented trails were 

manually inspected; trials with large spikes were considered “noisy” and were excluded 

from further analysis. On average, fewer than 10% of the total trials (4.14% ± 5.09%) were 

rejected for each subject. Baseline correction was performed by subtracting the mean value 

of baseline interval (−2 to 0 seconds) from each EEG channel’s corresponding segmented 

trial. Block averaging was done for each EEG channel with respect to different digit lengths, 

including 4-digit, 5-digit, 6-digit and all number sequences, yielding 33 × 4 (channels × 

blocks) averaged EEG signals for each subject.
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Raw fNIRS signals were preprocessed using the nirsLAB software (NIRx Medizintechnik 

GmbH, Germany). We applied a fourth order Butterworth band-pass filter from 0.01 to 0.2 

Hz to remove artifacts such as EKG (~0.8 Hz) and respiration (0.2–0.3 Hz). The changes in 

HbO and HbR concentrations were calculated according to the Modified Beer-Lambert Law 

with a differential path length factor of 7.25 and 6.38 for the 760 nm and 850 nm 

wavelengths, respectively (Essenpreis et al., 1993; Scholkmann et al., 2014). We then 

segmented the single trial fNIRS data from the onset of the encoding task to 20 seconds after 

the onset (0 to 20 seconds). All segmented trails were manually inspected, and trials with 

apparent motion artifacts were excluded. On average, fewer than 10% of the total trials 

(1.95% ± 6.93%) were rejected for each subject. Baseline correction was performed by 

subtracting the data point before the onset from each fNIRS channel’s corresponding 

segmented trial. Block average was then performed for each fNIRS channel with respect to 

different digit lengths, including 4-digit, 5-digit, 6-digit, and all number sequences, resulting 

in 46 × 4 × 2 (channels × blocks × Hb) averaged fNIRS signals for each subject.

2.5. Feature Extraction and Selection

Block averaged EEG data (10 seconds) was used to compute the relative band power for 

each channel across six bands of interest (Delta: 0.5 to 4 Hz, Theta: 4 to 7 Hz, low Alpha: 8 

to 10 Hz, high Alpha: 10 to 13 Hz, Beta: 14 to 25 Hz, Gamma: 26 to 40 Hz). The power 

spectrum density (PSD) of the signal was calculated based on a 2-second window (with no 

overlapping) for four different block averaged signals. PSD was calculated using the Fast 

Fourier Transform (FFT). The relative band power of a specific frequency band, defined as 

the percentage of that frequency’s band power with respect to the total power (power from 

0.5 Hz to 40 Hz), was extracted as features for classification. In summary, 3,960 EEG 

features (33 channels × 6 bands × 5-time windows × 4 blocks) were extracted for each of the 

subjects.

For the fNIRS signals, we focused on the main time frame from 3 to 12 seconds after the 

onset of the encoding task as suggested by the literature (Buxton et al., 2004; Cohen, 1997; 

Mayer et al., 2014). Average changes of HbO and HbR concentrations were then calculated 

as features by taking the average of the data every 3 seconds (with no overlapping) for four 

different block averaged signals. This yielded a total of 1,104 fNIRS features (46 channels × 

2 Hb × 3 time windows × 4 blocks) per subject.

2.6. Feature Optimization and Classification

After the feature extraction, we ended up with two different feature sets to evaluate the 

classifier performance: EEG band power (29 subjects × 3,960 features) and fNIRS 

hemoglobin concentrations (29 subjects × 1,104 features). To select the optimal feature set 

for classification and to enhance the computational efficiency, we implemented a Pearson 

correlation coefficient-based feature selection (PCCFS) strategy with the EEG and fNIRS 

feature sets prior to the classification. The principle of PCCFS is demonstrated in Figure 2 

(Aghajani et al., 2017; Guyon and Elisseeff, 2003). The Pearson correlation coefficient 

between each feature and all class labels (Healthy = 0, MCI = 1, MAD = 2, MSAD = 3) 

were individually calculated. All features were then sorted based on their absolute Pearson 

correlation coefficients in a descending manner, wherein the features that yielded a higher 
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coefficient were given higher priority in the classification of the four groups. With the sorted 

feature set, we then iteratively (in a forward manner) added the features and evaluated the 

classifier performance of each iteration. The optimal feature set was defined as the subset 

that yielded the highest accuracy. The optimal EEG feature set and fNIRS feature set were 

then combined and re-sorted using PCCFS to form the EEG-fNIRS sorted hybrid feature set. 

The optimal hybrid feature set was defined in the same way as the optimal unimodal feature 

sets. In this study, considering the large number of features, the classification accuracy was 

assessed using the Leave One Out Cross Validation (LOOCV) with a Linear Discriminant 

Analysis (LDA) classifier due to its simplicity and low computational requirements as well 

as high popularity in EEG/fNIRS classification studies (Hong et al., 2018; Lahmiri et al., 

2018). A flowchart is shown in Figure 3 to summarize the overall design of the study.

3. Results

The goal of this study was to effectively classify subjects based on the degree of their 

dementia and to evaluate the performance of the hybrid EEG-fNIRS model relative to the 

EEG and fNIRS standalone model. Figure 4 demonstrates the changes in classification 

performance during the PCCFS processing for the EEG feature set, the fNIRS feature set 

and the hybrid feature set, respectively. After PCCFS optimization, we were able to reduce 

the size of each respective feature set according to the optimal classification performance. 

Overall, the hybrid EEG-fNIRS feature set provided the best performance (Mean: 79.31%, 

Standard Error: 7.66%), outperforming the EEG unimodal feature set (Mean: 65.52%, 

Standard Error: 8.98%) and fNIRS unimodal feature set (Mean: 58.62%, Standard Error: 

8.98%). Specifically, the PCCFS-sorted EEG feature set (Figure 4(a)) achieved its highest 

accuracy with the top 21 features, while the PCCFS-sorted fNIRS feature set (Figure 4(b)) 

reached its highest accuracy with the top 48 features. Finally, the PCCFS-sorted hybrid 

feature space (Figure 4(c)) achieved its highest accuracy with the top 31 features, including 

all 21 optimal EEG features and the top 10 optimal fNIRS features. The confusion matrix 

and several commonly used metrics (precision, sensitivity, specificity and F-score) were 

calculated manually to evaluate the performance of each model further, as displayed in 

Tables 2, 3 and 4. Precision is defined as the ratio of true positives over true positives and 

false positives, sensitivity is defined as the ratio of true positives over true positives and false 

negatives, specificity is defined as the ratio of true negatives over false positives and true 

negatives, and F-score is defined as the harmonic mean of precision and recall.

Apart from the evaluation of the performance of the hybrid EEG-fNIRS model, we also 

attempted to identify the key regions of interest that are associated with cognitive decline 

based on the optimal hybrid feature set. Figure 5 shows the brain regions that contributed 

most to the performance of the classifiers based on the PCCFS-sorted features. To determine 

the activation sites on the cortical surface, we first projected the 3D coordinates of the EEG 

and fNIRS channels that yielded the optimal hybrid model features to a template brain 

model obtained from the MNI305 space (publicly available at: http://

surfer.nmr.mgh.harvard.edu/). The size of the clusters (colored circles) is based on the 

number of top hybrid features derived from each channel, which ranged from one to four 

features per channel. Interestingly, among the 21 hybrid EEG features, most features were 

derived from the channels located in the left parietal region (yellow markers), while the 10 
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hybrid fNIRS features were mainly derived from the channels located in the right frontal 

region (blue markers).

4. Discussion

Multi-modal imaging techniques have been previously reported to enhance classification 

performance over unimodal methods in binary classification tasks, yet the hybrid approach 

we presented in this work has received little research focus with multiple classes (Li et al., 

2017). In this work, our goal was to evaluate the feasibility of utilizing hybrid EEG-fNIRS 

data to classify, with a clinically relevant accuracy, between four groups of subjects that 

included patients with varying degrees of AD. We elected to use a hybrid EEG-fNIRS model 

that was expected to outperform the EEG and fNIRS unimodal approach. The result suggests 

that the hybrid model is a superior and effective way to accurately classify and assess AD 

patients, with LOOCV accuracy approaching 79.31% in the four-class hybrid model. It is 

important to note that chance in our model is defined as the ratio of the largest group over 

the total sample size (~27.6%), which we exceed by a significant margin (Combrisson and 

Jerbi, 2015).

Due to the similar symptomologies shared by mild AD and other neurological pathologies 

(Kalaria, 2002; Mendez, 2006; Rodrigues et al., 2014), the difficulty in diagnosing and 

monitoring early-onset AD has been a major problem for clinicians. These diagnostic 

uncertainties further delay more definitive AD diagnoses until the disease has progressed, 

thus reducing the potential efficacy of treatment and costing an estimated 7.9 trillion USD in 

medical and patient care costs (Assoc, 2018). By capitalizing on the advantages of hybrid 

neuroimaging modalities, we were interested in presenting an ML-based system that was 

capable of accurately distinguishing between various stages of AD as a source of 

supplemental information for physicians in clinical settings. Overall, the high classification 

accuracy achieved in this study through the hybrid EEG-fNIRS feature set suggests that it is 

(compared to the unimodal approach) beneficial to combine these imaging modalities as an 

effective means to assess and diagnose AD. Analysis of the classifier performance (Table 4) 

further supports that the hybrid model was more robust than the EEG and fNIRS models in 

classifying the four subject groups.

The high precision achieved by the hybrid model indicates that it was more likely to make 

relevant predictions, while its sensitivity indicates that it was more likely to correctly 

classify control subjects, MCI subjects, and MSAD patients. To make better sense of the 

overall meaning of these two metrics, we elected to compute the F-score in order to make a 

more definitive statement about the performance of the hybrid model. The F-scores of the 

hybrid model were consistently higher than the EEG and fNIRS models, indicating that it 

was collectively more precise and/or sensitive than its unimodal counterparts. Importantly, 

the hybrid model had a higher specificity when classifying mild AD patients, relative to the 

EEG and fNIRS models. High specificity indicates that the likeliness of falsely identifying 

subjects as having mild AD was relatively low, which suggests that the hybrid model was 

less likely to misdiagnose each subject. However, the MCI and mild AD groups revealed 

relatively low accuracies compared to other groups, even though the hybrid EEG-fNIRS 

model yielded the optimal performance over EEG and fNIRS unimodal approaches. The 
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diagnosis of patients at the early stage of AD may still stand as a primary challenge even 

when new methods are developed. Despite this limitation, the findings in the present study 

suggest that the proposed hybrid EEG-fNIRS model holds great promise to provide 

physicians with a more definitive and preemptive diagnosis of AD. We also believe that the 

improved confidence in the diagnosis would thus permit physicians to treat AD more 

effectively, therefore improving patient outcomes and reducing the cost associated with AD 

management.

Apart from the evaluation of the performance of the hybrid EEG-fNIRS model, we 

attempted to expand our investigation with physiologically meaningful information based on 

the top performing hybrid features. Interestingly, several activated cortical regions, mainly 

including the right prefrontal area and left parietal area, were identified to be associated with 

AD-linked cognitive decline (Figure 5) (Fernández et al., 2006; Machulda et al., 2003; 

McNab and Klingberg, 2008; Salat et al., 2001; Staff et al., 2010; Yap et al., 2017; Zanto et 

al., 2011). Specifically, as evidenced in previous studies, it is well-accepted that working 

memory task could induce active neuronal activity in several cortical regions including the 

frontal, parietal, and temporal lobe (Palva et al., 2010; Prabhakaran et al., 2000). Structural 

imaging technique also showed that reduced grey matter in the left and right parietal regions 

of the brain is associated with the progression of AD (Staff et al., 2010). These existing 

evidences are in line with the cortical regions we identified based on the optimal EEG 

features (Figure 5). On the other hand, it is important to note that oxygenation abnormalities 

in the prefrontal cortex have been reported in MCI patients, while volumetric changes in the 

prefrontal cortex are linked to the progression of AD (Salat et al., 2001; Yap et al., 2017). In 

addition, the hyper-activation in the frontal gyrus is found in patients with memory deficit 

during an encoding-retrieval task (Heun et al., 2007), demonstrating the important role of 

prefrontal cortex in the cognitive processing. These findings, again, are consistent with the 

identified right prefrontal region that was primarily derived from the optimal fNIRS features 

in our study (Figure 5). These findings presented here, therefore, provide evidence that the 

hybrid EEG-fNIRS model could serve as a potential tool to effectively identify brain regions 

affected by AD-linked cognitive impairment, advancing our understanding of AD 

progression and treatment.

Although this research has adequately evaluated the feasibility of utilizing the hybrid EEG-

fNIRS model to classify patients at various stages of AD, several limitations should be 

acknowledged. The most apparent limitation of this study lies in the relatively small sample 

size that we used to evaluate the performance of hybrid feature set, which can result in 

falsely elevated classifier performance and prevent us from drawing a definitive conclusion 

with our current findings (Combrisson and Jerbi, 2015). Future work on a larger cohort 

should be carried out to validate and extend the present findings. Additionally, the fNIRS 

setup for this study was not able to provide full coverage due to a limited number of optodes, 

making it impossible to capture the hemodynamic response signals from uncovered areas. It 

is therefore suggested that future research utilize an improved setup with full coverage when 

possible.
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5. Conclusions

In this study, we presented a hybrid EEG-fNIRS model to effectively classify four subjects’ 

groups including healthy controls and patients at different stages of AD. We show that the 

memorization task ML model could be used to inexpensively and rapidly supplement the 

diagnosis (and assess the degree of) dementia in AD patients. To select the most 

representative features in the challenging multi-class classification problem, we evaluated 

and optimized the features derived from EEG and fNIRS signals using a Pearson correlation 

coefficient-based feature selection (PCCFS) strategy. The superior performance achieved by 

the hybrid features suggests that hybrid EEG-fNIRS models such as the one proposed in this 

study may be used in a clinical setting to accurately diagnose and assess the severity of AD.
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Highlights

• Machine learning technique is able to classify patients with Alzheimer’s 

disease at different stages.

• Hybrid EEG/fNIRS feature set achieves higher classification accuracy by 

integrating the complementary properties of EEG and fNIRS, compared to 

using EEG or fNIRS alone.

• The right prefrontal and left parietal regions are associated with the 

progression of AD.
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Fig. 1. 
Experimental Paradigm and setup. (A) The paradigm used for this experiment. (B) The 

locations of the EEG electrodes (grey), fNIRS sources (red) and fNIRS detectors (green).
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Fig. 2. 
The flowchart of feature optimization using the Pearson correlation coefficient-based feature 

selection (PCCFS) method.
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Fig. 3. 
The overall design of the study. The subject presented in the figure provided verbal and 

written informed consent forthe publication of this figure.
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Fig. 4. 
Performance evaluation of EEG features (A), fNIRS features (B) and hybrid features (C) 

using PCCFS. In each sub-figure, the black solid line denotes average accuracy while shaded 

area denotes the standard error.
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Fig. 5. 
Cortical activation mapping derived from the EEG (yellow) and fNIRS channels (blue) that 

contributed to the optimal hybrid feature set. The larger the size of the circle, the more 

features the corresponding channel contributes.
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TABLE I

DEMOGRAPHIC INFORMATION OF ALL SUBJECTS.

Characteristic HC (n = 8) MCI (n = 8) MAD (n = 6) MSAD (n = 7)

Ages (years) 63.6 ± 6.5 70.3 ± 5.4 72.5 ± 7.3 76.0 ± 4.8

Gender (M/F) 6/2 6/2 2/4 3/4

MMSE 28.2 ± 2.2 26.0 ± 2.2 19.7 ± 3.0 9.4 ± 1.7

Education (years) 11.0± 2.5 10.0 ± 3.1 11.2 ± 2.8 10.3 ± 2.9

Performance 30.0 ± 0.0 27.6 ± 1.8 24.0 ± 6.0 19.0 ± 2.8
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TABLE II

THE CONFUSION MATRIX AND CLASSIFICATION PERFORMANCE OBTAINED BY THE OPTIMAL 

EEG FEATURES.

True Class
Predicted Class Model Performance

HC MCI MAD MSAD Precision Sensitivity Specificity F-Score Accuracy

HC 100% 0% 0% 0% 73% 100% 50% 84%

65.52%
MCI 25% 37.5% 25% 12.5% 50% 38% 73% 43%

MAD 16.7% 50% 33.3% 0% 40% 33% 77% 36%

MSAD 0% 0% 14.3% 85.7% 86% 86% 65% 86%
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TABLE III

THE CONFUSION MATRIX AND CLASSIFICATION PERFORMANCE OBTAINED BY THE OPTIMAL 

FNIRS FEATURES.

True Class
Predicted Class Model Performance

HC MCI MAD MSAD Precision Sensitivity Specificity F-Score Accuracy

HC 87.5% 12.5% 0% 0% 88% 88% 56% 88%

58.62%
MCI 12.5% 62.5% 12.5% 12.5% 45% 63% 52% 53%

MAD 0% 50% 50% 0% 43% 50% 67% 46%

MSAD 0% 28.6% 42.9% 28.6% 67% 29% 83% 40%
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TABLE IV

THE CONFUSION MATRIX AND CLASSIFICATION PERFORMANCE OBTAINED BY THE OPTIMAL 

HYBRID FEATURES.

True Class
Predicted Class Model Performance

HC MCI MAD MSAD Precision Sensitivity Specificity F-Score Accuracy

HC 100% 0% 0% 0% 89% 100% 63% 94%

79.31%
MCI 12.5% 75% 0% 12.5% 60% 75% 63% 67%

MAD 0% 67.7% 33.3% 0% 100% 33% 91% 50%

MSAD 0% 0% 0% 100% 88% 100% 67% 93%
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