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Abstract

Purpose of Review—To highlight recent findings on how picornavirus infections of the airways 

and cardiac tissues impact cellular inflammation and remodeling events.

Recent Findings—Recent published work has revealed that although many picornavirus 

infections appear to be initially asymptomatic, there are significant disease sequelae that result 

from chronic or persistent infections and the long-term, pathogenic effects on host tissues.

Summary—Because many acute picornavirus infections are asymptomatic, it is difficult to 

diagnose these pathologies at the early stages of disease. As a result, we must rely on preventative 

measures (i.e., vaccination) or discover novel treatments to reverse tissue damage and remodeling 

in affected individuals. Both of these strategies will require a comprehensive knowledge of virus-

and cell-specific replication determinants and how these processes induce pathogenic effects in 

infected cells and tissues.
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Introduction

Picornaviruses are small non-enveloped viruses whose sizes vary from 30 to 32 nm. The 

capsid is composed of 60 identical protomers assembled in an icosahedral structure 

protecting the viral genome, which consists of a non-segmented, positive-strand RNA 
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ranging from 6.7 to 10.1 kb. The family Picornaviridae belongs to the order Picornavirales. 

To date, more than 110 species have been described, grouped in more than 47 genera [1, 2]. 

These viruses are primarily transmitted by the fecal-oral route or via saliva and respiratory 

droplets. They can infect a number of different organs, including the central nervous system, 

heart, liver, skin, gastrointestinal tract, and upper respiratory tract. Each species uses a 

dedicated receptor(s) to enter the host cell, and viral replication steps take place in the 

cytoplasm.

Following infection of host cells, the innate immune system detects viral components and 

triggers a response. It is known that melanoma differentiation–associated gene 5 (MDA5) 

recognizes dsRNA of picornaviruses [3, 4]. Moreover, retinoic acid–inducible gene I (RIG-I) 

is cleaved during picornavirus infection, suggesting a role in the innate response to these 

viruses [5]. MDA5 and RIG-I both stimulate the production of cytokines, which allows the 

recruitment of immune cells that will trigger a response to eliminate the pathogenic agent. 

These inflammatory mechanisms are dependent on host cells (and their tissue of origin) as 

well as the virus [6]. In most cases, such inflammatory mechanisms are good for the host; 

however, on some occasions an excessive response is triggered and is detrimental to the host 

by inducing tissue remodeling, resulting in disease. In this review, we will summarize the 

most recent findings on the inflammation and remodeling events after picornavirus 

infections of the respiratory airways and cardiac tissue.

Membrane Remodeling

It is well known that picornaviruses divert cellular membranes of infected cells to create 

replication organelles. This topic has been reviewed recently in [7]. These replication 

organelles are composed of hijacked intracellular membranes, re-purposed by the viral 

3A(B) protein to enhance picornavirus replication [8]. It is thought that they serve a dual 

purpose of replication complex formation and compartmentalization of the viral RNA [9], 

allowing the virus to escape from RNA and pathogen intracellular sensing, and 

subsequently, the immune response of the host. Additionally, members of the enterovirus 

genus of the picornavirus family have been reported to re-purpose autophagosomes and use 

them to release progeny virions from the cell in an alternative, non-lytic manner, allowing 

the viruses to be secreted without killing host cells and to display new properties in 

dissemination [10]. These mechanisms have been reviewed recently [11, 12].

Airway Remodeling

Respiratory infections by picornaviruses are a common phenomenon, ranging from the 

common cold induced by human rhinovirus (HRV) to more life-threatening conditions 

induced by the expanding outbreaks of enterovirus D68 (EV-D68) infections. Here, we will 

discuss recent findings on the role of picornavirus infections in asthma and cystic fibrosis 

and the exacerbation of these conditions.

Asthma

Asthma is a chronic respiratory disease characterized by wheezing, shortness of breath, 

chest tightness, cough, and variable airflow limitations. These symptoms are not continuous 
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and can be caused by a number of factors such as exercise, allergens, irritant exposure, or 

viral respiratory infections [13]. An ever-increasing number of studies document the 

involvement of HRV in asthma [14].

Airway remodeling is an important hallmark of asthma, and deposition of increased levels of 

extracellular matrix (ECM) protein is one of the events leading to that remodeling. HRVs are 

able to increase deposition of perlecan, an extracellular matrix (ECM) protein, collagen V, 

and matrix-bound vascular endothelial growth factor in human bronchial epithelial cells 

[15]. Moreover, it has been reported that HRVs are able to induce the process of epithelial-

mesenchymal transition in bronchial cell lines, and are even more efficient when synergizing 

with TGF-β1, potentially inducing an increased ECM protein deposition [16•]. ECM is 

known to regulate smooth muscle contraction [17]; the remodeling of this component 

decreases airway flow and could, in part, explain the role of HRV in asthma. Moreover, 

infection of monocytes by HRV upregulates ORMDL3 (a sphingolipid biosynthesis 

regulator), leading to increased levels of IFN-β and the endoplasmic reticulum chaperone 

BiP (HSPA5). This effect was enhanced in cells harboring genes associated with asthma 

[18]. Interestingly, it has been shown that IL-6, IL-8, and RANTES levels are lower and 

TGF-β1 levels are higher when cells are infected by HRV in an atopic asthmatic 

environment compared with a healthy environment. These results show that in an asthmatic 

patient, inflammation is decreased, resulting in higher levels of viral replication and 

increased cell damage [19], providing a plausible explanation for the loss of function of 

airway cells. A plausible scheme for cellular and tissue remodeling induced during human 

rhinovirus replication is shown in Fig. 1.

Cystic Fibrosis

Cystic fibrosis is an autosomal disorder caused by a mutation in the cystic fibrosis 

transmembrane conductance regulator protein. This mutation induces a change in the 

activity of chloride and sodium channels of sweat- and mucus-producing cells, resulting in 

thick and sticky mucus, setting an optimal environment for pathogen replication, especially 

pseudomonas [20]. It has been reported that HRVs are the most common viruses found in 

patients suffering from cystic fibrosis [21, 22], present in up to 43% of children under the 

age of five suffering from cystic fibrosis [23]. However, the precise role of HRV in cystic 

fibrosis requires further investigation, as it is unclear if chronic infections by these viruses 

increase the disease sequelae by inducing inflammatory responses or are just a secondary 

outcome [24].

HRV infection results in the upregulation of the chemokines CXCL10, CXCL11, and 

CXCL9 in patients suffering from cystic fibrosis, recruiting monocytes to the site of 

infection [25]. A recent study showed that different groups of rhinoviruses (differentiated by 

receptor usage) induced different effects on primary isolates of bronchial epithelial cells 

(BEC) from patients with cystic fibrosis. The so-called major HRV group infection of cystic 

fibrosis BEC yielded decreased interferon (IFN) responses compared with control BECs. In 

contrast, minor HRV group infections induced increased levels of IFN as well as increased 

expression of pattern recognition receptors that act as pathogen sensors [26]. Nevertheless, 

the association between HRVand cystic fibrosis requires more comprehensive studies since 
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children suffering from this disease appear to be more susceptible to infection and for longer 

periods of time [27]. It is clear that HRVs are able to profoundly change cellular biology. For 

example, an in vitro study on alveolar epithelial cell monolayers infected by HRV analyzed 

differentially expressed genes. During the early steps of infection (up to 6 h post-infection), 

an upregulation of genes involved in the inflammatory response was observed. Subsequently, 

these viruses upregulate genes responsible for apoptosis, anti-apoptosis, blood vessel 

morphogenesis, and wound healing (12 h post-infection). Finally at late times of infection 

(24 h and 48 h post-infection), a downregulation of genes involved in airway remodeling 

events is observed [28]. Altogether, these results highlight a potential role for HRV in 

exacerbating the symptoms of cystic fibrosis.

Myocarditis

Enterovirus are known to be responsible for cardiac diseases, more specifically group B 

enteroviruses [29, 30]. Following an acute infection, the virus can persist in the cardiac 

tissue and lead to chronic myocarditis and dilated cardiomyopathy. It is well documented 

that following enterovirus infection, cardiac tissues become inflamed and remodeling of the 

heart occurs [31]. More recently, extensive studies on the role of enteroviruses in persistent 

infections leading to myocarditis have been published (for example [32••],). A model that 

includes the more recent findings for cardiac tissue remodeling following enterovirus 

infections is displayed in Fig. 2. As illustrated in the figure, inflammation appears to play an 

important role in the pathogenesis of enterovirus-mediated heart disease. It has been 

reported that neutrophils recognize coxsackievirus B3 (CV-B3) and play a role in disease 

outcome. Although neutrophils can internalize CV-B3, the virus does not replicate well in 

these cells. Following entry, viruses are detected by endosomal TLR-8 and induce an NFκB 

response [33]. In a murine model, neutrophil depletion leads to reduced viral replication and 

cardiomyocyte hypertrophy [34]. Other immune cells are important for the remodeling of 

cardiac tissue. It has been shown that regulatory T cells (Treg) play a significant role in 

cardiac fibrosis. During infection, the Treg cell population decreases and fibrosis increases. 

Further studies with anti-IL-10 antibodies revealed that Treg modulation of fibrosis occurs 

via IL-10 secretion [35]. Additionally, Tsunoda and colleagues [36] found that TLR4-

deficient mice had lower levels of lympho-proliferation, IL-6, and IL-17, all of which were 

associated with increased myocarditis susceptibility. Similarly, a mutation of Unc93b1, a 

chaperone protein for TLR3, TLR7, and TLR9, showed that lack of TLR signaling increased 

viral loads during CV-B3 infection and increased inflammation, necrosis, and fibrosis [37]. 

A murine model in animals lacking the chemokine receptor CX3CR1 also displayed 

increased inflammatory cytokines and chemokine expression, leading to a more extensive 

immune cell infiltrate, cardiac fibrosis, and cardiomyocyte death following CV-B3 infection 

[38]. Similarly, NKT cell-deficient mice exhibit a higher viral load and an increase in 

antiviral antibody titers during Theiler’s murine encephalomyelitis virus (TMEV) cardiac 

infection despite lower levels of lympho-proliferation and reduced IL-4 and IL-10 levels 

[39]. More recently, the role of IL-22-producing Th22 cells has been described during 

myocarditis. Following infection by CV-B3, mice expressed IL-22 at higher levels, as well 

as collagen type I-A1, collagen type III-A1, and matrix metalloproteinase-9, while levels of 
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tissue inhibitor of metalloproteinase-1 (TIMP-1) were decreased. This resulted in cardiac 

fibrosis, a hallmark of chronic cardiac disease and tissue remodeling [40].

The mRNA levels for the cytoplasmic pattern recognition receptor NOD2 (nucleotide-

binding oligomerization domain 2) have been shown to be upregulated in patients infected 

by CV-B3 and suffering from myocarditis. Interestingly, NOD2 knockdown decreased 

inflammatory infiltrate and pro-inflammatory cytokine production, fibrosis, apoptosis, and 

expression of the coxsackievirus and adenovirus receptor (CAR) [41]. Similarly, the 

calcium-binding alarmins S100A8 and S100A9, which function as damage-associated 

molecular patterns, were also upregulated in cardiac tissue of patients suffering from CV-

B3-induced myocarditis. In vitro experiments showed that overexpression of these proteins 

enhanced oxidative stress and CV-B3 replication in cardiomyocytes and stimulated the 

expression of the chemokine, macrophage inflammatory protein-2 (MIP-2), in macrophages. 

Moreover, infection of mice deficient in S100A8 and S100A9 by CV-B3 showed improved 

left ventricular functions as well as a lower level of inflammation and viral replication [42].

Macrophages are known to play a major role in acute inflammation and chronic fibrosis. 

Mice depleted of macrophages were able to sustain increased levels of CV-B3 replication but 

had reduced pathology and lower levels of fibrosis. Interestingly, reduced levels of 

myocarditis and chronic fibrosis were also observed in mice knocked out for galectin 3, a 

lectin involved in pathogenic cardiovascular remodeling and autoimmune/inflammatory 

processes [43]; however, in this case viral titers were not increased [44].

The cellular cysteine protease calpain has been reported to act in enterovirus infections [45–

47]. Inhibiting its action by using a transgenic mouse model overexpressing calpastatin led 

to a decrease in tissue injury and viral load. Moreover, the pro-inflammatory factors MPO, 

perforin, IFNγ, and IL-17 were downregulated as well as the fibrotic factors Smad3 and 

MMP2 [48]. This study also showed that calpain promotes fibroblast migration in vitro. 

Interestingly, calpains are also involved in CV-B-induced necrosis of polarized intestinal 

cells (Caco-2) by mediating tight junctions and actin cytoskeleton rearrangement [49].

Inflammation is the first response to cardiac infection, leading to remodeling of the tissue, 

but it also triggers changes in the cell itself. It is known that cardiac diseases are linked to 

changes in cell metabolism (reviewed in [50]), and it has been reported recently that 

following infection by CV-B3, infiltrating leukocytes activate NFκB signaling, inducing 

cytokine expression that turns down oxidative gene expression. This deficit impairs energy 

metabolism in cardiomyocytes as well as their functions [51]. More changes can be seen 

during myocardial infection of the heart; it is now well known that CV-B3 2A proteinase can 

disrupt dystrophin and prevent its membrane localization [52] and that expression of 2A 

alone is sufficient to trigger dilated cardiomyopathy [53]. More recently, it has been shown 

that the C-terminal fragment of dystrophin (a product of viral 2A proteolytic cleavage) is 

able to bind the sarcoglycan complex and prevent the natural function of dystrophin. A 

threshold of 50% of un-cleaved cardiac dystrophin is necessary to prevent cardiac disease 

[54]. Additionally, by inducing the expression of miR-21, the virus downregulates 

intercalated disk components, disrupting the connections and communications between 

cardiac cells, and more specifically by destabilizing desmosomes [55]. CV-B3 infection also 
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promotes the production of collagen I/IV in neonatal rat cardiac fibroblasts, inducing cardiac 

fibrosis [56]. Interestingly, this effect could be reversed by activating adenosine 

monophosphate–activated protein kinase. However, it is unlikely that the reduction of 

fibrosis would be an effective treatment even though acute myocarditis is characterized by 

inflammation and fibrosis, which decrease during the chronic phase of myocarditis. This 

reduction does not correlate with a recovery of hemodynamic function in a murine model 

[57]. More importantly, it has been shown that CV-B3 can infect cardiac tissue from juvenile 

mice at a subclinical dose, without any detectable disease symptoms. But once they reach 

adulthood, the mice infected as juveniles are predisposed to experience heart hypertrophy, 

leading to heart failure. This might be explained by a depletion of cardiac progenitor cell 

pools following an early differentiation of cardiac progenitor cells induced by CV-B3 [58••].

Hand, Foot, and Mouth Disease

Hand, foot, and mouth disease (HFMD) is characterized by sores in the mouth and blisters 

on the hands, feet, and legs. This disease is known to be caused by viral several enterovirus 

strains (e.g., EV-A71, EV-A68, CV-A6, CV-A16). The disease can be recapitulated in non-

obese diabetic/severe combined immuno-deficient (NOD/SCID) mice, gamma interferon 

receptor (ifngr) knockout mice, and stat-1 knockout mice [59]. These infection models 

produced disease symptoms, including paralysis, and death rates that can be used for further 

studies. In addition to causing hand, foot, and mouth disease, enteroviruses like EV-A71 can 

infect the CNS. It has also been demonstrated that EV-A71 can infect and replicate in human 

microvascular endothelial cells and can be shed on both sides of these polarized cells. 

Moreover, actin cytoskeleton destruction, membrane remodeling, and cell death were 

observed along with an increase in permeability in a model of the blood-brain barrier [60]. 

Finally, another enterovirus (CV-A16) can upregulate the transcription of its receptor, 

scavenger receptor class B member 2 (SCARB2), in 293 T cells. This results in 

enhancement of subsequent rounds of infection, potentially facilitating co-infection and 

possible recombination with EV-A71 [61].

Conclusions

In this review, we have summarized recent findings on inflammation and remodeling of 

airway and cardiac tissues during picornaviruses infections. Although most picornavirus 

infections appear to be asymptomatic or lead to mild disease syndromes such as the common 

cold, the outcomes of these infections can lead to long-lasting effects in susceptible 

individuals, potentially life threatening, with or without chronic infections. These long-

lasting effects can happen months or even years after the initial infection without any 

symptoms observed before the final stages, making it hard to diagnose and treat in the early 

phases when the pathology is mild. As a result, the importance of enterovirus infections in 

chronic diseases has been underestimated for a long time and has only more recently been 

acknowledged in disease syndromes such as cardiomyopathy [30, 32••] and diabetes [62]. 

Nevertheless, due to the asymptomatic nature of some acute infections, it is unlikely that we 

can diagnose these pathologies in the early stages, as healthy populations will never get 

sampled. The therapeutic options are to develop preventive vaccination, as explained by 

Dunne et al. [63], or to find ways to reverse tissue damage and remodeling in patients. For 
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both options, a comprehensive understanding of cell-specific replication determinants and 

the pathogenic effects on infected tissues is critical to better anticipate these events and 

design therapeutic strategies.
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Fig. 1. 
Remodeling of respiratory airway by human rhinoviruses. Following infection and 

replication, respiratory tissues can undergo changes affecting both cellular morphology and 

biology as well as the extracellular compartments. The text boxes illustrate the respiratory 

tissue components that are affected by rhinovirus infections
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Fig. 2. 
Remodeling of cardiac tissue by enteroviruses. Following infection and replication, cardiac 

tissues undergo significant changes. There are alterations in cell biology and the expression 

of many intracellular components, inducing a dysregulation of inflammation and immunity 

(shown as text in blue boxes). The immune system effectors will then be recruited and can 

act in an uncontrolled manner, triggering bystander effects (shown as text in red boxes). 

Ultimately, the extracellular space between cells will undergo drastic changes, impairing 

systolic function by breaking down the contacts and communication between cardiac cells 

(shown as text in green boxes)
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