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Abstract

Diabetic Retinopathy (DR) may result in various degrees of vision loss and even blindness if not 

diagnosed in a timely manner. Therefore, having an annual eye exam helps early detection to 

prevent vision loss in earlier stages, especially for diabetic patients. Recent technological advances 

made smartphone-based retinal imaging systems available on the market to perform small-sized, 

low-powered, and affordable DR screening in diverse environments. However, the accuracy of DR 

detection depends on the field of view and image quality. Since smartphone-based retinal imaging 

systems have much more compact designs than a traditional fundus camera, captured images are 

likely to be the low quality with a smaller field of view. Our motivation in this paper is to develop 

an automatic DR detection model for smartphone-based retinal images using the deep learning 

approach with the ResNet50 network. This study first utilized the well-known AlexNet, 

GoogLeNet, and ResNet50 architectures, using the transfer learning approach. Second, these 

frameworks were retrained with retina images from several datasets including EyePACS, 

Messidor, IDRiD, and Messidor-2 to investigate the effect of using images from the single, cross, 

and multiple datasets. Third, the proposed ResNet50 model is applied to smartphone-based 

synthetic images to explore the DR detection accuracy of smartphone-based retinal imaging 

systems. Based on the vision-threatening diabetic retinopathy detection results, the proposed 

approach achieved a high classification accuracy of 98.6%, with a 98.2% sensitivity and a 99.1% 

specificity while its AUC was 0.9978 on the independent test dataset. As the main contributions, 

DR detection accuracy was improved using the deep transfer learning approach for the ResNet50 

network with publicly available datasets and the effect of the field of view in smartphone-based 

retinal imaging was studied. Although a smaller number of images were used in the training set 

compared with the existing studies, considerably acceptable high accuracies for validation and 

testing data were obtained.
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1. Introduction

Based on data from the World Health Organization, 422 million people have diabetes in 

2014 around the world, and the number is predicted to be 552 million by 2030 [1]. The US 

Department of Health and Human Services National Diabetes Statistics Report [2] 

demonstrates that an estimation of 30.5 million in the US population (10.5 percent) has 

diabetes in 2020, with 7.3 million people undiagnosed, among all age groups. Individuals 

with diabetes are at high risk of diabetic eye diseases such as Diabetic Retinopathy (DR), 

Diabetic Macular Edema (DME), and Glaucoma. DR, the most suffered disease among all 

others, is caused by the damaging of blood vessels in the retina. The signs of DR can be 

listed as including but not limited to the existence of microaneurysms, vitreous hemorrhage, 

hard exudates, and retinal detachment. Fig. 1 shows retina images with different DR levels 

such as (a) normal, (b) mild, (c) moderate, (d) severe, and (e) proliferative.

It is projected that 14 million people will have DR in the US by 2050 [3]. If the detection of 

DR is not conducted at earlier stages, it may result in various degrees of vision impairment 

and even blindness. Therefore, a diabetic person must have an annual eye screening. Since 

developing countries suffer from high DR percentages, the lack of equipment is the main 

barrier to early diagnosis of DR. Besides, patients in rural areas may not have access to the 

state-of-the-art diagnosis devices, such as fundus cameras. Even if they have enough 

equipment, image analysis can take 1-2 days by an ophthalmologist. Hence, there is a 

growing demand for portable and inexpensive smartphone-based devices and automation of 

detecting such eye diseases.

Recent advances in computing and imaging technologies have enabled scientists to design 

small-sized, low-power, and affordable biomedical imaging devices using smartphones. 

These devices are capable of imaging, onboard processing, and wireless communication. 

Since they make existing systems small and portable, smartphone-based systems are widely 

used in several applications, ranging from health care to entertainment. Due to their large 

size, heavy weight, and high price, traditional fundus cameras are a good candidate to be 

transformed into a portable smartphone-based device to perform fast DR screening. The 

development of smartphone-based portable retinal imaging systems is an emerging research 

and technology area that attracts several universities and companies.

Holding a 20D lens in front of a smartphone camera is the simplest smartphone-based 

design to capture retina images [4]. Welch Allyn developed the iExaminer [5] system by 

attaching a smartphone to a PanOptic ophthalmoscope as shown in Fig. 2(a). These systems 

are built by attaching a smartphone to an existing medical device. There already exist several 

standalone designs for smartphone-based retinal imaging in the market including D-Eye, 

Peek Retina, and iNview. D-Eye [6] is the smallest retinal imaging system to capture retina 

images as an attachment to a smartphone as shown in Fig. 2(b). It illuminates the retina 

using the reflection of the smartphone’s flashlight next to the camera without requiring 

additional external light and power sources. Its optics design allows it to capture images at 

20 degrees in angle for dilated eyes. To simplify the design and to have evenly distributed 

illumination, the Peek Retina system [7] uses a circular placed multiple-LED light source to 

illuminate the retina as shown in Fig. 2(c). The iNview [8] was developed by Volk Optical as 
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a new wide-angle smartphone-based retinal imaging system as shown in Fig. 2(d). For 

illumination, since iNview uses the reflection of the smartphone’s flashlight, it does not 

require external light. Also, iNview can visualize the entire posterior pole in a single image 

by capturing 50 degrees of retinal view. Table I summarizes the hardware specifications of 

the publicly available smartphone-based imaging systems. Also, iExaminer, D-Eye, and 

iNview have Food and Drug Administration (EDA) approval. However, Peek Retina is 

currently waiting for its approval. Although these smartphone-based systems can capture 

retina images, none of them offers a solution to evaluate disease by analyzing the images 

with machine learning and image processing methods.

Since deep learning techniques, especially Convolutional Neural Networks (CNNs), are an 

emerging research area, different research communities have already applied CNNs for 

several applications, including DR detection [9]. Deep learning is widely used for image 

classification tasks using neural networks that calculate hundreds of mathematical equations 

with millions of parameters. Recent works in the literature related to DR detection have 

mainly focused on designing new algorithms for traditional fundus images that are primarily 

affected by occlusion, refraction, variations in illumination, and blur. Kaggle competition is 

one of the important breakthroughs for DR detection where the EyePACS retina image 

dataset was presented with 35,126 training and 53,576 testing images. It attracted 

researchers and data scientists all over the world where several deep learning solutions were 

presented to detect DR.

Abramoff et al. [10-11] developed the Iowa Detection Program using their dataset and 

Messidor-2 dataset for training and testing. They have presented a variety of DR definitions 

such as referable Diabetic Retinopathy (rDR), vision-threatening Diabetic Retinopathy 

(vtDR), and referable Diabetic Macular Edema (rDME). They also reported high detection 

performance for rDR and vtDR. Gulshan et al. also developed CNN based deep learning 

frameworks for DR detection [12]. They trained the Inception-v3 architecture [13] with 

128,175 images from EyePACS and Messidor-2 datasets and achieved high sensitivity and 

specificity. Gargeya et al. [14] used a customized CNN architecture to classify images into 

two categories: healthy vs. others with any DR stage. They trained their network with 75,137 

fundus images from their dataset, tested with Messidor-2 and E-Optha datasets, and 

achieved high accuracy.

Instead of training the CNNs from scratch, the transfer learning approach was used for 

pretrained deep learning frameworks [15-19]. Lam et. al. [15] proposed using pretrained 

CNN-based deep learning frameworks to detect DR using various classification models 

including but not limited to 2-ary, 3-ary, and 4-ary. They investigated the transfer learning 

approach for AlexNet [16] and GoogLeNet [17] using images in EyePACS and Messidor-1 

datasets. They suggested using image preprocessing to increase validation accuracy, 

especially for the detection of mild DR. They augmented the retina images to increase the 

number of images in the training set and to prevent overfitting. Their results showed high 

sensitivity and specificity. Pires et al. [18] also proposed using transfer learning techniques 

for rDR detection. For training, they applied data augmentation, multi-resolution, and 

feature extraction to images in EyePACS dataset. They tested the network with Messidor-2 

dataset and showed high rDR detection accuracy. Besides, Li et al [19] presented the binary 
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and multi-class DR detection methods using the transfer learning for the Inception-v3 

network. They trained the network with 19,233 images from their dataset and tested with 

Messidor-2 dataset. Their high accuracy results were comparable with the accuracy of three 

independent experts.

EyeArt is a cloud-based retina image assessment tool to detect DR using deep learning. It is 

capable of image description, image normalization, image rejection, region of interest 

detection, and descriptor computation. Solanki et al. [20] tested EyeArt with Messidor-2 

dataset and achieved high accuracy. Rajalakshmi et al. [21] presented an early work to detect 

DR using EyeArt at retina images captured by Fundus On Phone (POP) device. FOP proves 

the concept of smartphone-based designs and shows the technological and economic 

feasibility of the portable retinal imaging systems. Although all these related works achieved 

superior performance with high-quality fundus images, there were some limitations for 

smartphone-based retinal images. Due to their fewer controllable parameters and 

inexpensive lenses, smartphone-based systems have a smaller field of view and lower image 

quality compared to the fundus camera and FOP. Also, some existing methods [10-14] 

trained the CNNs from scratch that required very large labeled retina images and an 

extremely long time for the training process. Therefore, the existing approaches could not be 

applied directly to the retina images captured with smartphone-based systems because the 

field of view and image quality play important roles at the accuracy of the deep learning 

frameworks.

To address the above challenges and maximize the clinical utility of smartphone-based 

systems, this study explored the deep transfer learning frameworks for automatic DR 

detection. Our motivation in this paper is to develop an automatic DR detection model for 

smartphone-based retinal images using the deep learning approach with the pretrained 

networks. The main contributions of this article are two-fold: (i) to improve DR detection 

accuracy using the deep transfer learning approach for the pretrained networks with publicly 

available datasets and (ii) to study the effect of the Field of Views (FoVs) of smartphone-

based retinal imaging devices. This study, with its high accuracy, high sensitivity, and high 

specificity, could help to design affordable and portable retinal imaging systems attached to 

smartphones that can be used by a variety of professionals ranging from ophthalmologists to 

nurses. It allows distributing quality eye care to virtually any location with the lack of access 

to eye care. Since recent patients are more involved in the monitoring and care of their 

diseases, there is an increasing trend in at-a-distance or telemedicine efforts to provide 

health care services for individuals living in far rural areas. For example, the 

teleophthalmology program based on the Joslin Vision Network was designed for DR 

screening and showed that it is a less costly and more effective strategy to examine the DR 

than conventional clinical-based screening [22]. This is clear evidence that smartphone-

based retinal imaging systems will improve the technical capability and clinical practice for 

DR screening, increase the rate of access to DR imaging, and will help to decrease blindness 

due to DR even for individuals at distant locations from the health care facilities.
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2. Methods

This section presented the general structure of the utilized deep learning architectures using 

transfer learning approach. Deep learning is capable of learning those structures by 

extracting the required information from the network using training images. It does not 

require extracting vein structures and identifying lesions such as exudates, microaneurysms, 

and hemorrhages at the retina for diabetic retinopathy detection. Therefore, training is an 

essential part of any deep learning system where the network needs to be feed with 

thousands of images to learn from their pixel values and edges. Since none of the publicly 

available datasets have enough retina images to train such a big network from scratch, this 

study utilized pretrained networks using the transfer learning approach. The flowchart of the 

major steps in the proposed DR detection approach for smartphone-based images is shown 

in Fig. 3(a).

AlexNet, GoogFeNet, and ResNet50 are the well-known CNN architectures used for 

classification tasks. They were trained on ImageNet dataset [23] with millions of images to 

classify them into 1,000 different classes such as a keyboard, mouse, and several species of 

animals with a very low error rate. AlexNet, GoogFeNet, and ResNet50 consist of 25, 144, 

177 layers in MATFAB, respectively. For the memory efficiency in training, they start with 

traditional deep learning fashion using convolutional layers followed by activation layers 

and max-pooling layers to extract the low-level features. AlexNet is the shallowest network 

with five convolutional layers to extract low-level features. GoogFeNet stacked nine 

inception modules upon each other with a block encapsulation where different sizes of filters 

(1x1, 3x3, and 5x5) are used for capturing both low-level and high-level spatial features at 

different scales. ResNet50 [24] is the deepest network where skip connection was introduced 

to feed the input from the previous layer to the next layer without any modification. Both 

GoogFeNet and ResNet50 use 1x1 convolutional layers to reduce the computational 

complexity by preventing feeding a large number of inputs from the previous layer to the 

next. This dimension reduction method helps to reduce the model size and to decrease the 

number of parameters from 138 million to 4 million as an increasing depth of architecture 

with more layers and units at each stage. The extracted features in the last fully connected 

layers are fed into a classifier such as Naïve Bayes, Random Forest, and Support Vector 

Machines to make decisions. Finally, the softmax layer classifies images into different 

classes based on the highest probability. For training, the weights and biases are updated at 

each iteration.

This study adapted the transfer learning approach for pretrained networks including 

AlexNet, GoogFeNet, and ResNet50. For transfer learning, the last three layers from the 

pretrained networks were replaced with new fully-connected, softmax, and classification 

layers as shown in Fig. 3(b). The classification layer has two classes since images are 

separated into two classes: DR and No DR. To speed up network training and prevent 

overfitting, the first 110 layers of transferred GoogFeNet and ResNet50 networks are frozen 

by setting their learning rates to zero. The parameters and weights of the remaining layers 

are allowed to update during training. The new network is retrained with the retina images 

using Stochastic Gradient Descent (SGD) algorithm with a learning rate of 1e–5, a 
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momentum of 0.9, and a minibatch size of 8, 16, and 32 examples. The number of max 

epoch in experiments was set to 32, 64, and 128, depending on images in the training set.

3. Experimental setup and datasets

This study was carried out using several publicly available retina image datasets, including 

EyePACS [25], Messidor [26], Messidor-2 [27], IDRiD [28], and University of Auckland 

Diabetic Retinopathy (UoA-DR) [29-30]. EyePACS is the largest publicly available dataset 

that was offered during Kaggle competition with 35,126 retina images that includes five 

different DR severity labels. Messidor DR dataset contains 1,187 images with four labels 

and DME grades. Messidor-2 dataset is an extension of Messidor dataset that includes 1,058 

images from Messidor dataset and 690 new images. A total of 1,748 images in Mesidor-2 

are graded into five labels by a panel of three retina specialists. Indian Diabetic Retinopathy 

Image Dataset (IDRiD) has 271 retinal images and its DR severity assigned to five classes. 

UoA-DR dataset has 200 retina images and provides detailed DR and DME severity scales 

as well as information about neovascularization, hemorrhage, and microvascular 

abnormalities. Using this information, UoA-DR dataset was categorized into five DR 

classes. Table II shows the number of images in each data label for these datasets.

Retina images in EyePACS, Mesidor-2, IDRiD, and UoA-DR datasets are graded according 

to the International Clinical DR scale [31]. This scale classifies the retina images into five 

classes including None, Mild DR, Moderate DR, Severe DR, and Proliferative DR as shown 

in Fig. 1. However, Messidor dataset is graded into four labels based on the existence of 

neovascularization and the number of microaneurysms and hemorrhages. Table III shows the 

available data labels in each dataset. Originally, there are five different DR labels in each 

dataset except the Messidor dataset. When the grader classifies images into several groups, it 

is very common to make an incorrect grading decision, especially for the mild and moderate 

DR images. To remove the inconsistencies in grading and transfer the problem into an easier 

domain, Abramoff proposed to group the images into two labels based on the referable 

Diabetic Retinopathy (rDR) and vision-threatening Diabetic Retinopathy (vtDR) standards. 

In the rDR approach, images with moderate, severe, and proliferative DR labels are merged 

into a single label (rDR) and compared with normal (No DR) retinas. The rDR label also 

includes referable DME and ungradable images. The vtDR is another approach where it 

drops out moderate DR and ungradable images from the rDR and classifies retina images 

into normal and vtDR classes. Similar approaches were used in our work by classifying 

retina images into two classes. Therefore, this study tested several approaches tested 

including (1) normal retina vs. proliferative DR, (2) normal retina vs. severe and 

proliferative DR, (3) referable diabetic retinopathy (rDR), and (4) vision-threatening diabetic 

retinopathy (vtDR).

To investigate the DR detection accuracy for smartphone-based retinal imaging systems and 

compare them with traditional fundus imagery, two sets of experiments were conducted 

using original and synthetic retina images. Fig. 4(a) shows the flow chart of synthetic retina 

image generation for smartphone-based retinal imaging systems. Data preprocessing is 

required before using retina images in experiments because images in each dataset are 

captured by different image acquisition devices such as Canon, Centervue DRS, Optovue 
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iCam, and Topcon NW cameras. Pupil dilation levels also might be different for each image. 

Also, some images include darkness, reflections, lack of contrasts, and even lack of optic 

nerve. For the data preprocessing step, the images were removed from the dataset when the 

optic disk is not visible in the image and there is an imbalanced classification problem due to 

the different number of images in each label in the training. Also, the resolution of retina 

images in the dataset varies since they were captured by different fundus cameras. 

Therefore, 21,502 images were removed from the EyePACS dataset.

To train and test the deep learning networks requires retina images from smartphone-based 

imaging systems. However, there is no publicly available data captured by any smartphone-

based retinal imaging devices. Besides, pretrained frameworks require the inputs to have a 

certain size as color images. Therefore, synthetic retina images were generated by 

simulating the field of view (FoV) for different smartphone-based devices using the original 

retina images from UoA-DR dataset. Fig. 4(b) shows the steps of synthetic data generation 

where input images are masked, cropped, and resized for the required size. First, a circular 

mask was created around the center of the optic disc based on the different ratios of FoVs 

ranging from 20% to 90% with a step size of 10%, compared with the original images. The 

mask radius is calculated by multiplying the radius of the original image boundary and the 

percentage of the radius of FoV. Fig. 5(a) shows each circular mask representing the 

different FoVs to compare the difference in smartphone-based systems. The dotted yellow 

line represents the 20% FoV and the solid green line shows the 90% FoV. Finally, the 

original image was cropped at the mask center as a square. Then, the cropped square image 

was down-sampled into the required size. Examples of generated smartphone-based 

synthetic images for different FoVs are shown in Fig. 5(b-i).

Data augmentation is a very useful technique to prevent overfitting and bias, especially for 

the deep learning networks that require large datasets. Therefore, data augmentation is 

crucial for a small number of training images. With the data augmentation, the user acquires 

more data by applying an affine transformation to the existing images. Some of the data 

augmentation operations include, but not limited to: filling value, random rotation, 

reflection, scaling, shearing, and translation. These operations might be essential for some 

object recognition tasks for searching the different locations of the images. However, having 

the entire retina image is necessary for more accurate DR detection, especially the 

surroundings of the optic disc, fovea, and macula. Therefore, in our experiments, the only 

vertical flip was used to get a mirror image and both original and mirror images were 

included in the experiments. After data preprocessing, synthetic data generation, and data 

augmentation, retina images in each dataset were split into training and validation sets with a 

ratio of 0.9. The training sets include a maximum of 4,500 images.

For DR detection performance analysis of the deep learning frameworks, several 

experiments were designed using seven combinations of retina datasets for training and 

validation: (1) train and validation with only EyePACS, (2) train and validation with only 

Messidor, (3) train with EyePACS and validation with Messidor, (4) train with Messidor and 

validation with EyePACS, (5) merged datasets (EyePACS and Messidor), (6) rDR detection 

with the merged dataset (EyePACS, Messidor, Messidor-2, and IDRiD), and (7) vtDR 

detection with Merged dataset (EyePACS, Messidor, and IDRiD). In this paper, the deep 
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neural network was trained, validated, and tested with images from single, crossed, and 

merged datasets.

For all our experiments, algorithms were developed in MATLAB 2019 using the 

MatConvNet [32], deep learning, and image processing toolboxes. The experiments were 

run on a SkyTech Prism workstation with 8 core Intel i9 9900K processor at 3.6GHz, 

NVIDIA GeForce RTX 2080 with 11GB GPU, and 16GB memory. For example, training 

time for transfer learning of ResNet50 using the merged dataset (EyePACS, Messidor, and 

IDRiD) was around 877 seconds for 2,840 images with 64 epochs. The testing time per 

image was around 0.032 seconds.

4. Results and Discussion

This section first presented the results of our pretrained networks for the original fundus 

camera images to investigate their strengths and weaknesses by comparing them with the 

published works to support the novelty of our proposed approach. Second, we investigated 

the effect of using retina images from the single, cross, and merged datasets in training and 

validation. Third, these results were also compared with the smartphone-based synthetic 

retina images to explore the effect of FoVs for smartphone-based retinal imaging systems on 

the DR detection accuracy.

First, AlexNet, GoogLeNet, and ResNet50 models were trained on the merged dataset 

(EyePACS, Messidor, and IDRiD) and tested with UoA-DR dataset for vtDR detection. 

Table IV shows the overall accuracy, sensitivity, and specificity of our proposed networks 

from the validation and testing and compared with similar existing works in the literature. 

AlexNet showed better performance for validation compared with GoogLeNet. However, its 

accuracy for test images dropped and became lower than GoogLeNet because AlexNet is the 

shallowest network among others. Besides, ResNet50 reached the highest accuracy of 

98.6%, the sensitivity of 98.2%, and specificity of 99.1% for test images since it is the 

deepest network with a larger number of layers than others. These results are comparable 

with the results of recently published related works [11, 12, 15, and 19] to authenticate the 

contribution of the proposed method. Abramoff et al [11] and Gulshan et al. [12] trained 

their CNNs from scratch using a very large dataset and their sensitivity was 96.8% and 87%, 

and specificity was 87% and 98.5% for testing, respectively. Also, Lam et al. [15] used 

transfer learning to retrain AlexNet and GoogLeNet where they achieved a sensitivity of 

95% and specificity of 96% for validation and accuracy of 74.5% for testing. Li et al [19] 

explored the deep transfer learning method using the Inception-v3 network. For their testing, 

the accuracy was 98.6%, the sensitivity was 99.3%, and specificity was 98.5%. The 

comparison with the result of these existing studies also proves the effectiveness and 

efficiency of our proposed ResNet50 framework by showing state-of-the-art accuracy levels.

For better visualization of the performance analysis, the ROC curves of AlexNet, 

GoogLeNet, and ResNet50 models were presented in Fig. 6. A ROC curve was plotted by 

calculating the true positive rate (TPR) and the false positive rate (FPR) for different 

threshold values at the probability output of deep learning networks. TPR is the probability 

of detecting healthy (No vtDR) images as healthy. FPR is the probability of a false alarm 
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where a healthy retina image is categorized as a disease (vtDR). The area under the curve 

(AUC) values of these ROC curves were 0.980, 0.993, and 0.998 for AlexNet, GoogLeNet, 

and ResNet50, respectively. As shown in ROC curves, ResNet50 marked with a solid blue 

line showed the best performance. It was also observed that the network accuracy depends 

on the network depth of pretrained frameworks and it decreases as the number of layers 

becomes smaller. Since ResNet50 framework showed better performance compared with 

AlexNet and GoogLeNet, it was used for the rest of our experiments.

This study also explored the performance of CNNs by training and testing with different 

types of images from different datasets to show the network effectiveness with different 

training sets. Therefore, the data fusion capabilities of CNNs from different datasets were 

addressed to improve recognition performance. Besides, the network behavior was 

investigated for untrained retina images from different datasets. The following subsections 

first presented the results for the original fundus camera images. Then, the results for 

synthetically generated smartphone-based images were presented to show the effect of FoVs 

on DR detection accuracy.

4.1 Results for Original Fundus Camera Images

In our first set of experiments, seven combinations of datasets in training and validation were 

tested using the ResNet50 framework. The deep learning results were shown in Table V. 

Initially, the first and second sets of experiments were performed using single datasets. 

When the network was trained and validated with images from the same datasets, the overall 

DR detection accuracies of the network were 92.1% and 99.1% for EyePACS-u and 

Messidor datasets, respectively. Our third and fourth set of experiments presented results for 

cross datasets where the network is trained with retina images from one dataset and tested 

with images from another dataset. The accuracy of the network dropped to 69.7% for 

training with Messidor images and testing with EyePACS images. However, better accuracy 

results of 81.5% for training with EyePACS and validation with Messidor were observed. 

The main reason for performance drop is that training images in EyePACS dataset have 

lower quality images compared with images in Messidor dataset due to the reflections, dark 

regions, and low contrasts. Furthermore, there exist several inconsistencies in labeling in 

EyePACS images. Therefore, training with only EyePACS images and testing with other 

datasets resulted in lower accuracy. When these two datasets were merged for training and 

validation for the fifth experiment, the DR detection accuracy reached 94.6%. Finally, rDR 

and vtDR detections with merged dataset were tested in the sixth and seventh experiments. 

The detection accuracy for rDR was 91.2% with a sensitivity of 92.2% and a specificity of 

91.2%. The vtDR detection accuracy was 96.2%, sensitivity was 93.9%, and specificity was 

98.4%. It was observed that training deep networks with diverse images from different 

datasets improves DR detection accuracy.

The proposed method classifies images into two different classes based on the highest 

probability calculated in the softmax layer. Since there are only two classes, the image is 

classified as a healthy retina if its probability is higher than 0.5. However, equal probability 

might not provide the best performance. Therefore, ROC curves were used to make 

performance analysis in our experiments where accuracy is plotted based on the various 
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thresholds. Based on the ROC curves, two operating points were selected. The first operating 

point was set for the best sensitivity and the second one for the best specificity. The 

sensitivity is the most important factor for medical research where it shows the rates of the 

successfully detected unhealthy retinas. Table VI shows the accuracy of rDR and vtDR 

detection using two operating points for high sensitivity and high specificity. Note that, 

EyePACS (Label 0 vs. 3-4), Messidor (Label 0 vs. 2), Messidor-2 (Label 3-4), and IDRiD 

(Label 0 vs. 2-3-4) images were used for rDR; and EyePACS (Label 0 vs. 3-4), Messidor 

(Label 0), Messidor-2 (3-4), and IDRiD (Label 0 vs. 3-4) images were used for vtDR. For 

the high sensitivity, it was observed that the rDR sensitivity reached 93.3% with a specificity 

of 90% and the vtDR sensitivity reached 97% with a specificity of 93.5%. For the high 

specificity, the rDR specificity increased to 92.5% with a sensitivity of 90% and vtDR 

specificity increased 100% with a sensitivity of 92.3%.

4.2 Results for Smartphone-based Images

The second set of experiments investigated the effect of FoVs on smartphone-based 

synthetic retina images. Based on the previous baseline results, the high DR detection 

performance was received for vtDR detection at the merged datasets. Therefore, deep 

learning network was trained with retina images from EyePACS, Messidor, and IDRiD 

datasets as the seventh experiment in the previous subsection. Also, to address the cross 

datasets issues in deep learning, the trained network was tested with smartphone-based 

synthetic images generated from a completely new dataset, UoA-DR with different FoVs 

ranging from 20% to 90% with a 10% step-size. To include smartphone-based synthetic 

images from PanOptic, D-Eye, Peek Retina, and iNview systems, images from 32%, 40%, 

45%, and 94% FoVs were also tested based on the calculations in this work [33]. Using 

images from UoA-DR dataset allows us to test the cross datasets without overlap between 

training and testing images.

Table VII presented the results of the vtDR detection performance of the ResNet50 

framework for original and synthetic images with different FoVs. Since the network is 

trained with the original images, it shows the highest overall accuracy for testing with 

original images, as expected. The vtDR detection accuracy decreases from 98.6% to 51.2% 

as the FoV of the smartphone-based synthetic images gets smaller. It is observed that the 

sensitivity reduced slowly from 98.2% to 77.9% while FoVs decrease. However, the 

specificity declined very fast from 99.1% to 9.4%. The FoV affected the specificity of DR 

detection more aggressively than sensitivity because smaller FoVs covered only the optic 

disc and its surroundings. However, having a lesion in the retina is more likely to be close to 

the fovea than the optic disc. Therefore, it might be better to capture the surroundings of the 

fovea when the smartphone-based retinal imaging systems have a small FoV. The 

performance analysis of the ResNet50 deep network for original and synthetic images using 

ROC curves was presented in Fig. 7. Since TPR and FPR values change according to 

selected thresholds, any threshold value can be selected to lower the false alarm rate or 

increase the detection accuracy based on the specific system requirement. Equal error rate 

(EER) is the error value where false positive and false negative rates are equal to each for a 

specific threshold value in a ROC. For lower EER, the overall accuracy is higher. For 

original and synthetic images, calculated EERs range from 0.026 to 0.528 for the threshold 
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values from 0.22 to 0.977. The area under the curve (AUC) values for the ROC curves 

changed from 99.8% to 50.6%. As shown in ROC curves, original retina images marked 

with a black line show the best result compared with smartphone-based images. Since the 

network is trained with original images that include all retinal structures such as the optic 

nerve, fovea, macula, and blood vessels, the deep network showed the best performance for 

images from datasets with larger FoVs. However, smartphone-based systems generally have 

narrower FoVs that cover smaller areas. Therefore, the network accuracy depends on the 

FoV and it decreases as the FoV becomes smaller.

As an image quali6ty assessment, the effect of the image blur on the accuracy of the deep 

network was investigated by adding average blur and Gaussian blur to smartphone-based 

synthetic retina images with 80% FoV. First, average filters and Gaussian filters were 

applied to test images at different sizes such as 3x3, 5x5, 7x7, and 9x9. For Gaussian filters, 

the standard deviation was fixed at 3 (σ = 3). Then, these blurred images were fed into the 

retrained ResNet50 architecture for vtDR detection. Table VIII shows the vtDR detection 

accuracy for different amounts of blur and compares them with the original synthetic image. 

It was observed that detection accuracies decrease as the blur increases for larger filters.

To design an accurate smartphone-based retinal imaging system for DR detection, this paper 

suggests capturing the retina images using a device with an FoV as large as possible and 

training the deep network with diverse images from different datasets. Moreover, further 

improvement might be possible using semi-automated systems and multi-modal classifier 

fusion. There exist several decades of experience in designing DR detection algorithms 

using traditional feature extraction methods and expertise of ophthalmologists to make the 

final decision. Semi-automated systems enable manual inputs of professionals with required 

medical education and solid experience in computerized systems [34]. This process will 

provide valuable feature extraction and ground truth information for the improvement of the 

DR detection accuracy. Multi-modal classification systems [35] might be another alternative 

approach to improve the accuracy and robustness of DR detection by fusing the 

combinations of different data and classifiers. Since the multimodality concept uses the 

complementarity between the different data and classifiers where each modality provides 

additional types of information to the system, their combination may show better results 

compared with using them separately. Therefore, the fusion of information from hand-

crafted shape and texture features and convolutional neural networks trained with multiple 

datasets will improve the accuracy.

5. Conclusion

This paper presented the utility of CNN-based AlexNet, GoogLeNet, and ResNet50 

frameworks to improve the performance of DR detection in smartphone-based and 

traditional fundus camera retina images. This study allowed us to compare the deep learning 

frameworks and to study the effect of FoVs in smartphone-based retinal imaging systems on 

their DR detection accuracy. Based on our results, the proposed ResNet50 approach showed 

the highest accuracy, sensitivity, and specificity for validation and test images compared 

with other frameworks and recently published related works. This also proves the 

effectiveness and efficiency of our proposed methods by showing state-of-the-art accuracy 
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levels. DR detection accuracy was also improved by training networks with publicly 

available merged datasets. Although a smaller dataset was used in the training, considerably 

acceptable high accuracies were obtained. Also, the proposed ResNet50 model tested with 

different smartphone-based synthetic retina images from the UoA-DR dataset that were 

generated by simulating the different FoVs. It was observed that the DR detection accuracy 

increases as the FoVs get larger and deep networks are trained with images from different 

datasets. Since the FoV affected the specificity of DR detection more aggressively than 

sensitivity for images covering around the optic disc, capturing the surroundings of the fovea 

might be helpful for better sensitivity when the smartphone-based systems have a smaller 

FoV. However, there also exist several challenges for smartphone-based imaging sys terns 

due to the limitations of computational power, battery capacity, and camera properties in 

smartphones. For example, images captured with smartphone- based sys terns have lower 

quality and a narrower field of view compared with the traditional fundus camera because of 

the fewer controllable parameters, more sensitivity to illumination changes, and inexpensive 

lenses used in the design. Therefore, it is necessary to consider all challenging issues when 

designing algorithms for smartphone-based imaging systems.
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Fig. 1. 
Retina images from the UoA-DR dataset with ditierent UR levels, (a) normal, (b) mild, (c) 

moderate, (d) severe, and (e) proliferative.
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Fig. 2. 
Smartphone-based retinal imaging systems available in the market, (a) iExaminer (b) D-Eye, 

(c) Peek Retina, and (d) iNview.
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Fig. 3. 
(a) Flow chart of the proposed smartphone-based DR detection method and (b) Transfer 

learning approach for deep learning architectures.
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Fig. 4. 
(a) Workflow of synthetic retina image generation for smartphone-based retinal imaging 

systems and (b) Steps of synthetic data generation with masking, cropping, and resizing the 

input images.
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Fig. 5. 
(a) Comparison of the FoV of synthetic images with different percentages w.r.t the original 

image where the solid green, blue, purple, and yellow lines represent 90%, 80%, %70, and 

%60 FoV, respectively. The dotted green, blue, purple, and yellow lines represent 50%, 40%, 

30%, and 20% FoV, respectively. The corresponding synthetic images for (b) 90%, (c) 80%, 

(d) 70%, (e) 60%, (f) 50%, (g) 40%, (h) 30%, (i) 20%.
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Fig. 6. 
Performance analysis using ROC for AlexNet, GoogLeNet, and ResNet50 frameworks from 

original retina images.
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Fig. 7. 
Performance analysis using ROC for different testing images from original and synthetic 

smartphone-based retinal images with various percentage of FoV compared with original 

retina images.
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TABLE I

Specifications of Smartphone-based Retinal Imaging Systems

iExaminer D-Eye Peek Retina iNview

Light Source Self Phone Self Phone

Degree of Retinal View 25 6-20 20-30 50

Working Distance (mm) 22 22 22 65

Size (mm) 70/220/162 68/135/7 25/75/35 180/76/180

Weight (g) 390 25 43 332

Price ($) 750 400 235 995
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TABLE II

Retina image datasets with DR severity labels

Datasets Label0 Label1 Label2 Label3 Label4 Total

EyePACS 25810 2443 5292 873 708 35126

EyePACS-u* 9895 899 2175 568 317 13624

Messidor 547 149 240 251 - 1187

Messidor-2 1017 270 347 75 35 1748

IDRiD 168 25 168 93 62 516

UoA-DR 56 9 50 55 30 200

*
EyePACS-u: EyePACS-Updated
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TABLE III

Label assignments for DR severity

Datasets Label0 Label1 Label2 Label3 Label4

EyePACS No Mild Moderate Severe Prolif.*

Messidor No Mild Mod-Sev.
+ Prolif.* -

Messidor-2 No Mild Moderate Severe Prolif.*

IDRiD No Mild Moderate Severe Prolif.*

UoA-DR No Mild Moderate Severe Prolif.*

+
Mod-Sev: Moderate and Severe

*
Prolif.: Proliferative
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TABLE IV

Accuracy for DR detection of Deep Learning Frameworks

Networks/
Related Works

Validation Testing

Acc, % Sen, % Spe, % Acc, % Sen, % Spe, %

AlexNet 95.6 92.8 98.3 91.4 97.6 82.5

GoogLeNet 93.6 90.7 96.4 94.5 99.7 86.8

ResNet50 96.2 93.9 98.4 98.6 98.2 99.1

Abramoff [11] - - - - 96.8 87.0

Gulshan [12] - 90.3 98.1 - 87.0 98.5

Lam [15] - 95.0 96.0 74.5 - -

Li [19] - - - 98.6 99.3 98.5
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TABLE V

Classification Accuracy of Deep Learning Frameworks

Datasets Type Acc, % Sen, % Spe, %

(1) EyePACS-u Single 92.1 86.5 96.3

(2) Messidor Single 99.1 98.3 100

(3) EyeP_Mess Cross 69.7 34.5 97.4

(4) Mess_EyeP Cross 81.5 57.7 99.3

(5) Mess_EyeP Merged 94.6 88.5 98.3

(6) rDR Merged 91.2 92.2 91.2

(7) vtDR Merged 98.6 98.2 99.1
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TABLE VI

Accuracy for rDR and vtDR detection using two operating points

rDR vtDR

Acc, % Sen, % Spe, % Acc, % Sen, % Spe, %

High Sensitivity 91.5 93.3 90.0 94.9 97.0 93.5

High Specificity 91.7 90.0 92.5 96.9 92.3 100
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TABLE VII

Test results of smartphone-based devices and FOV with UoA-DR

Datasets Acc, % Sen, % Spe, % AUC EER THR

Original 98.6 98.2 99.1 0.998 0.026 0.320

94% (IN) 95.7 93.8 98.1 0.988 0.038 0.220

90% 95.8 94.0 98.1 0.987 0.038 0.252

80% 95.9 95.6 96.2 0.985 0.038 0.384

70% 89.3 92.7 84.9 0.963 0.094 0.795

60% 83.5 91.2 73.6 0.929 0.113 0.956

50% 75.2 83.8 64.2 0.859 0.189 0.946

45% (PR) 68.6 79.4 54.7 0.817 0.245 0.825

40% (DE) 61.2 79.4 37.7 0.736 0.359 0.906

32% (PO) 54.6 77.9 24.5 0.574 0.491 0.938

30% 54.6 77.9 24.5 0.574 0.491 0.938

20% 51.2 83.8 9.4 0.463 0.528 0.977
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TABLE VIII

Accuracy of vtDR detection for different size of image blurs

Size of
Filter

Average Blur Gaussian Blur (σ = 3)

Acc, % Sen, % Spe, % Acc, % Sen, % Spe, %

No Blur 95.9 95.6 96.2 95.9 95.6 96.2

3x3 95.9 97.1 94.3 95.9 97.1 94.3

5x5 92.6 95.6 88.7 92.6 95.6 88.7

7x7 86.0 88.2 83.0 86.8 86.8 86.8

9x9 73.6 69.1 79.3 82.6 85.3 79.3
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