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a b s t r a c t

In this work, a researcher develops SHEIQRD (Susceptible–Stay-at-home–Exposed-
Infected–Quarantine–Recovery–Death) coronavirus pandemic, spread model. The disease-
free and endemic equilibrium points are computed and analyzed. The basic reproduction
number R0 is acquired, and its sensitivity analysis conducted. COVID-19 pandemic spread
dies out when R0 ≤ 1 and persists in the community whenever R0 > 1. Efficient
stay-at-home rate, high coverage of precise identification and isolation of exposed
and infected individuals, reduction of transmission, and stay-at-home return rate can
mitigate COVID-19 pandemic. Finally, theoretical analysis and numerical results are
shown to be consistent.

© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Coronaviruses are a large family of viruses that may cause illness in animals or humans. In humans, several coro-
naviruses are known to cause respiratory infections ranging from the common cold to more severe diseases such as
Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). The most recently discovered
coronavirus causes Coronavirus Disease 2019( COVID-19) [1]. Its the infectious disease caused by the most recently
discovered coronavirus. This new virus and disease were unknown before the outbreak began in Wuhan, China, in
December 2019. The most common symptoms of COVID-19 are fever, tiredness, and dry cough. Some patients may have
aches and pains, nasal congestion, runny nose, sore throat, or diarrhea. These symptoms may appear 2–14 days after
exposure, most commonly around five days [2,3].

China was the index case of the COVID-19 pandemic. Later it rapidly spread thought the world. People infected by
those initial cases spread the disease to others drastically due to human transmission [4]. Although Corona represents a
major public health issue in the world, as of March 11, 2020, over 118,000 infections spanning 113 countries have been
confirmed by the World Health Organization (WHO). The WHO declared this public health emergency as a pandemic [5].
As of 14 April 2020, WHO reported 1, 844, 863 confirmed case and 117,021 deaths have been recorded globally [6].

The study about the spread and control of COVID-19 is essential at this time. Different scholars are study about
infectious disease spread control by using modeling approach [7–12]. Recently, researcher study about COVID-19
[13–16]. The model, which is of SEIR form [17], incorporates the recommended public health interventions in the current
pandemic. The recommended mitigation strategies of the pandemic are stay-at-home and isolation of exposed and
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Fig. 1. Schematic diagram of the model.

nfected individuals by efficient identification process. This researcher focus on the impact of control measures by varying
he parameter values. The model result indicates that the containment of the pandemic requires a high level of both
dentification and isolation process and the contact tracing process by stay-at-home for removing infected individuals
rom the susceptible population.

. Model formulation

In this work, a researcher considers that the total population is represented by N(t), at time t . The total population is
ividing into seven compartments. The susceptible population S(t), they stand for people who are capable of becoming
nfected. The quarantine population H(t), they represent stay-at-home people. The exposed population E(t), they represent
eople who are incubating the infection. The spreader population I(t), they represent infectiously infected people. The
uarantine population Q (t), they represent people who are isolated by clinical confirmation. The recovery population R(t),
hey represent people who are recovering from the virus. The density of disease-induced death is denoted by D(t).

The model flow chart is illustrated in Fig. 1. In the process of COVID-19 spreading, the spreading among these seven
tates is governing by the following assumptions. It is assumed that β is the contact rate of susceptible individuals
ith spreaders, and the disease transmission follows the mass action principle. A researcher assumes that susceptible

ndividuals home quarantine or stay-at-home at a rate of θ . And at a rate of θ0, peoples lift stay-at-home order due to the
neffectiveness of home quarantine. People who completed the incubation period becomes infected at a rate of σ , which
eans 1

σ
is the average duration of incubation. According to clinical examination, the exposed and infectious individuals

ecome isolated at a rate of η and α, respectively. The average duration of infectiousness is 1
γ
when γ is the transmission

rate from infected to recovery or death. In my assumption, recovery from isolated infected is better than the infectious
class due to clinical treatment. Infectious and isolated infected recover with a probability of κ1 and κ2, and also they will
die by the rate of (1− κ1) and (1− κ2) respectively. The parameter Λ is the recruitment, while µ natural birth and death
ate of each state individuals. All parameter values are non-negative.

Based on the above considerations, COVID-19 spreading leads to dynamic transitions among these states, shown in
ig. 1. The model can be described by the following system of nonlinear ordinary differential equations:

dS
dt

= Λ−
βSI
N

− (µ+ θ )S + θ0H,

dH
dt

= θS − (µ+ θ0)H,

dE
dt

=
βSI
N

− (σ + η + µ)E,

dI
dt

= σE − (γ + α + µ)I,

dQ
dt

= ηE + αI − (γ + µ)Q ,

dR
dt

= κ1γ I + κ2γQ − µR,

dD
dt

= (1 − κ1)γ I + (1 − κ2)γQ − µD,

N(t) = S(t) + H(t) + E(t) + I(t) + Q (t) + R(t) + D(t).

(1)

We have the non-negative initial conditions (S(0), H(0), E(0), I(0), Q (0), R(0), D(0)) ∈ R7
+
.

To make the mathematical analysis easier, the variables of the model (1) can be normalized as u(t) =
S(t)
N(t) , h(t) =

H(t)
, v(t) =

E(t)
, w(t) =

I(t)
, q(t) =

Q (t)
, r(t) =

R(t)
, d(t) =

D(t)
, andΛ = µN(t). After substitute them in (1) we can
N(t) N(t) N(t) N(t) N(t) N(t)
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du(t)
dt

= µ− βu(t)w(t) − (θ + µ)u(t) + θ0h(t),

dh(t)
dt

= θu(t) − (µ+ θ0)h(t),

dv(t)
dt

= βu(t)w(t) − (σ + η + µ)v(t),

dw(t)
dt

= σv(t) − (α + γ + µ)w(t),

dq(t)
dt

= ηv(t) + αw(t) − (γ + µ)q(t),

dr(t)
dt

= κ1γw(t) + κ2γ q(t) − µr(t),

dd(t)
dt

= (1 − κ1)γw(t) + (1 − κ2)γ q(t) − µd(t).

(2)

From the normalized form of the model we have to get

u(t) + h(t) + v(t) + w(t) + q(t) + r(t) + d(t) = 1.

The first equation of the system (2) can be removed and there remains a system of six differential equations.

h′(t) = θ (1 − h(t) − v(t) − q(t) − w(t) − r(t) − d(t))− (µ+ θ0)h(t),
v′(t) = βw(t) (1 − h(t) − v(t) − q(t) − w(t) − r(t) − d(t))− φv(t),
w′(t) = σv(t) − ξw(t),
q′(t) = ηv(t) + αw(t) − (γ + µ)q(t),
r ′(t) = κ1γw(t) + κ2γ q(t) − µr(t),
d′(t) = (1 − κ1)γw(t) + (1 − κ2)γ q(t) − µd(t)

(3)

where φ = (σ + η + µ) and ξ = (α + γ + µ).
So, the feasible domain of the system (3) is

Γ =
{
(h, v, w, q, r, d) ∈ R6

+
|h + v + w + q + r + d ≤ 1

}
.

For the well-posedness of the model, we have the following lemma.

Lemma 1. The set Γ is positively invariant to system (3).

Proof. Denote x(t) = (h(t), v(t), w(t), q(t), r(t), d(t))T and then system (3) can be rewritten as

dx(t)
dt

= f (x(t)),

here

f (x(t)) = [θ (1 − h(t) − v(t) − q(t) − w(t) − r(t) − d(t))− (µ+ θ0)h(t),
βw(t) (1 − h(t) − v(t) − q(t) − w(t) − r(t) − d(t))− φv(t),
σv(t) − ξw(t), ηv(t) + αw(t) − (γ + µ)q(t),

κ1γw(t) + κ2γ q(t) − µr(t), (1 − κ1)γw(t) + (1 − κ2)γ q(t) − µd(t)]T .

Note that Γ is obviously a compact set. We only need to prove that if x(0) ∈ Γ , then x(t) ∈ Γ for all t ≥ 0. Note that ∂Γ
consists of seven plane segments:

P1 = {(h, v, w, q, r, 0)|h, v, w, q, r ∈ [0, 1], h + v + w + q + r ≤ 1} ,
P2 = {(h, v, w, q, 0, d)|h, v, w, q, d ∈ [0, 1], h + v + w + q + d ≤ 1} ,
P3 = {(h, v, w, 0, r, d)|h, v, w, r, d ∈ [0, 1], h + v + w + r + d ≤ 1} ,
P4 = {(h, v, 0, q, r, d)|h, v, q, r, d ∈ [0, 1], h + v + q + r + d ≤ 1} ,
P5 = {(h, 0, w, q, r, d)|h, w, q, r, d ∈ [0, 1], h + w + q + r + d ≤ 1} ,
P6 = {(0, v, w, q, r, d)|v,w, q, r, d ∈ [0, 1], v + w + q + r + d ≤ 1} ,

P7 =
{
(h, v, w, q, r, d) ∈ R6

+
|, h + v + w + q + r + d = 1

}
,
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hich have v1 = (0, 0, 0, 0, 0,−1), v2 = (0, 0, 0, 0,−1, 0), v3 = (0, 0, 0,−1, 0, 0), v4 = (0, 0,−1, 0, 0, 0), v5 =

0,−1, 0, 0, 0, 0), v6 = (−1, 0, 0, 0, 0, 0, 0), v7 = (1, 1, 1, 1, 1, 1) as their outer normal vectors, respectively. If the dot
product of f (x) and normal vectors (v1, v2, v3, v4, v5, v6, v7) of the boundary planes are less than or equal to zero, then
x(t) ∈ Γ for all t ≥ 0. So,⟨

f (x(t))|x(t)∈p1 , v1
⟩
= − ((1 − κ1)γw(t) + (1 − κ2)γ h(t)) ≤ 0,⟨

f (x(t))|x(t)∈p2 , v2
⟩
= − (κ1γw(t) + κ2γ q(t)) ≤ 0,⟨

f (x(t))|x(t)∈p3 , v3
⟩
= − (ηv(t) + αw(t)) ≤ 0,⟨

f (x(t))|x(t)∈p4 , v4
⟩
= −σv(t) ≤ 0,⟨

f (x(t))|x(t)∈p5 , v5
⟩
= − (βw(t) [1 − h(t) − q(t) − w(t) − r(t) − d(t)]) ≤ 0,⟨

f (x(t))|x(t)∈p6 , v6
⟩
= − [θ (1 − v(t) − q(t) − w(t) − r(t) − d(t))] ≤ 0,⟨

f (x(t))|x(t)∈p7 , v7
⟩
= −µ− θ0h(t) ≤ 0.

The proof is complete.

Hence, system (1) is considered mathematically and biologically well-posed in Γ [18].

3. Theoretical analysis of the model

3.1. Equilibrium analysis

In this sub section, we show the feasibility of all equilibria by setting the rate of change with respect to time t of all
dynamical variables to zero. The model (2) has two feasible equilibria, which are listed as follows:

(i) Disease-free equilibrium (DFE)E0
(
µ+θ0
ψ
, θ
ψ
, 0, 0, 0, 0, 0

)
, where ψ = (µ+ θ + θ0).

(ii) Endemic equilibrium (EE) E∗ (u∗, h∗, v∗, w∗, q∗, r∗, d∗).

The existence of endemic equilibrium is computing after we have the basic reproduction number R0.

3.2. Basic reproduction number

Here, we will find the basic reproduction number (R0) of the model (2) using next generation matrix approach [19].
We have the matrix of new infection F(X) and the matrix of transfer V(X). Let X = (v, w, q, h, u, r, d), the model (2)
can be rewritten as:

dX
dt

= F(X) − V(X),

where

F(X) =

⎛⎜⎜⎜⎜⎜⎜⎝

βu(t)w(t)
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ , V(X) =

⎛⎜⎜⎜⎜⎜⎜⎝

φv(t)
ξw(t) − σv(t)

(γ + µ)q(t) − ηv(t) − αw(t)
(θ0 + µ)h(t) − θu(t)

βu(t)w(t) + (µ+ θ )u(t) − θ0h(t) − µ

µr(t) − κ1γw(t) − κ2γ q(t)
µd(t) − (1 − κ1)γw(t) − (1 − κ2)γ q(t)

⎞⎟⎟⎟⎟⎟⎟⎠ .

The Jacobian matrices of F(X) and V(X) at the disease free equilibrium E0 =

(
µ+θ0
ψ
, θ
ψ
, 0, 0, 0, 0

)
are, respectively,

JF(E0) =

(
F 0
0 0

)
, JV(E0) =

(
V 0
J1 J2

)
where,

F =

⎛⎝0
β(µ+ θ0)

ψ
0 0

⎞⎠ and V =

(
φ 0

−σ ξ

)
.

The inverse of V is computed as

V−1
=

⎛⎜⎝
1
φ

0

σ 1

⎞⎟⎠ .
φξ ξ
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he next generation matrix KL = FV−1 is given by

KL =

⎛⎝ βσ (µ+ θ0)
φξψ

β(µ+ θ0)
ξψ

0 0

⎞⎠ .

Therefore, basic reproduction number is R0 = ρ(KL) = max (|µ| : µ ∈ ρ(KL)) is spectral radius of matrix KL and basic
reproduction number (R0) is obtained as follows,

R0 =
βσ (µ+ θ0)
φξψ

.

3.3. Stability of the disease free equilibrium

In this subsection, we summarize the results of the linear stability of model (2) by finding the sign of eigenvalues of
the Jacobian matrix around the equilibrium E0.

Theorem 2. If R0 < 1, the disease-free equilibrium E0 of system (2) is locally asymptotically stable, and it is unstable if
R0 > 1.

Proof. In the absence of the disease, the model has a unique disease-free equilibrium E0. Now the Jacobian matrix at
equilibrium E0 is given by:⎛⎜⎜⎜⎜⎜⎜⎜⎝

−(µ+ θ ) θ0 0 −
β(µ+θ0)

ψ
0 0 0

θ −(µ+ θ0) 0 0 0 0 0
0 0 −φ

β(µ+θ0)
ψ

0 0 0
0 0 σ −ξ 0 0 0
0 0 η α −(µ+ γ ) 0 0
0 0 0 κ1γ κ2γ −µ 0
0 0 0 (1 − κ1)γ (1 − κ2)γ 0 −µ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

Here, we need to find the eigenvalue of the system from the Jacobian matrix (4). We obtain the characteristic
olynomial

P(λ) = (λ+ γ + µ)(λ+ ψ) (λ+ µ)3
(
λ2 + (φ + ξ )λ+ φξ (1 − R0)

)
. (5)

rom the characteristic polynomial in Eq. (5), it is easy to get five real negative eigenvalues of J(E0), which are λ1,2,3 =

µ, λ4 = −µ− γ and λ5 = −ψ . We get the other real negative eigenvalues from the expression

λ2 + (φ + ξ )λ+ φξ (1 − R0). (6)

From the quadratic equation (6), we conclude that λ6,7 are negative if R0 < 1. Thus the equilibrium is locally
asymptotically stable if R0 < 1. The equilibrium E0 becomes unstable, with one positive eigenvalue, when R0 > 1.
This completes the proof.

Physically speaking, Theorem 2 implies that disease can be eliminated if the initial sizes are in the basin of attraction
of the DFE E0. Thus the infected population can be effectively controlled if R0 < 1. The effective control of the infected
population is independent of the initial size, a global asymptotic stability result must establish for the DFE.

Theorem 3. If R0 ≤ 1, then the disease-free equilibrium, E0, of system (2) is globally asymptotically stable in Γ .

Proof. Let Z = (u, h, v, w, q, r, d)T and consider a Lyapunov function,

G(Z) = σv + φw.

Differentiating G in the solutions of system (2) we get

Ġ = σ v̇ + φẇ,

= σ (βuw − φv)+ φ (σv − ξw)

= (σβu − φξ)w

= φξ

(
σβ

φξ
u − 1

)
w

Therefore,

Ġ ≤ φξ

(
σβ

u(0) − 1
)
w = φξ (R0 − 1) w, since u(t) ≤ u(0) and, u ∈ Γ .
φξ
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Ġ < 0 whenever R0 < 1. Furthermore, Ġ = 0 if and only if R0 = 1. Thus the largest invariant set in
{
Z ∈ Γ |Ġ

(v,w) = 0
}
is the singleton, E0 =

(
µ+θ0
ψ
, θ
ψ
, 0, 0, 0, 0, 0

)
. By LaSalle’s Invariance Principle the disease-free equilibrium

s globally asymptotically stable in Γ , completing the proof.

Theorem 3 completely determines the global dynamics of model (2) when R0 ≤ 1. It establishes the basic reproduction
umber R0 as a sharp threshold parameter. Namely, if R0 < 1, all solutions in the feasible region converge to the DFE
0, and the disease will die out from the community irrespective of the initial conditions. If R0 > 1, E0 is unstable, and
he system is uniformly persistent, and a disease spread will always exist.

.4. Endemic equilibrium and its stability

.4.1. Existence and uniqueness
The feasibility of the equilibrium E0 is trivial. Here, we show the existence of endemic equilibrium E∗. The values of

∗, h∗, v∗, w∗, q∗, r∗, and d∗ are obtained by solving the following set of algebraic equations:

µ− βu(t)w(t) − (θ + µ)u(t) + θ0h(t) = 0,
βu(t)w(t) − φv(t) = 0,

σv(t) − ξw(t) = 0,
ηv(t) + αw(t) − (γ + µ)q(t) = 0,
κ1γw(t) + κ2γ q(t) − µr(t) = 0,

(1 − κ1)γw(t) + (1 − κ2)γ q(t) − µd(t) = 0,
θu(t) − (µ+ θ0)h(t) = 0.

(7)

After some algebraic calculations, we get the value of E∗ as:

u∗
=
φξ

βσ
, h∗

=
θφξ

βσ (θ0 + µ)
, v∗

=
µξψ(R0 − 1)
βσ (µ+ θ0)

, w∗
=
µψ(R0 − 1)
β(µ+ θ0)

,

q∗
=

(
α +

ηξ

σ

)
µψ(R0 − 1)

β(µ+ θ0)(γ + µ)
,

r∗
=

(
κ1 +

κ2(ηξ + σα)
σ (γ + µ)

)
γψ(R0 − 1)
β(θ0 + µ)

,

d∗
=

(
(1 − κ1) +

(1 − κ2)(ηξ + σα)
σ (γ + µ)

)
γψ(R0 − 1)
β(θ0 + µ)

.

herefore, there exists a unique positive solution only when R0 > 1. It implies that the system has a unique endemic
equilibrium, E∗.

3.4.2. Stability analysis

Theorem 4. If R0 > 1, then the endemic equilibrium point E∗ of system (2) is locally asymptotically stable.

Proof. The Jacobian matrix of the model at E∗ is⎛⎜⎜⎜⎜⎜⎜⎜⎝

−A1 θ0 0 −
φξ

σ
0 0 0

θ −(µ+ θ0) 0 0 0 0 0
A2 0 −φ

φξ

σ
0 0 0

0 0 σ −ξ 0 0 0
0 0 η α −(µ+ γ ) 0 0
0 0 0 κ1γ κ2γ −µ 0
0 0 0 (1 − κ1)γ (1 − κ2)γ 0 −µ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(8)

here A1 =
µψ(R0 − 1)
µ+ θ0

+ (µ+ θ ) and A2 = A1 − (µ+ θ ).

Now, we get the characteristic polynomial of the Jacobian matrix (8) as

P(λ) = (λ+ µ)2(−λ− (γ + µ))
(
λ4 + c1λ3 + c2λ2 + c3λ+ c4

)
= 0. (9)

From the characteristic polynomial (9), it is easy to get λ1,2 = −µ, λ3 = −µ−γ , and the other eigenvalues of the system
need further finding. We obtain the others from the expression

λ4 + c λ3 + c λ2 + c λ+ c = 0 (10)
1 2 3 4
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Fig. 2. R0 vs the parameter β .

Where

c1 = µ+ ξ + φ + ψ +
µψ(R0 − 1)
θ0 + µ

c2 = θµ+ (ξ + φ)ψ +

(
µψ(R0 − 1)
θ0 + µ

+ µ

)
(µ+ ξ + φ + θ0)

c3 = µψ

(
ξφ(R0 − 1)
θ0 + µ

+ (ξ + φ)R0

)
c4 = µφξψ(R0 − 1)

. (11)

The polynomial (10) has negative roots (eigenvalues) if all its coefficients terms are positive, or it satisfies Routh–Hurwitz
criteria of stability [20]. From (11) we can verify that c1 > 0, c4 > 0, c1c2 − c3 > 0 and c3(c1c2 − c3) − c21c4 > 0, when
R0 > 1. Therefore, according to the Routh–Hurwitz criterion, we can get that all the roots of the above characteristic
equation have negative real parts. Thus, the endemic equilibrium asymptotically stable. The proof is complete.

The local stability analysis of the endemic equilibrium tells that if the initial values of any trajectory are near the
equilibrium E∗, the solution trajectories approach to the equilibrium E∗ under the condition R0 > 1. Thus, the initial
values of the state variables u, h, v, w, q, r and d are near to the corresponding equilibrium levels, the equilibrium number
of infected individuals get stabilized if R0 > 1.

3.5. Sensitivity analysis of R0

We explore R0 sensitivity analysis of system (2) to determine the model robustness to parameter values. This is a
strategy to identify the most significance parameters of the model dynamics. The normalized sensitivity index Υλ is given
by

Υ
R0
λ =

∂R0

∂λ
×

λ

R0

Thus normalized sensitivity indices for parameters are obtained as

Υ
R0
β = 1, ΥR0

σ =
µ+ η

φ
, Υ

R0
θ0

=
θθ0

(θ0 + µ)ψ
,

ΥR0
η =

−η

φ
, ΥR0

α =
−α

ξ
, ΥR0

γ = −
γ

ξ
,

ΥR0
µ = µ

(
1

µ+ θ0
−

1
φ

−
1
ξ

−
1
ψ

)
, Υ

R0
θ = −

θ

ψ
.

(12)

From the sensitivity indices calculation results, we can identify some parameters that strongly influence the dynamics
of disease spread. Parameters β, θ0, and σ have a positive influence on the basic reproduction number R0, that is, an
increase in these parameters implies an increase in R0. While parameters µ, η, α, θ and γ have a negative influence on
the basic reproduction number R , that is, an increase in these parameters implies a decrease in R .
0 0
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Fig. 3. R0 vs the parameter σ .

Fig. 4. R0 vs the parameter θ .

Here, we illustrate the graphical relationship between the basic reproduction number and the parameter values in the
odel (2).
A researcher can find some significant results, which have shown in Figs. 2 and 3, it can be seen that large β or σ

an lead to large R0. That is to say, the high contact or short incubation period can increase the opportunity of disease
preading. If we reduce the transmission rate by quarantine or any appropriate control measure, then the disease outbreak
ill end.
As a result of Fig. 4, and Fig. 5, R0 decreases when θ increases, and increases whenever θ0 increase respectively. This

inding suggested that effective stay-at-home intervention has mitigated the COVID-19 spread, while the ineffectiveness
f this intervention measure can increase its spread.
Fig. 6, and Fig. 7, shows that the increment of η or α can reduce R0. That is to say, effective quarantine of incubated

nd infectious individuals can reduce the opportunity of disease spreading.
From Fig. 8, and Fig. 9, we find that, the short average time from the symptom onset to recovery or death γ and high

alue of µ can reduce the COVID-19 spread.

. Numerical results and analysis

In this section, we conduct numerical simulation of the model (2) by using Matlab standard ordinary differential

equations (ODEs) solver function ode45.
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Fig. 5. R0 vs the parameter θ0 .

Fig. 6. R0 vs the parameter η.

Fig. 7. R0 vs the parameter α.
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Fig. 8. R0 vs the parameter γ .

Fig. 9. R0 vs the parameter µ.

4.1. General dynamics

We numerically illustrate the asymptotic behavior of the model (2). We take the initial conditions u(0) = 0.9, q(0) =

0, v(0) = 0.06, w(0) = 0.04, h(0) = 0, r(0) = 0, and d(0) = 0.
Fig. 10 presents the trajectories of model (2) when β = 0.05, θ = 0, σ = 0.1923, α = 0, γ = 0.0714, µ =

0.01, θ0 = 0.0, thus the basic reproduction number R0 = 0.5842. From this figure, we can see that the disease dies out
nd the trajectories converge to the disease free equilibrium point (1, 0, 0, 0, 0, 0, 0). This mean that disease disappears
n the community as shown in Theorem 2, and Theorem 3. Furthermore, socio-economical crisis caused by COVID-19 are
emoved. Finally, we have a disease free community.

Fig. 11 gives the trajectory plot when β = 0.3, θ = 0, σ = 0.1923, α = 0, γ = 0.0714, µ = 0.01, θ0 = 0.0, the basic
reproduction number is R0 = 3.5054. From this figure, we can see that even for a small fraction of the infectious case at
the beginning, the disease is persists in the community and stabilize in time. This means that the trajectories converge
to the endemic equilibrium point. Thus, as established in Theorem 4, the disease persists in the community whenever
R0 > 1.

4.2. Impact of the transmission rate

To investigate the impact of the transmission rate on the spread of COVID-19, we carry out a numerical simulation to
show the contribution of transmission rate β in fractional infection population density.
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Fig. 10. Each compartment population changes over time when R0 < 1.

Fig. 11. Each compartment population changes over time when R0 > 1.

We set the transmission rate β as 0.05, 0.2, 0.25, 0.35, and β = 0.5. From Fig. 12, we can observe that infectiousness
eaches a higher peak level as β increases. This figure illustrates the great influence of transmission rate as shown in the
ensitivity analysis. If we implemented effective contact tracing between infected and susceptible population, then the
ransmission rate is reduced and also the disease spread will be eliminated. The main public health measure which are
mplemented to reduce the transmission rate in the current pandemic are stay-at-home and quarantine or isolation of
xposed and infectious infected individuals.

.3. Impact of public health intervention

To study the recommended containment strategies of the pandemic, we conduct some numerical simulations whose
im is to show the contribution of public health interventions.
Here, we observe the isolation of exposed and infectious infected individuals within different rate:
Now, we set the exposed population isolation rate η as 0.6, 0.2, 0.1, 0.05, and 0.0. In Fig. 13, we can see that the

infectiousness increases as η decreases. It implies that effective isolation of exposed individuals by clinical identification
before the symptom onset can mitigate the COVID-19 pandemic. Similarly, infectious infected isolation rate α set as
0.25, 0.1, 0.05, 0.03, and 0.0. In Fig. 14, we observe that the infectiousness density approaches the highest peak level as
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α

p

h
t

Fig. 12. Impact of transmission rate β on infected population w(t) in system (2). Colors represent different values of β .

Fig. 13. Impacts of η on w(t).

value decrease. It implies that the ineffective quarantine of symptomatic individuals can lead to the prevalence of the
andemic.
In the current critical time, public health experts and government officials announced that every individual must stay at

ome. Due to food security and ineffectiveness of stay-at-home people may not follow this recommendation. We observe
he impact of stay-at-home efficiency and people abandoning stay-at-home in the following numerical results.

Fig. 15, shows that different stay home rates θ , which are chosen as 0.1, 0.015, 0.01, 0.004, and 0.0. Its say that
effective stay at home intervention measure can control the disease propagation. On the other hand, if we cannot
implement this control measure, then people become susceptible at a rate of θ0. To show its impact with θ = 0.1, we
chose different θ0 values as 0.6, 0.24, 0.013, 0.0065, and 0.0. We can be see in Fig. 16 the disease spread rises as θ0
values increases. It implies if we cannot stay-at-home for a recommended period, then pandemic prevalence occurs.

Conclusions

In this paper, a researcher investigated the dynamics of the COVID-19 spreading with a control measure. An SHEIQRD
Corona pandemic model with public health intervention was presented and analyzed theoretically as well as numerically.
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Fig. 14. Impacts of α on w(t).

Fig. 15. Impacts of θ on w(t).

An essential epidemiological parameter value R0 was computed by using the next-generation matrix approach. Further-
more, we have shown that the disease-free equilibrium globally asymptotically stable if R0 ≤ 1 and unstable otherwise.
Given that the endemic equilibrium exists, its stability analysis gives that it is locally asymptotically stable when R0 > 1.
The sensitivity analysis of R0 identifies those parameters that have a positive and negative influence on the change of
R0. Several graphs are presented to illustrate the dependence of R0 on parameters.

Several numerical investigations were done for various scenarios to illustrate the model dynamics, showing conver-
gence to the disease-free equilibrium when R0 < 1 or to the endemic equilibrium when R0 > 1. The general dynamics
of the model illustrated that the disease dies out when R0 ≤ 1, while it persists in the community whenever R0 > 1.
Moreover, the socio-economic crisis caused by this pandemic were minimized and eliminated when we implemented a
relevant control measure. Numerical investigations of the effects of different parameter values of the model were also
presented. Finally, robust public health intervention were shown to end the current pandemic and minimize the crisis
caused by this outbreak.
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Fig. 16. Impacts of θ0 on w(t).
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