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Abstract

Growing research has integrated Global Positioning Systems (GPS), Geographic Information
Systems (GIS), and accelerometry in studying effects of built environment on physical activity
outcomes. This systematic review aimed to summarize current geospatial methods of assessing
contextual exposure to the built environment in these studies. Based on reviewing 79 eligible
articles, methods were identified and grouped into three main categories based on similarities in
their approaches as follows: domain-based (67% of studies), buffer-based (22%), and activity
space-based (11%). Additionally, technical barriers and potential sources of uncertainties in each
category were discussed and recommendations on methodological improvements were made.
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1. Introduction

Insufficient physical inactivity is a major public health concern in the United States and
worldwide (Katzmarzyk et al., 2016; Piercy et al., 2018) and can lead to serious health
consequences such as obesity, diabetes, and cardiovascular disease (PAGAC, 2018).
Socioecological models suggest that both individual characteristics and environmental
exposures may influence health behaviors such as physical activity (Sallis et al., 2012).

Corresponding author: Li Yi, lyi632@usc.edu, 3616 Trousdale Parkway, AHF B55, Los Angeles, CA 90089, United States.
Supplemental Materials

Appendix 1. Summary of common study characteristics, data processing and integration considerations, and Methodological
Considerations of RBECs Exposure Assessment for 79 studies reviewed. (See the attached Supplementary Table 1)

Declaration of Interests

None

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered
which could affect the content, and all legal disclaimers that apply to the journal pertain.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Yietal.

Page 2

While removing barriers at the individual level is a critical step, modifying the daily built
environment in which people live and interact may drive the formation and long-term
maintenance of physically active lifestyles (Ding and Gebel, 2012; Durand et al., 2011,
Sallis et al., 2012).

Numerous studies have established associations between physical activity and a myriad of
built environment characteristics — from single elements, such as parks, transit stops, and
sidewalks, to composite measurements such as neighborhood walkability (Dunton et al.
2009; Brownson et al., 2010; Ferdinand et al., 2012). Previous research typically limits itself
to relatively static, one-time exposure assessments of important domains such as residential,
workplace, or school environments — even though interactions between built environment
exposure and physical activity behavior occur dynamically and continuously across
individuals’ activity spaces (Chaix et al., 2013, 2012; James et al., 2016; Jankowska et al.,
2015; Kwan, 2018). This usually introduces exposure misclassification or error into the
assessment. For example, a study on effects of neighborhood parks on physical activity
might only assess participants’ accessibility to parks within residential neighborhoods; while
all daily physical activity might actually be occurring in a park near the workplace.

To mitigate this issue, research has increasingly adopted real-time personal location
monitoring technologies such as Global Positioning Systems (GPS) to understand the spatial
and temporal variability in individuals’ activity spaces, or locations where they spend time.
Geographical coordinates of human movements generated by GPS are typically linked in
space to geospatial data through Geographic Information Systems (GIS) and linked in time
to physical activity data captured via accelerometry to study whether relevant built
environment contexts (RBECs) are associated with concurrent or time-lagged physically
activity outcomes (Chaix et al., 2012; James et al., 2016; Jankowska et al., 2015). In
previous GPS-based physical activity studies, some reported GPS identified and assessed
built environment domains considered to be important or frequently encountered in
individuals’ daily life, such as the park, school, home, or transport (Birgi et al., 2015;
Duncan et al., 2009; McCrorie et al., 2014; McMinn et al., 2014; Oreskovic et al., 2012). In
addition, other studies reported epoch, trip, day-level or time-lagged associations between
built environment characteristics such as neighborhood greenness, land use mix, population
density, residential density, street network density, and walkability and physical activity
outcomes (Burgoine et al., 2015; Chaix et al., 2016; Hurvitz et al., 2014b).

However, most or all of these studies follow a generalized scheme of data processing and
analysis before reaching the statistical analysis phase where the association(s) between
RBECs and physical activity outcomes is tested or investigated. These general stages can be
summarized as follows: data preprocessing, data integration, and RBECs exposure
assessment (See Figure 1). Some of the major tasks involved in data preprocessing include
evaluation of missingness (and possibly imputation), outliers, and GPS accuracy. Data
integration then focuses on linking or integrating GPS and accelerometry data in time.
Considerations for aligning GPS and accelerometry data to produce a time-aligned GPS
accelerometry (TAGA) point dataset have been addressed by previous literature reviews
(Duncan et al., 2009; Krenn et al., 2011), which readers can refer to for more information.
And lastly, the final stage involves linking the TAGA dataset in space with GIS data and
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applying a wide array of spatial averaging approaches based on the spatial extent of the GPS
tracks per defined time period, domain or behavior and the duration of time spent per
location (if employing a time-weighted spatial averaging technique) to generate exposure
estimates for RBECs and link them with the physical activity outcomes in a final analytical
dataset.

The analyst is usually required to make informed guesses or assumptions about the spatial
and temporal extent of the built environment’s contextual influence on the studied physical
activity outcome since the truly relevant exposure cannot be directly measured or assessed
(Kwan, 2018, 2012). Therefore, these calculated RBEC exposures are considered surrogates
of true relevant built environment exposure and contain uncertainties. These uncertainties
fall under what is usually described as the Uncertain Geographic Context Problem
(UGCaoaP), since the truly causally-relevant environmental exposure is usually unknown and
not directly measurable To tackle UGCoP, GPS-based studies typically choose a range of
space and time parameters and apply different spatial averaging methods to derive RBECs
geospatial exposure estimates that are hypothesized to affect physical activity based on their
specific research question(s) (Kwan, 2012).

While the choice of the space and time parameters and statistical analysis approaches can
vary greatly across the literature and can be very specific to the research question and
outcome being investigated, we will not attempt to review this topic here. Rather, we point
the reader to McCrorie et al. (McCrorie et al., 2014) for a thorough review of the literature
findings on the topic of built environment exposure and the spatial and temporal extent of its
impact on physical activity behavior.

In this manuscript, we aim to systematically review the different methods used to assess
these RBECs exposure estimates in the physical activity and built environment literature
employing GPS, GIS and accelerometry data. To accomplish this goal, the current literature
review had three main aims. The first was to identify and categorize existing RBECs
assessment methods from eligible articles. The second was to evaluate advantages and
limitations of each method, and the third was to make methodological recommendations to
mitigate identified challenges or gaps that can be applied in future studies.

Methods
Eligibility Criteria

This manuscript followed the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) checklist. Since the study is a methodological review, several
recommended items in the PRISMA guidelines were not reported (see Supplementary File
1). This review was not prospectively registered. To be included in the review, a study had to
meet three criteria. First, the article needed to be peer-reviewed and published in the English
language with data on human participants. Second, the article needed to describe an
empirical study, which excluded article types such as literature reviews, research
methodologies, research protocols, and conceptual studies. Third, articles needed to collect
data on both locations and intensities of physical activity, which could be measured
separately by GPS and accelerometry devices or together via a single device. Lastly, studies
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needed to apply GIS in RBECs assessment, which eliminated articles that used other
approaches such as interviews or web surveys.

2.2. Search Strategy

Based on aforementioned eligibility criteria, an initial list of terms was solicited from all co-
authors to be broad and relevant to this field of research while at the same time not being too
limited to one specific feature of the built environment (e.g. parks, land uses). Then authors
went through several iterations and decided on this final list of terms that was deemed broad
enough to cover a wider set of articles related to this topic, and not limited to one specific
exposure or feature. Final search terms were determined as a list of the following keywords:
(GPS OR “global positioning system”) AND (GIS OR “geographic information system” OR
environment OR exposure OR “activity space”) AND (“physical activity”) and a search
across five databases: Web of Science, Scopus, PubMed, PsycINFO, and SPORTDiscus was
performed on July 16!, 2018. The searches limited the “Document Type” to “Article” and
“Language” to “English.”

2.3. Selection Process

Avrticles (A=689) from the initial database search and additional articles (NV=6) from
searches of reference lists (i.e., citations at the end of articles and in supplementary tables)
literature review articles (Duncan et al., 2009; Krenn et al., 2011; McCrorie et al., 2014) that
focused on the same topic went through multiple steps of eligibility screening, which was
conducted by two authors (see Figure 2 for the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses [PRISMA] diagram). Differences in article inclusion were
resolved by discussion. To start, duplicated articles were removed from five databases
(N=309). Then, the remaining titles and abstracts of all articles (A=386) were screened
according to eligibility criteria and unqualified ones were excluded (A=236). Filtered
articles (AV=185) from the first screening entered the second screening process, during which
the full texts of those articles were examined to manually determine their eligibility, and
ineligible ones were removed (A=106). Articles that passed both screenings were included
in the final pool of articles (AV=79).

2.4. Data Extraction

After the study selection, three major types of data were extracted by the first author (see
Appendix 1). A second author duplicated extraction from a random sample of 25% of
articles. Any differences were resolved by discussion, and areas of mismatch were
considered in the other 75% of articles. The first section included common study
characteristics: study location, age of the sample, race/ethnicity of the sample, sample size,
study design, and the research question. The second section included key parameters of GPS
and accelerometry data preprocessing and integration before the RBECs assessment (see
Figure 1): GPS device used, accelerometry device used, data collection period, and software
or algorithm used to align GPS and accelerometry data, as well as intended built
environment variable(s) and intended physical activity outcome variable(s) for the RBECs
assessment stage. Lastly, the third section included information relevant to the RBECs
assessment stage (see Figure 1), including the steps in which spatial operations were
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performed, parameter configurations (e.g., buffer) of these operations, and other notable
operations relating to the RBECs exposure assessment.

2.5. Analytical Methods

The first aim was achieved by documenting detailed steps and associated parameters of
spatial operations applied by previous studies to assess RBECs metrics, as well as looking
into levels of integration information from GPS (mobility), GIS (built environment
characteristics), and accelerometry (behavior) and research questions asked. The second
aim, then, was achieved by evaluating technical barriers to implement each method,
measurement uncertainties and biases associated with each method during the assessment
process. The last goal was realized by linking findings and evaluations back to some major
exposure-health study considerations (e.g., missingness of data, exposure measurement
error, study biases, etc.) introduced during the RBECs assessment process.

3. Results

3.1. General Descriptions of Studies

For study locations, aside from a Brazilian study, 78 of 79 studies were conducted in
Western countries, with 41 studies in North America, 31 in Europe, and 6 in Australia/New
Zealand, and 1 in Asia. As for study population, 45 of 79 articles studied children and
adolescents (<18 years old), and 33 articles studied adults with 5 of those specifically
targeting elderly adults (=65 years old). Regarding sample size, samples ranged from 2 to
2,064 participants (Median=148, Interquartile Range=247).

Shifting to the data collection, the majority of studies (76 of 79 articles; 95%) used separate
devices for capturing location and physical activity, while only three studies collected both
through mobile phone applications. The Actigraph GT3X and GT3X+ (Actigraph,
Pensacola, FL) were the most common accelerometers (44 articles; 56%) while QStar
BT-1000X and 1000XT (Qstarz, Taipei, Taiwan) were the most common devices for GPS
tracking (43 articles; 54%). In terms of the period of data collection, more than two-thirds
(59 articles; 75%) of studies collected data for longer than 7 days (Median=7; Interquartile
Range=1).

3.2. Choices of Built Environment Exposure and Physical Activity Outcomes

Of the 79 studies, 31 of them (40%) chose a single built environment context (e.g., park) or
extent (e.g., home neighborhoods) as the exposure of interest. These single contexts and
extents included home neighborhoods (15 articles; 19%), parks and green spaces (8 articles;
10%), schools (5 articles; 6%), catchment areas of public transit stations (1 article; 1%),
snowfall countermeasure structure (1 article; 1%), and a district under urban renewal (1
article; 19%). In addition, 32 studies (39%) selected multiple built environment contexts or
extents as the exposures of interest, such as life domains (e.g., home, school, leisure, and
transport) or land uses (e.g., recreational, commercial, institutional). Additionally, 18 studies
(21%) used built environment characteristics measurements (e.g., greenspace coverage,
walkability, land use mix) within GPS point buffers, GPS trip buffers, and activity space
polygons as the exposure of interest.
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As for physical activity outcomes of interest, the majority of studies (60 of 79 articles; 76%)
used epoch-level (e.g., minute) or bout-level (e.g., a continuous period of physical activity of
a defined duration at certain intensities) moderate-to-vigorous physical activity (MVPA) as
the outcome of interest with the commonly used cut-off points of sedentary (<100 counts per
min) and MVPA(=2,296 counts per min) for children and sedentary (<150 counts per min)
and MVPA (21,952 counts per min) for adults (Evenson et al., 2008; Freedson et al., 1998).
The epoch-level or bout-level outcomes were then usually aggregated during the analytical
stage by person and domain as summed numbers (e.g., home MVPA: 30mins, school
MVPA: 120 mins). Among the 60 studies, 36 of them focused on MVPA as the only
outcome, while 24 used multiple physical activity outcomes including light physical activity,
vigorous physical activity, and sedentary behavior. Other than MVPA, 13 studies used total
daily number of walking trips, five studies used total daily movement counts, and one study
used daily energy expenditure as the outcome.

3.3. Methods of Estimating or Assessing Exposure to RBECs

The studies we reviewed used various methods to calculate their estimates of RBECs
exposure, including different ways of defining the shape and extent of the spatial footprint or
activity polygon of interest (e.g., along identified trips or lines, around important domains
based on actual locations visited or using circular or other types of buffers) and different
spatial averaging techniques depending on their specific research questions. Below, we
categorize and describe these methods based on whether they consider behaviors, domains,
and temporal sequences of events to define the spatial polygons of interest, and whether they
calculate purely spatial averages (with equal weights in space) or time-weighted spatial
averages (with higher weights assigned to locations where participants spent more time) in
calculating RBEC exposures. We labelled these three major categories as “domain-based”,
“buffer-based,” and “activity space-based.” Glossary of technical terms/expressions used in
the article, including concepts, data, and methods, along with use cases are available in
Table 1.

3.3.1. Domain-based RBECs Assessment Methods—The domain-based RBECs
assessment methods include Visual Inspection, Spatial Join, and Hierarchical Domain
Assignment (see Table 2 for detailed description). They all focus on assigning time-aligned
GPS accelerometry (TAGA) point data with built environment contextual domains (i.e.,
locations that provide physical activity behavior opportunities such as home, school, park,
transport), if GIS polygon geometries or visuals of satellite images that represent these
domains intersect with TAGA point geometries. Therefore, the domain-based method was
used by previous studies to describe how much physical activity occurred in each domain
and if there was a specific domain that was associated with more or less physical activity
than others.

The Visual Inspection method was often implemented by earlier studies (6 of 79; 8%) when
GIS data (i.e., points, lines, polygons, classified aerial images) that represented built
environment features were lacking. To perform the method, the TAGA point data has to be
overlaid on built environment features that are manually identified from satellite imagery or
online mapping services (e.g., Google Map). Then each TAGA point will be assigned built
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environment domains that it intersects with. With the increase of GIS data availability and
the proliferation of GIS software, a high percentage of recent studies (32 of 79; 42%) have
applied the Spatial Join method. Unlike Visual Inspection method, Spatial Join links each
TAGA point data with its intersecting built environment GIS layer in space (e.g.,
commercial, residential, or other land uses) using spatial join operations provided by GIS
software.

Additionally, 13 of 79 studies applied the Hierarchical Domain Assignment method. The
method differs from the Spatial Join method by two preprocessing steps. Firstly, a trip
identification algorithm is applied to separate the trip domain (e.g., in-vehicle) from the
event domain (i.e., visits). Then, the GIS software is used to sub-classify the event domain to
sub-domains (e.g., home, school) in a user-defined order that may be subjective (e.g., home
to school to park) via repetitive spatial join operations. Also, based on domains of interests,
both Spatial Join and Hierarchical Domain Assignment methods might demand extra
processing steps to process built environment data inputs (e.g., generation of home domain
by buffering around home address points).

3.3.2. Buffer-based RBECs Exposure Assessment Methods—Buffer-based
RBECs assessment methods include Point Buffer and Trip Buffer (see Table 2). Instead of
focusing on built environment contextual domains that provide physical activity
opportunities, buffer-based methods assess built environment characteristic by using the
buffer operation to delineate the hypothesized spatial extent of built environment contextual
influence on physical activity and averaging desired built environment characteristics within
the extent (see Figure 3). Depending on built environment characteristics of interest,
sometimes additional spatial analysis is required to process raw built environment GIS data
inputs (e.g., calculates walkability from land use data).

Point Buffer (17 of 79 studies; 22%) assesses RBECs exposure by measuring desired built
environment characteristics within the buffer of each TAGA point. In terms of the Trip
Buffer method, it was applied (3 of 79; 4%) when the goal was to examine whether the
averaged RBECs exposure (e.g., total areas of green spaces) during trips of interests (e.g.,
home/school commutes) influenced the choices of trip modes (e.g., walking). Similar to
Hierarchical Domain Assignment, Trip Buffer also utilizes GPS, GIS, and accelerometry
information to perform trip identification and to extract trips of interests (e.g., home-school
commutes). After then, trip paths are generated and buffered by connecting TAGA points by
chronological sequences, and averaged built environment characteristics within those buffers
are computed.

3.3.3. Activity Space-based RBECs Assessment Methods—The activity space-
based RBECs assessment methods include Direct Path Area, Minimum Convex Hull,
Standard Deviation Ellipse, and Kernel Density Estimation (see Table 2). Instead of focusing
on point or path-based RBECs assessment in the first two categories, the activity space-
based methods assess RBECs at a temporal unit of interest and spatial scale of activity
spaces recorded by GPS. Among the three activity space-based methods, Direct Path Area
aims at capturing the immediate RBECs along trips (Sherman et al., 2005; Zenk et al., 2018)
by connecting TAGA point data into paths or lines based on the chronological sequence of
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coordinates and buffering these paths by a pre-selected buffer radius. The Minimum Convex
Hull method delineates the extent of roaming areas regardless of chronological sequence of
events or trips (i.e., areas where humans frequent in daily lives). This is achieved by
identifying the minimum polygon geometries that contain all GPS points during a defined
period of time. The Standard Deviation Ellipse method (2 of 79; 3%) identifies the
geographic centroid of TAGA point data in space within roaming areas of participants
(Rainham et al., 2010; Zenk et al., 2018, 2011), which is achieved by generating ellipsoid
geometries that contain user-selected (typically 2 standard deviation or 68%) percentages of
points.

Lastly, the Kernel Density Estimation method generates a surface or raster of weights based
on the density of points in space or duration of time spent in a location and multiplies that
with the spatial built environment feature of interest to create a time-weighted spatial
average of the RBECs exposure. Of all previously described approaches, this is the only one
that takes duration of time spent into account in the spatial averaging to calculate RBECs
exposure (e.g., features of locations where participants spent the most time contribute the
most to the overall average RBECs exposure estimate). Among all reviewed studies, two
used the Kernel Density Estimation method to identify activity hotspots (i.e., space and time
clusters) first, applied web-surveys to extract trip origins and destinations, and created
buffers around both locations to assess averaged built environment characteristics within the
buffer Chaix et al. 2016; Duncan et al. 2016. The steps of RBECs exposure assessment for
activity space-based methods are visualized in Figure 3.

3.4. Choices of Distance Parameters in Buffer Operations

Buffer was a spatial operation that was applied by 51 of 79 (65%) reviewed articles. The
operation served three main purposes in assessing RBECs of physical activity. First,
methods under the domain-based category such as Spatial Join or Hierarchical Domain
Assignment applied the buffer operation to delineate hypothesized spatial extents of certain
built environment domains (e.g., home) from point locations (e.g., home addresses). The
radius of the buffer operation under this purpose typically ranged from 400 to 1600 m, with
800 m as the most common choice since it represented 10-15 mins walking distances from
homes (James et al., 2014). In terms of buffer types, 41(85%) studies used Euclidean-
distance (i.e., straight-lines) buffers while 10 (15%) studies applied network-distance buffer
(i.e., areas one could reach when walking along at a distance of street networks from the
home location). In addition, Spatial Join and Hierarchical Domain Assignment also applied
the buffer operation to GIS layers that contain polygon geometries of built environment
domains (e.g., home, school) to account for GPS device accuracy and minimize the
misclassification error (Klinker et al., 2015; Lawrence et al., 2017; Rodriguez et al., 2005).
The buffer radius ranged from 5 to 150 m, with 10 m as the most popular choice (Alberico et
al., 2017; Burgi and de Bruin, 2016; Evenson et al., 2013; Oreskovic et al., 2012; Rodriguez
etal., 2012; Troped et al., 2010). Finally, the buffer operation was also applied by Point
Buffer, Trip Buffer, and Direct Path Area methods to delineate spatial extents of point, trip,
and, activity space-based built environment contextual influences on physical activities
(Houston, 2014; Rodriguez et al., 2012), with buffer radii ranging from 10 to 100 m. Main
reasons offered for the choice of these radius values included their similarity to common
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sizes of urban parcels (Dessing et al., 2016; Krenn et al., 2014) and their ability to capture
immediate built environment vicinities along daily movement (Boruff et al., 2012; Helbich
et al., 2016; Oliver et al., 2007).

4. Discussion

Based on the hypothesized research questions, information extracted from GPS, GIS and
accelerometry, and spatial averaging operations performed, this review categorized
geospatial methods to assess or estimate exposure to RBECs into domain, buffer, and
activity space-based categories. Of all methods, the domain-based category was the most
commonly applied in studies describing built environment contextual domains of physical
activities. Whereas, buffer and activity space-based methods were being used more in recent
studies exploring causal effects of exposure to built environment characteristics on physical
activity behaviors. To further evaluate each method, we first discuss technical barriers and
potential sources of uncertainties that may be introduced under three methodological
categories. Then, we detail several potential future directions that can improve the accuracy
of RBECs exposure estimation and reduce uncertainties in physical activity studies.

4.1. Technical Barriers

For three methods in the domain-based category, the Visual Inspection method is the most
user-friendly and requires the least technical knowledge. The implementation of this method
only requires the accessibility to a mapping tool (e.g., Google Earth) that is capable of
overlaying TAGA point data on top of digital maps (e.g., Google Map, Google Satellite) and
making edits of its attribute tables so that RBECs can be manually assigned. In comparison
to Visual Inspection, the Spatial Join method has higher technical barriers since it requires
knowledge and skills to implement spatial join operation in GIS software. Lastly, the
Hierarchical Domain Assignment method operates under the logic of assigning RBECs to
TAGA points with a user-defined order, which is most efficiently implemented in GIS
databases (e.g., PostgreSQL + PostGIS). Although researchers have flexibility to arrange
built environment contextual domains based on research questions asked and/or their relative
importance to physical activity outcomes, the knowledge of programming language to query
and analyze geodatabases can be a barrier for those with less programming experience.

In terms of buffer-based methods, understanding types of buffer operation (i.e., network or
circular) is essential in implementing Point Buffer approaches. In addition to buffer
operation, the Trip Buffer method also requires points to line operation in GIS software to
connect TAGA points into trips in chronological sequences. Similarly, to implement the
activity space-based approach, the researcher needs to know how to operate activity space
generation tools in GIS software (e.g., minimum bounding geometry in ArcGIS).
Additionally, since GPS datasets are often large in file size, RBECs exposure might take
substantial processing time and computing powers depending on the complexity of methods
applied (e.g., Kernel Density Estimation method could take much longer time to run than the
Spatial Join method).
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4.2. Potential Sources of Uncertainty in Assessing Exposure to RBECs

Other than technical barriers, the assumptions or choice of parameters made to calculate
exposure to RBECs under each method can have varying degrees of uncertainty in assessing
the truly relevant exposure relative to the outcome or research outcome at hand. Since the
truly causally relevant built environment exposure for physical activities is unknown, GPS-
based studies have applied assorted spatial averaging approaches to assess surrogate built
environment exposure that might match true exposure (Chaix et al., 2013; Kwan, 2018,
2012).

When GIS data inputs were not available or of poor quality, the Visual Inspection method
was used in some of the reviewed articles. Since it relies on manually identifying built
environment characteristics from mapping products (e.g., aerial maps, Google Map), it is
highly error-prone and low in efficiency and reproducibility. Additionally, built environment
characteristics identified from aerial maps might be distorted during two-dimensional
processing of three-dimensional objects, which might introduce additional uncertainties
(e.g9., a high-rise building might be distorted and the time-aligned GPS and accelerometry
point that falls on the building might actually be on streets or vice versa).

Additionally, uncertainty might also be introduced when applying spatial operations to
process built environment data inputs prior to assignment of RBECs to each physical activity
outcome. For instance, the majority of methods rely on the buffer operation to generate
spatial extents of exposure (e.g., generating home domain in Hierarchical Domain
Assignment, generating point buffers in Point Buffer). Thus, the parameters (e.g., type,
radius) chosen for the buffer operation affect the assessment results. Among reviewed
studies, almost all applied a one-size buffer approach, which created an arbitrary cut-off
(e.g., 100 m) and might not represent the truly causal RBECs that exert contextual influences
on physical activity behavior.

Moreover, the buffer operation generates spatial extents of exposure by assuming equal
weights in all spatial directions on a two-dimensional surface, which is usually not the case
in the real world considering the interactions between the human and built environments are
conducted in a network pattern and in three-dimensional space. For example, a pedestrian
who walks on the sidewalks of streets might only be influenced by street fagade
characteristics and retailers on the same side of the street. In this case, the exposure (e.g.,
built environment characteristics along streets) is exerting contextual influence on PA
outcomes (e.g., walking) in one direction (i.e., one side of a street) within three-dimensional
places (i.e., vertical and horizontal street characteristics of buildings).

Furthermore, specifically for the Spatial Join method, uncertainty or error is introduced
when polygons that represent two different built environment domains (e.g., home and
school) intersect. When this happens, one TAGA data point will be assigned two domains
and, as a result, labor-intensive and error-prone verification process is needed. In terms of
the Hierarchical Domain Classification method, the hierarchy or subjective choice of
priority/order of assigning points to domain might be biased to overestimate the RBECs
exposure that is higher in the hierarchy and underestimate the exposure that is lower. For
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example, using this method to classify domains into home, school, and transit in this order
might overestimate time at home and school and underestimate time in transit.

Despite the inherent temporal nature of the data, many reviewed studies have applied spatial
averaging approaches that assess RBECs exposure by taking averages of built environment
characteristics (e.g., walkability index score, park areas, fast food density) along point or
line buffers (i.e., buffer-based) or within activity space polygons (i.e., activity space-based
methods) during a defined period of time. The limited consideration of duration of contact or
time in the reviewed articles could lead to spatiotemporal patterns or associations being
missed by relying on simple spatial averages. By ignoring the temporal component,
exposure to RBECs may be over- or under-estimated leading to more error or noise in the
analysis and potentially lower statistical power to detect effects.

Finally, most reviewed studies were subject to the selective daily mobility bias. For example,
a person that is highly knowledgeable about the health benefits of physical activity might
choose to visit a park to exercise on their way from home to work Chaix et al. 2013. Under
this scenario, the fact that they were exposed to parks during the day (as estimated by their
activity-space-based RBEC exposure) might merely be a result of or byproduct of their
intention to exercise. The conclusion that parks exposure is associated with exercise minutes
during the day might be conflated or erroneous. Consequently, in these studies, RBECs
exposure assessed (i.e., accessibilities to built environment resources for physical activities
along activity spaces) were based on intended locations to perform physical activities (e.g.,
driven by self-efficacy) rather than places where people organize their daily activities (Chaix
etal., 2013). As a result, analytical results between RBECs exposure and physical activity
outcomes might be biased.

4.3. Future Directions

4.3.1. Novel Sources of GIS Data—To avoid having to use less sophisticated methods
(e.g., Visual Inspection method), future studies are recommended to explore novel sources of
GIS data that could potentially complement or increase spatial resolution and/or coverage of
traditional data resources from governments or organizations. Particularly, they could
explore the potential of utilizing crowd-sourced Volunteered Geographic Information data
(e.g., OpenStreetMap). However, a caveat is that the accuracy of Volunteered Geographic
Information might be of particular concern due to its lack of quality-control processes
(Elwood et al., 2012) in comparison to traditional sources. Moreover, studies could also look
into obtaining built environment GIS data by applying satellite image classification
techniques (Lu and Weng, 2006). Recent innovations in machine learning have greatly
improved the accuracy of classifying built environment features (e.g., land uses, tree
canopies, buildings, streets) from satellite or street view imagery in complex urban
environments (Li et al., 2014). For instance, recent studies have applied image pattern
recognition in detecting street environment features such as pedestrians (Yin et al., 2015),
tree canopies (Li et al., 2018; Lu et al., 2018), visual enclosures (Yin, 2017), and buildings
(Li etal., 2018) from Google Street View images.

Furthermore, traditional residential neighborhood-based studies have indicated perceived
built environment (e.g., walkability obtained from self-report survey) results might moderate
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or mediate associations between objectively measured (walkability measured by GIS) built
environment characteristics and physical activity outcomes (Brownson et al., 2010; Hoehner
et al., 2005). Similarly, studies that integrate GPS, GIS and accelerometry have yet to
integrate assessments of perceived built environment characteristics into the RBECs
exposure assessment process (Dunton, 2018; Hurvitz et al., 2014a; Kwan, 2018). Two
reviewed studies under the Kernel Density Estimation category utilized survey or interview
tools to obtain perceived neighborhood characteristics (e.g., safety) after applying detecting
frequently-visited locations from TAGA point data (Chaix et al., 2016; Duncan et al., 2016).
However, these methods typically focused on a limited number of frequently visited
locations (e.g., home, school, work) and did not collect time-resolved RBECs data.

Alternatively, future studies could consider utilizing assessment tools such as Ecological
Momentary Assessment. Context-sensitive Ecological Momentary Assessment applications
can be installed on mobile devices and prompted at a pre-determined within-day temporal
frequency (Dunton, 2018) or spatial extent when an entry is detected by GPS devices
(Huang et al., 2016) to capture highly-temporally-resolved perceived RBECs data. Studies
have already started using context-sensitive Ecological Momentary Assessment applications
to investigate relationships between affect and walking (Hekler et al., 2012), greenness and
stress (Mennis et al., 2018), and physical/social contexts and physical activity (Dunton et al.
2012). Similarly, perceived RBECs collected from context-sensitive Ecological Momentary
Assessment can be linked to objectively measured RBECs data to investigate covariations of
the objectively and subjectively measured RBECs and PA.

4.3.2. Methodological and Study Design Recommendations to Reduce
Uncertainty—Future studies should continue recognizing and seeking solutions to limit
the UGCoP. Performing sensitivity analyses is one way to explicitly test and report on the
influence of buffer choice on reported associations for example (Baek et al., 2015; Houston,
2014). One study (Houston, 2014) found that the association between RBECs exposure and
the minute-level PA outcome varied by the buffer radius utilized to delineate the contextual
neighborhood around each GPS point. Also, the same study discovered smaller buffer radii
tended to exhibit stronger associations, but those associations varied by built environment
characteristics examined.

Moreover, temporal variation can be introduced or preserved in assessing exposure to
RBECs in terms of assigning higher weights to locations where individuals spent more time,
or by applying time-decay functions similarly to space-decay functions. For example, the
influence of certain built environment conditions (e.g., greenness) at locations that are more
proximal in both space and time to where and when physical activity occurred can be
weighted higher than characteristics further away in space and time (e.g., at the beginning
versus the end of a trip, in space closer to the end of the trip or closer to where the person
spent the most time).

An example of shifting towards time-weighted spatial averaging methods that integrate or
jointly account for space and time in assessing RBECs exposure could be kernel density
estimation. Current studies have only applied kernel density estimation to pre-select hotspots
with intense spatial and temporal concentrations of TAGA point data (Chaix et al., 2016;
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Duncan et al., 2016; Thierry et al., 2013) prior to buffer operation to access RBECs exposure
around trip origins and destinations. However, future studies could also apply kernel density
estimation to TAGA point data to generate an intensity-based activity space surface grid that
accounts for both spatial clustering and temporal durations (Rainham et al., 2010;

Silverman, 2018; Thierry et al., 2013). The surface can then be multiplied by any built
environment GIS data to produce RBECs exposure surface for PA outcomes (Jankowska et
al., 2017).

Finally, to tackle or mitigate selective mobility daily bias, one recommendation is to restrict
RBECs exposure assessment around anchor points (e.g., daily life centers in which
individuals spend a substantial period of time, associate material or symbolic meanings,
organize their daily activities, or are obligate to go) such as residence, workplaces, and
schools where spatial access to opportunities of physical activities are of critical importance
(Chaix et al., 2013, 2012), similar to two reviewed studies (Chaix et al., 2016; Duncan et al.,
2016). Additionally, studies should collect data on cognitive variables (e.g., attitudes,
motivation) that influence physical activity behaviors. Both approaches will allow studies to
rule out intra-personal factors that confound true associations between RBECs exposure and
physical activity outcomes.

Future studies could also consider experimental, quasi-experimental or simulation study
designs to mitigate the bias. Among reviewed studies, two were designed upon occurrences
of natural experiments (i.e., the construction of light-rail station and the urban renewal
project) and measured changes of physical activities before and after experiments (Huang et
al., 2017, Anderson et al., 2017) while the other one (Zhu et al., 2013) simulated physical
activity behaviors in an actual neighborhood based on historical physical activity data from
residents. Similarly, future studies should take advantage of such opportunities should they
arise to establish the temporal sequence of exposure and outcome. Furthermore, we highly
recommend future studies report on how this bias was considered in their analytical
approach and what remedies if any were used in addition to recognizing its presence. Lastly,
since physical activity could also be a potential modifier between RBECs and other health
outcomes such as obesity, future studies might consider testing physical activity as a
modifier of RBECs and health-based outcomes.

4.4. Strengths and Limitations

The main strengths of the study include its systematic nature, detailed documentation,
categorization of the RBECs exposure assessment methods, and consideration of all data
processing and analysis stages that are involved in integrating GPS, GIS and accelerometry
to study the association between built environment exposure and physical activity outcomes.
Notably, the classification of methods into domain, buffer, and activity space -based RBECs
exposure assessment methods provides a methodological blueprint for future research to
select the most appropriate method based on the similarities of the research questions,
availability and quality of data inputs, and spatial averaging approaches desired. Further, this
review links the RBECs exposure assessment methods and their implications on exposure
assessment uncertainties and biases that affect the overarching field. In terms of the
weaknesses of this study, this review only included studies that were written in English, but
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there may be other studies written in non-English languages that offer insights on other
possible methodological categories. Moreover, this review did not assess study quality due to
the disparities in study designs and research questions.

5. Conclusions

This is the first review that systematically summarized methodologies for assessing RBECs
exposure of physical activity outcomes. After reviewing a total of 79 articles, three RBECs
exposure assessment categories: domain-, buffer-, and activity space-based emerged, with
each method category aiming to clarify specific aspects of the relationship between built
environment exposures and physical activity outcomes in space and time. Technical barriers
and exposure assessment uncertainties and biases were highlighted for consideration in
future research and recommendations for future work were made.
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__________ 4 GPS Data Processing )

L}
| Operational | =
Steps | GPS-ACC Data Choose RBECs — Analyze BE and
A — : Integration Assessment Method s PA associations
z Dataset
)—; ACC Data Processing )

Stages ! Data Data RBECs Exposure Statistical
9 ' Pre-Processing Integration Assessment Analysis

_— \

' Literature ' Krenn et al. (2011) James et al.

! R,:,;w, ; Duncan et al., (2009) (2016) This literature review Chaix et al. (2013)
' ]

Figure 1.
Three common preparation stages prior to the statistical analysis stage that examine

associations between built environment exposure and physical activity outcome for studies
that integrate GPS, GIS and accelerometry. Operational steps refer to the activities that are
completed during each stage. Literature review refers to previous literature reviews that have
been conducted for each stage, with the current review focusing on RBECs exposure
assessment.

Notes. ACC=accelerometry; GIS=Geographic Information Systems; GPS=Global
Positioning Systems; BE = Built Environment; PA = Physical Activity; RBECs = relevant
built environment contexts.
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Five databases:
-Web of Science

- PubMed
- PsycINFO
- SPORTDiscus

- Scopus |

Page 21

Keywords: (GPS OR “global positioning system”)
AND (GIS OR “geographic information system” OR
environment OR exposure OR “activity space”) AND
(“physical activity”)

\

Records identified
through database
searching (n = 689)

Additional records
identified through
other sources (n = 6)

|
v

Total records (n = 695)

\J

Records screened (n = 386)

'-9=| - Articles focused on non-built environment

\J

Full-text articles assessed for
eligibility (n = 185)

\J

Final selection of articles
included for the review (n = 79)

Figure 2.

| Duplicated records removed (n = 309)

- - Did not use accelerometry to capture physical

Article abstracts excluded (n = 236) with
following reasons:

- Articles were literature review, study protocol,
conceptual studies, commentary papers (n = 25)

neighborhood environment contexts (e.g.,
socioeconomic) or non-physical activity health
outcomes (e.g., obesity) (n = 208)

Full-text articles excluded (n = 106) with
following reasons:

- Did not use GPS to capture movement
trajectory (at least 1 day) (n = 26)

activity outcome (n = 70)

- Did not measure the RBECs exposure using
GIS (e.g., only performed travel mode
classification (n = 10)

Preferred Reporting Items for Systematic Reviews and Meta-Analyses [PRISMA] diagram
Notes. GPS=Global Positioning Systems; GIS=Geographic Information Systems;
RBECs=relevant built environment contexts.
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r——— """
| Domain-based Method Category |
L ————
Hierarchical Domain Assignment Spatial Join
| TAGA point dataset | I TAGA point dataset ]
| ‘Apply the trip “tﬂm o ] Are TAGA pownts intersecting GIS layers of polygon geometnes that represent each behavioral domain?
................ e
"""""""""" If a point intersects with If a point intersects with If a point intersects with
the home domain, then the park domain, then .. domain, then RBEC =
RBEC = home RBEC = park
| Are TAGA points with the polygon that I
represent the home domain in GIS software?
‘—‘—l Visual Inspection

Are TAGA points With the polygon that
represent the school domain in GIS software?

[ TAGA point dataset |

I Are TAGA pownts intersecting each behavioral domain that is visually identdied from the aerial ]

S

¥ Y Y
1t & point intersects with If & point intarsects with It & point intersects with
the home domain, then the park domain, then domain, than RBEC =
RBEC = home RBEC = park

Step 1. Delineate spatial extents of BE contextual influences I

o i ==
I Buffer-based I
Method
Category

Point Buffer

Spatial exents of BE contextual influences are defined as
butfers around TAGA point dataset

Trip Buffer

Spatial extents of BE contextual influences are defined as buffess around
rips (by connecting TAGA trip points in chronological orders ) of interests.

I e ] it

™ Activity !

Daily Path Area ... 5~ sandard Deviation Ellipse

Minimum Convex Hull Kernel Density Estimation

| space-based | o
o e Spatial extents of
I Method I Spatial extents of ‘ﬂ‘:‘f ‘\9’ Y BE contextual patial exterts of BE
BE contextual g et et influences are wual influes
L Category nfluences are Mc:“o""d Sy defined as the are defined as
gty i Mw:;:nq MM i minimum bounding hot-spots where
1 are : of TAGA TAGA points
daily tp ves "”“;\"‘ 6‘#‘” H Mv:'-m clustered in s;c'o
connected by Long axis andtme
sequences of Indicates
TAGA points distribution
derections.
— Step 3. Apply spatial averaging method to assess RBECs
Stept 2. Selact BE of | 14 exposure within spatial extents
—T l Total areas of parks (e.g., 2.3 sgkm?) ]
—l [ Averaged land-use mix score (e.g., 0.6) ]
— l Averaged walkability score (e.g., 0.34) l
— | Density of intersections (e.g., 250 intersections per sqkm?) l

Figure 3.

Schematic drawings showing domain-based, buffer-based, and activity space-based RBECs
assessment methods: including steps of spatial averaging operations and examples of
measurements of BE characteristics.

Notes. BE=Built Environment, PA=Physical Activity, RBECs = Relevant Built Environment
Contexts, TAGA point data = time-aligned GPS accelerometry point data
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