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Identification of cell types from 
single cell data using stable 
clustering
Azam Peyvandipour1, Adib Shafi1, Nafiseh Saberian1 & Sorin Draghici   1,2 ✉

Single-cell RNA-seq (scRNASeq) has become a powerful technique for measuring the transcriptome of 
individual cells. Unlike the bulk measurements that average the gene expressions over the individual 
cells, gene measurements at individual cells can be used to study several different tissues and organs at 
different stages. Identifying the cell types present in the sample from the single cell transcriptome data 
is a common goal in many single-cell experiments. Several methods have been developed to do this. 
However, correctly identifying the true cell types remains a challenge. We present a framework that 
addresses this problem. Our hypothesis is that the meaningful characteristics of the data will remain 
despite small perturbations of data. We validate the performance of the proposed method on eight 
publicly available scRNA-seq datasets with known cell types as well as five simulation datasets with 
different degrees of the cluster separability. We compare the proposed method with five other existing 
methods: RaceID, SNN-Cliq, SINCERA, SEURAT, and SC3. The results show that the proposed method 
performs better than the existing methods.

Recent advances in single-cell RNA-Seq (scRNASeq) techniques have provided transcriptomes of the large num-
bers of individual cells (single-cell gene expression data)1–9. In particular, analyzing the diversity and evolution of 
single cancer cells can enable the advances in early cancer diagnosis, and ultimately choosing the best strategy for 
cancer treatment10–12. Furthermore, one important analysis on scRNASeq is the identification of cell types that 
can be achieved by performing an unsupervised clustering method on transcriptome data13–19.

Clustering algorithms such as k-means and density-based spatial clustering of applications with noise 
(DBSCAN)20 can identify groups of cells given the single-cell gene expression data. However, clusters obtained by 
these algorithms might not be robust. Such algorithms require non-intuitive parameters13. For instance, given the 
number of clusters, k-means iteratively assigns data points (cells) to the nearest centroids (cluster center), and rec-
omputes the centroids based on the predefined number of clusters. This algorithm starts with the randomly cho-
sen centroids. Thus, the result of the algorithm depends on the number of clusters (in DBSCAN, the maximum 
distance between the two data points in the same neighborhood should be determined) and the number of runs.

Another challenge comes from the high dimensionality of data, known as “curse of dimensionality”. 
Identifying the accurate clusters of data points based on the measured distances between the pairs of data 
points may fail since those data points become more similar when they are represented in a higher dimensional 
space13,21. One approach to deal with the curse of high dimensionality is projecting data into a lower dimensional 
space, known as dimensionally reduction. In this approach, the data is represented in a lower dimensional space 
while the characteristic(s) (e.g similarities between the data points) of the original data is preserved. Several 
methods have used different techniques based on this concept (e.g. principal component analysis) to determine 
the cell types22–26. Another approach to deal with this challenge is feature selection, i.e. eliminating some of the 
features (genes) that are not informative27. In the following, we provide a brief overview of the related methods 
that identify the cell types based on the combination of approaches described above.

Methods SC328 and Seurat25 use a combination of feature selection, dimensionality reduction, and clustering 
algorithms to identify the cell types. Authors of SC3 use a consensus clustering framework that combines clus-
tering solutions obtained by the spectral transformations and k-means clustering based on the complete-linkage 
hierarchical clustering. They first apply a gene filtering approach on the single-cell gene expression data to remove 
rare and ubiquitous genes/transcripts. Next, they compute the distance matrices (distance between the cells) 
using the Euclidean, Pearson, and Spearman metrics. They transform the distance matrices using either principal 
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component analysis (PCA)29, or by computing the eigenvectors of the associated graph Laplacian. Next, they 
perform a k-means clustering on the first d eigenvectors of the transformed distance matrices. Using the different 
k-means clustering results, they construct a consensus matrix that represents how often each pair of cells is clus-
tered together. This consensus matrix is used as an input to a hierarchical clustering using a complete linkage and 
agglomeration strategies30. The clusters are inferred at the k-th level of hierarchy, where k is computed based on 
the Random Matrix Theory31,32. The accuracy of SC3 is sensitive to the number of eigenvectors (d), chosen for the 
spectral transformation. The authors report that SC3 performs well when d is between 4% and 7% of the number 
of cells. The main advantage of SC3 is its high accuracy in identification of cell types. However, it is not scalable33.

Seurat25 is a graph-based clustering method that projects the single cell expression data into the 
two-dimensional space using the t-distributed stochastic neighbor embedding (t-SNE) technique34. Then, it per-
forms the DBSCAN method20 on the dimensionality-reduced single cell data. Seurat may fail to find the cell types 
in small datasets (low cell numbers)28. It is reported that this may be due to possible difficulties in estimating the 
densities when the number of data points is low.

RaceID35 determines the cell types by performing a k-means clustering algorithm. In this method, the gap sta-
tistics is used to choose the number of clusters. RaceID does not perform well when the data does not contain rare 
cell populations but it appears to be the preferred methods when the aim is identification of rare types13,33,36,37.

SNN-Cliq17 uses the shared nearest neighbor (SNN) concept, which considers the effect of the surrounding 
neighbor data points, to handle the high-dimensional data. The authors of SNN-Cliq compute the similarity 
between the pairs of data points (the similarity matrix) based on the Euclidean distance, referred as the primary 
similarity measure. Using the similarity matrix, they list the k-nearest neighbors (KNN) to each data point. They 
propose a secondary similarity measure that computes the similarity between two data points based on their 
shared neighborhoods. Consequently, an SNN graph is constructed based on the connectivity between the data 
points. Then, a graph-based clustering method is applied on the SNN graph in which nodes and weighted edges 
represent the data points and similarities between the data points, respectively. The main disadvantage of the 
graph-based methods such as SNN-Cliq is that scRNASeq data is not inherently graph-structured13. Therefore, 
the accuracy of these methods depends on the graph representation of scRNASeq data.

SINCERA38 performs a hierarchical clustering on the similarity matrix that is computed using the centered 
Pearson’s correlation. The average linkage approach is used as the default choice for the linkage. Consensus 
clustering39,40, tight clustering41 and ward linkage42 are provided as alternative clustering approaches. Users can 
choose a distance threshold or the number of clusters during the visual inspection when the hierarchical cluster-
ing is used for the cell cluster identification. SINCERA tends to identify many clusters which likely represent the 
same cell type13.

One way to identify robust clusters of cells is to resample the cells/genes and compare the original clusters 
with the ones that are obtained by resampling43. In the current paper, in order to explore the strength of a pattern 
(cluster of cells) in the data, we analyze the sensitivity of that pattern against small changes in the data. The data 
is resampled by replacing a certain number of data points with the noise points from a noise distribution. Our 
hypothesis is that if there is a strong pattern in data, it will remain despite small perturbations44. Here, we develop 
a stable subtyping (clustering) method that employs the t-distributed stochastic neighbor embedding (t-SNE)34 
and k-means clustering to identify the cell types. We add noise and apply a bootstrap method45,46 to identify the 
stable clusters of cells. We use the Adjusted Rand Index (ARI)47, adjusted mutual information (AMI)48,49, and 
V-measure50 to evaluate the performance of the clustering result for datasets in which the true cell types are 
known. We compare the results of our method with five other methods: RaceID35, SNN-Cliq17, SINCERA38, 
SEURAT25, and SC328 using 8 real datasets with known cell types and 5 simulated datasets. The results of the 
different methods show that the proposed method performs better than the five methods across different datasets.

Materials and methods
The goal of the proposed method is to identify the cell types present in a mixture of single cells. The input of the 
method is the single cell gene expression matrix (Mgene×cell) in which rows represent the genes and columns rep-
resent the cells. In the following we provide more detail about the input data and different steps of the proposed 
framework. The overall approach is shown in Fig. 1.

Data source.  The eight publicly available scRNA-seq datasets as well as the five simulation datasets we used 
in our analysis are included in the Supplementary Materials. Among the eight real datasets, all but three (Klein51, 
Patel52, Treutlein53) are considered as’gold standard’ since the labels of the cells are known in a definitive way. 
Patel52 and Treutlein53 are referred as'silver standard’ by Kiselev et al.28 since their cell labels are determined based 
on the computational methods and the authors’ knowledge of the underlying biology.

We obtained the processed data from Hemberg lab's website (https://hemberg-lab.github.io/scRNA.seq.datasets).  
Hemberg et al.54 use the SingleCellExperiment Bioconductor S4 class55 to store the data, and the scater package56 
for the quality control and plotting purposes. The normalized data is deposited as a SingleCellExperiment object 
(.RData file) and the cell type information is accessed in the cell_type1 column of the “colData” slot of this object. 
The gene expression values of the cells are organized as a matrix in which rows are cells and columns are the 
genes. In our analysis, genes (features) that are not expressed in any cells are removed. We did not filter any cell 
in this analysis.

Gene filtering.  As shown in Fig. 1A, we remove the genes/transcripts that are not expressed in any cell 
(expression value is zero in all cells). Such genes cannot provide useful information that can differentiate between 
cell types57. The result of performing the filtering method on the single cell gene expression matrix (Mgene×cell) is 
used as the input to the second module of the proposed framework.
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Measuring the dissimilarity between the cells.  The distance between the cells is calculated using 
the Euclidean metric (Fig. 1B). The output of this step is the distance (dissimilarity) matrix Dcell×cell. We reduce 
the dimension of D by performing the t-distributed stochastic neighbor embedding (t-SNE)34,58, the nonlin-
ear dimensionality reduction/visualization technique (Fig. 1C). We will refer to the output as D′cell×l, where 
2 ≤ l ≤ cell. In this study, the number of dimensions is 2.

Clustering.  Identification of the optimal number of clusters.  This section describes the third module of the 
proposed method (Fig. 1C). In this analysis, the t-SNE is repeatedly (n = 50) applied on the distance matrix 
Dcell×cell to obtain the dimensionality-reduced distance matrix D′cell×l. Each time, the optimal number of clusters is 
calculated based on the average silhouette method using the dimensionality reduced distance matrix D′. In order 
to find the optimal number of clusters k, the k-means clustering is applied on the D′ matrix using a range value 
(default = 2:20), and the k that maximizes the average silhouette measure is selected. Finally, the average of the 
selected numbers k across different repeats (n = 50) (rounded to the nearest integer) is considered as the final 
optimal number of clusters.

The silhouette evaluates the quality of that clustering based on how well its data points are clustered. A silhou-
ette measure is assigned to each data point representing how close a data point is to its own cluster in comparison 
to other clusters. For each data point i, this measure is calculated as follows:

Figure 1.  The overall workflow of the proposed method. Given the single cell gene expression matrix, module 
(A) eliminates the genes that are not expressed in any cell. Using the resulting matrix, module (B) computes 
the Euclidean distance between the cells. The output of this module is a distance matrix in which the rows 
and columns are the cells (Dcell×cell). Module (C) reduces the dimensionality of the distance matrix using the 
t-distributed stochastic neighbor embedding (t-SNE) technique. In this module, an average silhouette method 
is employed to choose the optimal number of clusters k. Finally in module (D), the lower-dimension distance 
matrix and the optimal number of clusters k obtained from module (C) are used as the input data to identify the 
most stable clustering of cells. Figure 2 shows the details of module D.

https://doi.org/10.1038/s41598-020-66848-3
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where a(i) is the average distance between the data point i and all other data points within the same cluster. b(i) 
is the smallest average distance of i to all points in any other cluster of which i is not a member. s(i) takes values 
from −1 to 1, where a high positive score shows that the given data point is well clustered (close to other points in 
its own cluster and far from points in the other clusters). Conversely, a high negative score shows that data point 
is poorly clustered.

k-means clustering based on the resampling method.  This section describes the detail of the last module of the 
proposed method. As shown in Fig. 2, using the dimensionality reduced distance matrix D′ and the chosen num-
ber of clusters k from the previous step, we identify the most stable clustering by generating different cluster-
ing solutions (clusteringi (i ∈ [1..n])) and measure the stability of each clustering solution based on a resampling 
method. The stability measure assigned to each particular clustering (denoted as clusteringi) represents how often 

Figure 2.  Identifying the most stable clustering. In this analysis, given the lower-dimension distance matrix 
D′cell×l and the optimal number of clusters k, we calculate n different clusterings (clustering1, ..., clusteringn) 
using the k-means clustering algorithm. Then, the stability of each clustering is assessed based on a resampling 
approach (grey box). A stability score is assigned to each clustering based on how often its clusters are recovered 
when the input data is perturbed (resampled). A clustering with the maximum stability score is selected as the 
final solution.
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5Scientific Reports |        (2020) 10:12349  | https://doi.org/10.1038/s41598-020-66848-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

the k clusters belonging to that clustering are preserved when the input data (D′) is resampled several times. The 
resampled datasets are generated from D′ by randomly replacing 5% of data points (cells) with noise. These noisy 
datasets are then used as the input to k-means algorithm. Hence, several clusterings (clusteringi,j, j ∈ [1..m]) are 
generated from the resampled data (resampled versions of clusteringi).

In order to assess the stability of each cluster c in the clusteringi (original clustering), the cluster c is compared 
to all the clusters in the clustering that is obtained from the resample data (clusteringi,j) based on the Jaccard 
distance. The Jaccard coefficient59, a similarity measure between sets, is used to compute the similarity between two 
clusters as follows:

A B
A B

A B XJ(A, B) , ,∩
∪

= ⊆

where the term A and B are two clusters, consisting of some data points in X = {x1, …, xN}.
If the Jaccard similarity between the cluster c (from the original clustering clusteringi) and the most similar 

cluster in the resampled clustering is equal or greater than 0.75, that cluster is considered stable (preserved). 
Thus, the stability of each cluster in clusteringi is calculated as the percentage of the times that cluster is preserved 
(Jaccard coefficient ≥ 0.75) across the m different resamplings.

We then average the stability measures of the k clusters belonging to clusteringi, and consider it as the overall 
stability measure of clusteringi. Among n different clustering solutions (clusteringi (i ∈ [1..n])), we select the clus-
tering solution with the maximum stability measure as the final clustering solution.

Figure 3 shows the detail of the resampling method we performed to compute the stability measure for each 
clustering. The clusters that are obtained by applying k-mean on the resampled dataset are compared with the 
clusters from the original input data only based on the non-noise points (the noise data points are excluded when 
two clusters are compared based on the Jaccard similarity metric.

Validation methods.  We use 13 different datasets in which the cell types (labels) are known. To measure the 
level of similarity between the reference labels and the inferred labels that are obtained by each clustering method, 
we use three different metrics: adjusted rand index (ARI), adjusted mutual information (AMI), and V-measure 
as explained in the following.

Adjusted rand index.  Given the cell labels, the Adjusted Rand Index (ARI)47 is used to assess the similarity 
between the inferred clustering and the true clustering. ARI ranges from 0, for poor matching (a random clus-
tering), to 1 for a perfect agreement with the true clustering. For a set of n data points, the contingency table is 
constructed based on the shared number of data points between two clusters. Suppose X = {X1, X2, ..., XR} and Y 
= {Y1, Y2, ..., YC} represent two different clusterings with R and C clusters, respectively. The overlap between X 
and Y can be summarized as a contingency table MR×C = [nij], where i = 1...R, j = 1...C. Xi and Yj denote a cluster 
in clusterings X and Y, and i and j refer to the row number and the column number of the contingency table, 
respectively. The ARI is defined as follow:
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where nij denotes the number of shared data points between clusters Xi and Yj (nij = |Xi∩Yj|), and = ∑a ni k ik (the 
sum of the ith row of the contingency table), and = ∑b nj k kj (the sum of the jth column of the contingency table).

Adjusted mutual information.  The adjusted mutual information (AMI)48,49 is a variation of mutual information 
that corrects for random partitioning, similar to the way the ARI corrects the rand index. As explained in the 
previous section, given two different clusterings X = {X1, X2, ..., XR} and Y = {Y1, Y2, ..., YC} of n data points with 
R and C clusters, respectively, the mutual information of cluster overlap between X and Y can be summarized as 
a contingency table MR×C = [nij], where i = 1...R, j = 1...C, and nij represents the number of common data points 
between clusters Xi and Yj. Suppose a data point is picked at random from X, the probability that the data point 
falls into cluster Xi is p i( ) X

n
i= . The entropy60 associated with the clustering X is calculated as follows:

H X P i logP i( ) ( ) ( )
(2)i

R

1
∑=
=

H(X) is non-negative and takes the value 0 only when there is no uncertainty determining a data point's 
cluster membership (there is only one cluster). The mutual information (MI) between two clusterings X and Y is 
calculated as follows:

∑∑=
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where P(i, j) denotes the probability that a data point belongs to both the cluster Xi in X and the cluster Yj in Y:
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MI is a non-negative quantity upper bounded by the entropies H(X) and H(Y). It quantifies the information 
shared by the two clusterings and therefore can be considered as a clustering similarity measure. The adjusted 
measure for the mutual information is defined as follows:

=
−
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where the expected mutual information between two random clusterings is:
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where the ai and bj are the partial sums of the contingency table: = ∑ =a ni j
C
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ij1 .
The adjusted mutual information (AMI) takes a value of 1 when the two clusterings are identical and 0 when 

the MI between two partitions equals the value expected due to chance alone.

Figure 3.  The resampling framework to compute the stability measure for each clustering. The input includes 
N data points X = {x1, ..., xN}, the number of clusters k, the number of resamplings m, and the clustering C 
that is obtained by applying k-means on X. This analysis generates m resampling data by randomly replacing 
5% of data points with the noise, and computes m resampled clusterings based on k-means clustering. Each 
cluster c in C is compared with the most similar cluster in the resampling clustering, and the Jaccard coefficient 
between the two clusters is computed, while the noise points are excluded. The percentage of the times that 
Jaccard coefficients are larger than 0.75 is considered the stability measure for cluster c. The average of stability 
measures for all clusters belonging to clustering C is calculated and considered as the overall stability measure 
for clustering C.
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V-measure.  The V-measure50 is the harmonic mean between two measures: homogeneity and completeness. 
The homogeneity criteria is satisfied if a clustering assigns only those data points that are members of a single 
class (true cluster) to a single cluster. Thus, the class distribution within each cluster should be skewed to a single 
class (zero entropy). To determine how close a given clustering is to this ideal, the conditional entropy of the class 
distribution given the identified clustering is computed as H(C|K), where C = {C1, C2, ..., Cl} is a set of classes 
and K is a clustering K = {K1, K2, ..., Km}. In the perfectly homogeneous case, this value is 0. However, this value 
is dependent on the size of the dataset and the distribution of class sizes. Thus, this conditional entropy is nor-
malized by the maximum reduction in entropy the clustering information could provide, H(C). Therefore, the 
homogeneity is defined as follows:

Dataset
#cell 
types

Proposed RaceID SC3 SINCERA SNN-Cliq Seurat

K (mean ± sd)
ARI 
(mean ± sd) K (mean ± sd)

ARI 
(mean ± sd) K (mean ± sd)

ARI 
(mean ± sd) K ARI K ARI K ARI

Biase 3 3 ± 0 0.94 ± 0.01 3.14 ± 0.6 0.84 ± 0.25 3 ± 0 0.94 ± 0 6 0.71 6 0.66 4 0.78

Deng 10 10 ± 0 0.58 ± 0.02 1 ± 0 0 ± 0 9 ± 0 0.65 ± 0.002 3 0.42 17 0.4 6 0.45

Goolam 5 3 ± 0 0.80 ± 0.09 1 ± 0 0 ± 0 6 ± 0 0.59 ± 0 13 0.19 17 0.2 3 0.05

Klein 4 6 ± 0 0.69 ± 0.01 2.98 ± 0.14 0.48 ± 0.001 19 ± 0 0.44 ± 0.01 43 0.45 265 0.11 3 0

Patel 5 5 ± 0 0.66 ± 0.09 7.44 ± 1.88 0.66 ± 0.08 17 ± 0 0.45 ± 0.01 10 0.78 26 0.14 5 0.63

Pollen 11 8 ± 0 0.86 ± 0.02 8.36 ± 2.27 0.55 ± 0.11 10 ± 0 0.93 ± 0 10 0.9 22 0.71 8 0.85

Treutlein 5 3 ± 0 0.72 ± 0.03 1 ± 0 0 ± 0 3 ± 0 0.66 ± 0 7 0.35 5 0.62 1 0

Yan 8 5 ± 0 0.81 ± 0.02 5.5 ± 2.34 0.55 ± 0.17 4 ± 0 0.76 ± 0 8 0.59 13 0.79 3 0.56

sim3 3 3 ± 0 1 ± 0 1 ± 0 0 ± 0 3 ± 0 1 ± 0 120 0.12 147 0.03 3 1

sim4 4 4 ± 0 0.99 ± 0.005 1 ± 0 0 ± 0 4 ± 0 0.99 ± 0.0005 464 0.08 437 0.01 3 0.57

sim6 6 7.9 ± 0.3 0.56 ± 0.03 1 ± 0 0 ± 0 3 ± 0 0.53 ± 0.005 68 0.25 143 0.06 6 1

sim8 8 9.34 ± 0.47 0.77 ± 0.03 1 ± 0 0 ± 0 4 ± 0 0.53 ± 0.04 68 0.35 290 0.05 8 1

sim_Tung 8 8 ± 0 0.42 ± 0 1 ± 0 0 ± 0 8 ± 0 0 ± 0 17 0.001 77 0.001 8 0

Table 1.  A comparison between the results of six methods: proposed, RaceID, SC3, Seurat, SINCERA, and 
SNN-Cliq. The adjusted rand index (ARI)47 is used to evaluate the performance of each clustering method. The 
proposed method, RaceID, and SC3 are performed 50, 50, and 5 times on each dataset, respectively. SC3 was 
performed only 5 times because it is very stable (standard deviation of zero for all datasets). The average ARIs 
across different runs are computed for the proposed method, SC3, and RaceID. Since SNN-Cliq, SINCERA and 
SEURAT are deterministic, they are performed only once. The proposed method was the best for 8 out of the 13 
datasets. The proposed method also yielded the best average ARI, as shown in Fig. 4.

Dataset
#cell 
types

Proposed RaceID SC3 SINCERA SNN-Cliq Seurat

K (mean ± sd)
AMI 
(mean ± sd) K (mean ± sd)

AMI 
(mean ± sd) K (mean ± sd)

AMI 
(mean ± sd) K AMI K AMI K AMI

Biase 3 3 ± 0 0.92 ± 0.02 3.14 ± 0.6 0.85 ± 0.23 3 ± 0 0.92 ± 0 6 0.64 6 0.62 4 0.74

Deng 10 10 ± 0 0.73 ± 0.01 1 ± 0 0 ± 0 9 ± 0 0.81 ± 0.006 3 0.48 17 0.6 6 0.59

Goolam 5 3 ± 0 0.73 ± 0.04 1 ± 0 0 ± 0 6 ± 0 0.69 ± 0 13 0.4 17 0.42 3 0.11

Klein 4 6 ± 0 0.67 ± 0.06 2.98 ± 0.14 0.51 ± 0.05 19 ± 0 0.53 ± 0.006 43 0.52 265 0.21 3 0.06

Patel 5 5 ± 0 0.86 ± 0.01 7.44 ± 1.88 0.66 ± 0.1 17 ± 0 0.93 ± 0 10 0.73 26 0.31 5 0.68

Pollen 11 8 ± 0 0.72 ± 0.01 8.36 ± 2.27 0.68 ± 0 10 ± 0 0.53 ± 0.01 10 0.91 22 0.74 8 0.87

Treutlein 5 3 ± 0 0.54 ± 0.03 1 ± 0 0 ± 0 3 ± 0 0.62 ± 0 7 0.46 5 0.51 1 0

Yan 8 5 ± 0 0.78 ± 0.01 5.5 ± 2.34 0.61 ± 0.17 4 ± 0 0.72 ± 0 8 0.72 13 0.76 3 0.58

sim3 3 3 ± 0 1 ± 0 1 ± 0 0 ± 0 3 ± 0 1 ± 0 120 0.23 147 0.21 3 1

sim4 4 4 ± 0 0.99 ± 0.007 1 ± 0 0 ± 0 4 ± 0 0.99 ± 0.001 464 0.21 437 0.2 3 0.66

sim6 6 7.9 ± 0.3 0.64 ± 0.02 1 ± 0 0 ± 0 3 ± 0 0.51 ± 0.004 68 0.42 143 0.3 6 1

sim8 8 9.34 ± 0.47 0.85 ± 0.01 1 ± 0 0 ± 0 4 ± 0 0.56 ± 0.007 68 0.51 290 0.31 8 1

sim_Tung 8 8 ± 0 0.51 ± 0.008 1 ± 0 0 ± 0 8 ± 0 0.006 ± 0 17 0.04 77 0.13 8 0

Table 2.  A comparison between the results of six methods: proposed, RaceID, SC3, Seurat, SINCERA, 
and SNN-Cliq. The adjusted mutual information (AMI)48,49, is used to evaluate the performance of each 
clustering method. The proposed method, RaceID, and SC3 are performed 50, 50, and 5 times on each dataset, 
respectively. The average AMIs across different runs are computed for the proposed method, SC3, and RaceID. 
Since SNN-Cliq, SINCERA and SEURAT are deterministic, they are performed only once.
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The completeness is symmetrical to homogeneity50. In order to satisfy the completeness criteria, a clustering 
must assign all of those data points that are members of a single class to a single cluster. To measure the com-
pleteness, the distribution of cluster assignments within each class is assessed. In a perfectly complete clustering 
solution, each of these distributions will be completely skewed to a single cluster.

Dataset
#cell 
types

Proposed RaceID SC3 SINCERA SNN-Cliq Seurat

K 
(mean ± sd)

V-measure 
(mean ± sd)

K 
(mean ± sd)

V-measure 
(mean ± sd)

K 
(mean ± sd)

V-measure 
(mean ± sd) K V-measure K V-measure K V-measure

Biase 3 3 ± 0 0.93 ± 0.03 3.14 ± 0.6 0.87 ± 0.2 3 ± 0 0.93 ± 0 6 0.72 6 0.7 4 0.73

Deng 10 10 ± 0 0.72 ± 0.01 1 ± 0 0 ± 0 9 ± 0 0.74 ± 0.001 3 0.93 17 0.64 6 0.93

Goolam 5 3 ± 0 0.82 ± 0.04 1 ± 0 0 ± 0 6 ± 0 0.98 ± 0 13 0.71 17 0.65 3 0.66

Klein 4 6 ± 0 0.38 ± 0.01 2.98 ± 0.14 0.4 ± 0.06 19 ± 0 0.31 ± 0.002 43 0.36 265 0.29 3 0.46

Patel 5 5 ± 0 0.56 ± 0.02 7.44 ± 1.88 0.54 ± 0.04 17 ± 0 0.46 ± 0.002 10 0.55 26 0.44 5 0.62

Pollen 11 8 ± 0 0.95 ± 0.01 8.36 ± 2.27 0.76 ± 0.03 10 ± 0 0.93 ± 0 10 0.94 22 0.72 8 0.93

Treutlein 5 3 ± 0 0.96 ± 0 1 ± 0 0 ± 0 3 ± 0 0.89 ± 0 7 0.93 5 0.92 1 0

Yan 8 5 ± 0 0.83 ± 0.02 5.5 ± 2.34 0.68 ± 0.07 4 ± 0 0.81 ± 0 8 0.65 13 0.78 3 0.73

sim3 3 3 ± 0 1 ± 0 1 ± 0 0 ± 0 3 ± 0 1 ± 0 120 0.95 147 0.95 3 1

sim4 4 4 ± 0 0.99 ± 0.0002 1 ± 0 0 ± 0 4 ± 0 0.99 ± 0.00003 464 0.97 437 0.97 3 0.96

sim6 6 7.9 ± 0.3 0.98 ± 0 1 ± 0 0 ± 0 3 ± 0 0.97 ± 0.0004 68 0.97 143 0.97 6 1

sim8 8 9.34 ± 0.47 0.99 ± 0 1 ± 0 0 ± 0 4 ± 0 0.98 ± 0.004 68 0.98 290 0.98 8 1

sim_Tung 8 8 ± 0 0.96 ± 0.03 1 ± 0 0 ± 0 8 ± 0 0.66 ± 0 17 0.82 77 0.8 8 0.66

Table 3.  A comparison between the results of six methods: proposed, RaceID, SC3, Seurat, SINCERA, and 
SNN-Cliq. The V-measure50 is used to evaluate the performance of each clustering method. The proposed 
method, RaceID, and SC3 are performed 50, 50, and 5 times on each dataset, respectively. The average 
V-measures across different runs are computed for the proposed method, SC3, and RaceID. Since SNN-Cliq, 
SINCERA and SEURAT are deterministic, they are performed only once.

Figure 4.  The performance comparison using 13 single cell datasets based on three metrics: the adjusted rand 
index (ARI), adjusted mutual information (AMI), and V-measure.The proposed method and RaceID were 
applied 50 times on each dataset. SC3 was used only 5 times on each dataset because it is very stable. The average 
ARIs, AMIs, and V-measures across different runs are computed for the proposed method, RaceID, and SC3. 
Since SNN-Cliq, SINCERA, and SEURAT are deterministic, they are run only once for each dataset.
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Given the homogeneity h and completeness c, the V-measure is computed as the weighted harmonic mean of 
homogeneity and completeness:

β
β

=
+ ∗ ∗

∗ +
h c

h c
V measure (1 )

( ) (8)
‐

if β is greater than 1, completeness is weighted more strongly in the calculation. If β is less than 1, homo-
geneity is weighted more strongly. Since the computations of homogeneity, completeness and V-measure are 
completely independent of the number of classes, the number of clusters, the size of the dataset and the clustering 
algorithm, these measures can be employed for evaluating any clustering solution.

Results
Tables 1–3 shows the comparison between the proposed method and five other methods: RaceID35, SC328, 
SEURAT25, SINCERA38, and SNN-Cliq17 using the three metrics: ARI, AMI, and V-measures, respectively.

We used the R package fpc61 to compute the k-means clustering based on the resampling method. We gener-
ated 20 different clusterings, and for each clustering we computed 1,000 clusterings based on the resampled data-
sets to find the most meaningful clustering. We used the log-transformation (M′ = log2(M + 1)) for all methods 
except SINCERA. For SINCERA we followed the authors instructions38 and used the original z-score normal-
ization instead of the log-transformation. In order to generate SC3 results, we used the R package SC3 (http://
bioconductor.org/packages/SC3, v.1.8.0). We applied the same gene filtering approach that authors proposed in 
their study (parameter gene_filter=TRUE).

For SEURAT we used the Seurat R package (v.2.3.4)62. We performed the t-SNE using the Rtsne R package 
with the default parameters, and we used DBSCAN algorithm for clustering. We ran SNN-cliq with the default 
parameters that are provided by the authors17. For RaceID, we used the R code provided by the authors35 (https://
github.com/dgrun/RaceID).

As shown in Fig. 4, the proposed method performs better than the five methods across 13 different datasets. 
In this figure, the three boxplots shows the the performance of each method on these 13 datasets based on the 
adjusted rand index (ARI), adjusted mutual information (AMI), and V-measure. We performed the proposed 
method, SC3 and RaceID on each dataset for 50, 5, and 50 times, respectively. In these three methods, we calcu-
lated the average of ARIs, AMIs, and V-measures over different runs. Since SC3 is reported as a stable method by 
the authors28, we run it only 5 times. Indeed, we have observed the results with a very small standard deviation 
in all 5 runs for all 13 datasets confirming the claims of the authors. The other clustering methods SEURAT, 
SINCERA, and SNN-Cliq were run only once since they are deterministic.

Discussion
The results shown in Tables 1–3 merit some discussion. The Goolam dataset, for instance, includes 5 true cell 
types. On this dataset, the proposed algorithm identifies 3 clusters, while SC3 identifies 6, RaceID 1, Seurat 2, 
SINCERA 13 and SNN-Cliq 17 types. Even though the number of clusters closest to the number of true types is 6, 
as yielded by SC3, the membership of various cells in these clusters is not correct since the ARI index associated 
to these 6 clusters is only 0.59 compared to the ARI index of 0.8 associated to the 3 clusters constructed by the 
proposed method.

Conversely, for the Patel dataset that includes 5 cell types, the proposed method was able to correctly estimate 
the number of clusters (k = 5). However, the distribution of the individual cells across these five clusters is not 
perfect, as illustrated by the lower ARI value of 0.66, compared to the 0.78 ARI associated with the SINCERA 
results.

As another observation, the Pollen dataset includes 11 cell types. Using this dataset, the number of clusters 
(k = 10) determined by SINCERA is close to the correct number of cell types. However, SC3 achieved better clus-
tering (ARI = 0.93) in contrast to the five other methods. SC3 identified 17 different clusters using this dataset.

Figure 5.  The run time of the different methods using 13 single cell datasets.
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Two conclusions may be drawn from these observations. First, results should not be assessed based on the 
agreement between the number of clusters found and the number of known cell types – the assignment of each 
cell to a given type is more important. Second, larger number of clusters reported will be associated with larger 
values of ARI. Therefore, results that include very large number of clusters should be regarded with caution.

RaceID and Seurat both were not able to find a meaningful clustering for the Treutlein dataset. The identified 
number of clusters by both RaceID and Seurat is 1 (k = 1), while this dataset includes 5 different cell types. As 
a result, the clusterings obtained by these two methods are poorly matched to the reference clustering. In Deng 
dataset, the best ARI of 0.65 is obtained by SC3 but this value is not very high. The poor results obtained by all 6 
methods using this dataset might be due to noisy data.

We also assessed the reproducibility/stability of the stochastic methods: proposed, RaceID, and SC3 by run-
ning each method several times. Although SC3’s consensus pipeline provides a very stable solution (very low 
standard deviation for the three metrics and k across all datasets), it is computationally more costly than other 
methods. In summary, one key advantage of our proposed method is that we produce consistent clustering across 
different datasets.

The run time for each method using 13 different datasets is shown in Fig. 5. It is notable that RaceID, the 
proposed method, and SC3 have a non-linear increase in run time. At this time, it appears that it is unfeasible to 
perform this method on large datasets consisting of thousands of cells. The fastest method among all the meth-
ods is Seurat, which is a graph-based method. The graph-based methods often return only a single clustering 
solution with a faster run time and they do not require the user to provide the number of clusters33. Seurat is a 
popular choice for the large data sets based on the its optimal speed and scalability. However, it has been shown 
that Seurat does not provide an accurate solution for smaller datasets33. The details of the run times are included 
in Supplementary Materials.

More generally, finding an optimal clustering method that provides stable solutions for all situations may not 
be possible. In fact, because no method can perform well for all situations, a comparative analysis of methods 
based on a set of criteria should be employed33.

Conclusion
Recent advances in single-cell RNA-Seq (scRNASeq) provide the opportunity to perform single-cell transcrip-
tome analysis. In this paper, we develop a pipeline to cluster the individual cells based on their gene expres-
sion values such that each cluster consisting of cells with specific functions or distinct developmental stages. 
We first filter genes that are not expressed in any cell. Then, we compute the distance between the cells using 
the Euclidean distance. We reduce the dimensions of the distance matrix data using the t-distributed stochastic 
neighbor embedding (t-SNE) technique. Based on the dimensionality reduced distance matrix, we explore strong 
patterns (clusters) of cells by randomly drawing a percentage of the data points without replacement, and replac-
ing them with points from a noise distribution. We apply the proposed method on 13 different single cell datasets, 
and we compare it with five related methods: RaceID, SC3, Seurat, SINCERA, and SNN-Cliq. The results of the 
evaluation on datasets demonstrate that the proposed method yields better clustering results in comparison to 
the existing methods.
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