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Abstract

Coconut antimicrobial peptide-1 (CnAMP1) is a naturally occurring bioactive peptide from green coconut water (Cocos nucifera
L.). Although biological activities have been reported, the physiological relevance of these reports remains elusive as it is
unknown if CnAMPI is taken up into intestinal cells. To address this open question, we investigated the cytotoxicity of
CnAMPI in intestinal cells and its cellular uptake into human intestinal cells. Considering the importance of the P-
glycoprotein (P-gp) to the intestinal metabolism of xenobiotics, we also investigated the influence of CnAMP1 on P-gp activity
and expression. Both cell lines showed intracellular fluorescence after incubation with fluorescein labelled CnAMP1, indicating
cellular uptake of the intact or fragmented peptide. CnAMP1 (12.5-400 umol/L) showed no signs of cytotoxicity in LS180 and
differentiated Caco-2 cells and did not affect P-gp expression and activity. Further research is required to investigate the identity
of CnAMPI hydrolysis fragments and their potential biological activities.

Keywords Coconut antimicrobial peptide 1 (CnAMP1) - Caco-2 cell line - LS180 cell line - Cellular uptake - P-glycoprotein
activity

Abbreviations TBST Tris buffered saline with Tween 20
CnAMP1 coconut antimicrobial peptide-1 TCA trichloroacetic acid
FCS fetal calf serum
MEM minimum essential medium
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-  Introduction
zolium bromide
P-gp P-glycoprotein Antimicrobial resistance was listed among the 10 threats to
Rh123 rhodamine 123 global health in 2019 by the World Health Organization [1],
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endangering the achievement of the Sustainable Development
Goals. The discovery of new antibacterial molecules is a cru-
cial step to overcome the challenge posed by the emergence of
antibiotic resistance [2]. Antimicrobial peptides (AMP) are
amino acid polymers with small sequence size, which present
activity against microorganisms and are being considered a
promising new class of antibiotics [3, 4].

Coconut water, the liquid endosperm from coconut (Cocos
nucifera L.), has traditionally been used for medicinal pur-
poses by ancient cultures and, more recently, several biolog-
ically active molecules were identified, including antifungal as
well as antimicrobial peptides. Four peptides have been iden-
tified in green coconut water so far: a 10 kDa peptide with
antifungal activity [5] and three peptides with antimicrobial
activities (AMP), designated CnAMP1, CnAMP2 and
CnAMP3 (composed of 9, 12 and 8 amino acids, respectively)
[6]. ChnAMPI (= 860 Da) strongly inhibits the growth of fungi
and Gram-positive and Gram-negative bacteria [7].

Food-derived bioactive peptides might exert health-
beneficial effects by direct interaction with bacteria in the
gut, by binding extracellular structures (e.g., plasma mem-
brane receptors and transporters), or by being absorbed into
intestinal cells, where they may interact with intracellular tar-
gets or be secreted and distributed to other tissues via the
systemic circulation. Furthermore, peptides have been shown
to be substrates and modulators of the activity of the P-
glycoprotein (P-gp) efflux transporter [8]. P-gp is expressed
on multiple barriers within the body, including the apical sur-
face of intestinal cells [9] and plays an important role in the
bioavailability of many drugs and phytochemicals. Changes
in P-gp can increase or decrease the bioavailability of its sub-
strates. The influence of Cn-AMP1 on P-glycoprotein would
thus be an undesirable effect that raises safety concerns.

Thus, we investigated the cellular uptake of coconut water
antimicrobial peptide CnAMP1 in LS180 and Caco-2 cells
and its impact on cytotoxicity and P-glycoprotein activity.

Material and Methods
Material

Acetonitrile (ACN) and trifluoroacetic acid (TFA) were from
J.T. Baker (Germany). NP-40 and 3-(4,5-dimethylthiazolyl)-
2,5-diphenyl-tetrazoliumbromide (MTT) were from Sigma-
Aldrich (Steinheim, Germany). Minimum Essential Medium
(MEM), non-essential amino acid solution, pyruvate, fetal calf
serum (FCS) and penicilin/streptomicin solution were obtain-
ed from Gibco (Germany). Dulbecco’s Modified Eagle
Medium (DMEM) was purchased from Thermo Fisher
Scientific (Germany). Bradford reagent Roti®-Quant was
from Carl Roth (Germany). All the chemicals and reagents
used were of HPLC or analytical grade.

Synthetic CnAMP1 peptide (SVAGRAQGM) and
CnAMPI1 labelled with fluorescein (5-FAM-
SVAGRAQGM; Fluos-CnAMP1) were purchased from
Peptide 2.0 Incorporated (Chantilly, VA, USA) and
ProteoGenix (Schiltigheim, France), respectively. Purity of
TCA-free peptide batches was >97%. Stock solutions (2 and
10 mmol/L) were prepared in sterile distilled water and stored
at =20 °C.

Cell Culture Conditions and Cell Differentiation

Caco-2 cells were cultivated in DMEM and LS180 cells in
MEM. Both media were supplemented with 10% fetal calf
serum, 100 IU/mL penicillin, 100 mg/mL streptomycin solu-
tion, 1% non-essential amino acids and 1% pyruvate. Caco-2
cells were maintained for 21 days after reaching total conflu-
ence for differentiation into small-intestinal-like cells and me-
dium was renewed every two days (differentiation was con-
firmed by ZO-1 protein immunofluorescence). All cell lines
were cultivated at 37 °C and 5% CO..

Cytotoxicity Assay

Cytotoxicity of CnAMP1 and Fluos-CnAMP1 against
LS180 and Caco-2 cells was evaluated by MTT reduction
assay [10]. Briefly, cells were seeded in 48-well plates at
a density of 3 x 10° cells (LS180) and 10° cells (Caco-2)
per well and incubated for 24 h at 37 °C, 5% CO,. Caco-2
cells were cultured following the protocol for differentia-
tion described above. Supernatant was removed and cells
received culture medium supplemented with CnAMP1 at
different concentrations (12.5-400 pwmol/L). Medium with
0.1% Triton X-100 was used as positive control and pure
medium as negative control (100% viability). Treatments
were randomized in the plate. After 48 h of incubation,
10 puL of the MTT solution [5 mg/mL in phosphate buft-
ered saline (PBS)] was added to each well of the plate,
which was placed in the incubator for 2 h. The blue
formazan crystals were dissolved by the addition of
100 pL of solubilization reagent (99.4% DMSO, 0.6%
acetic acid, 10% SDS). To dissolve the precipitate, the
plates were then gently swirled for 5 min on a rotator
shaker, at room temperature and protected from light.
The absorbance was monitored at 580 nm (660 nm as
background) using a Synergy HT microplate reader
(BioTek Instruments GmbH, Bad Friedrichshall,
Germany). Cytotoxicity was determined as a percentage
of the maximum value after subtracting the background.
Results were expressed as the percentage of each sample
compared to the negative control and the assay was re-
peated three times with cells from different passages (be-
tween 45 and 50).
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Cellular Uptake of Fluos-ChnAMP1

LS180 and Caco-2 cells were seeded on sterile coverslips and
cultured as described above. LS180 cells were incubated until
they reached 90—100% confluence. Caco-2 cells were used at
the 21st day of differentiation. Media were removed and cells
were washed twice with PBS prior the incubation. Before
incubation with the peptide, cell DNA was stained with
Hoechst. Fluos-CnAMP1 (100 uM prepared in glucose 1 g/
L in PBS) was added to each well for 15, 30, 60 min or 24 h.
Incubation was conducted in duplicates followed by the re-
spective blanks (cells incubated only with PBS + glucose so-
lution). After incubation, coverslips were washed five times
with PBS and mounted on glass slides. Cells were not fixed in
order to not alter membrane permeability. Slides were ob-
served by fluorescence microscopy on a ZEISS Axiovert
100 M (Jena, Germany).

P-Glycoprotein Expression In Vitro

Induction of P-gp was carried out as previously described
by Abuznait and co-workers [11]. LS180 cells were seed-
ed in 48-well plates at a density of 3 x 10° cells per well
and allowed to attach and grow to 50-60% confluence at
37 °C and 5% CO,. Different concentrations of CnAMP1
(12.5-200 pmol/L) were prepared in growth medium be-
fore use. Rifampicin, used as positive control, was pre-
pared in DMSO and diluted to 25 umol/L with medium.
Incubation with CnAMP1 and controls were carried out
for 48 h. LS180 cell lysates were prepared as follow: cells
were washed with 200 uL PBS and 50 puL trypsin/EDTA
solution were added to each well. Plates were incubated
for 10 min at 37 °C, 5% CO,, after which 450 uL medi-
um were added in order to inactivate the enzyme, and the
cell suspension was then centrifuged for 5 min, 4 °C,
3000xg. Working on ice, cell pellets were resuspended

in ice-cold PBS and centrifuged, 16,100xg; the superna-
tant was discarded and 20 uL of NP-40 lysis buffer with
protease inhibitor cocktail added to the cell pellet. After
20 min of incubation on ice, cell pellets were sonicated
for 30 s and centrifuged for 5 min, 4 °C, 16,100xg. The
amount of protein in the supernatant was quantified ac-
cording to the Bradford’s method. Supernatants were
stored at —80 °C. The assay was repeated three times with
cells in different passages (between 45 and 50) and P-gp
expression determined by Western blotting.

Western Blotting

Twenty-five micrograms of protein per lane were separated on
a 7.5% SDS- polyacrylamide gel followed by transferring the
proteins to a polyvinylidene difluoride membrane, which was
blocked for 1 h (5% BSA in TBST) at room temperature. The
primary antibody [P-gp, 1:5000 (Abcam); (-actin, 1:5000
(Santa Cruz Biotechnology)] was diluted with 5% BSA in
TBST, and the membranes were incubated for 1 h at room
temperature under gentle agitation. Membranes were washed
and incubated with secondary antibody [goat anti-rabbit per-
oxidase conjugated, 1:10,000 (Calbiochem) diluted with 5%
BSA in TBST] with gentle shaking for 1 h at room tempera-
ture. The bands were visualized using ImmunStar Western C
Kit (Bio-Rad), and band intensity was recorded with a Peqlab
Fusion Fx7 system (Vilber Lourmat, Eberhardzell, Germany).
Relative concentrations of the proteins were quantified as the
ratio of P-gp to [-actin band densities.

P-Glycoprotein Activity Assay

The impact of CnAMP1 on P-glycoprotein (P-gp) activity
was measured [11], using elacridar (3.5 umol/L) as P-gp
inhibitor and rifampicin as positive control (25 umol/L).
LS180 cells were seeded in 48-well plates at a density of

Fig. 1 Viability of LS 180 and LS 180 Caco-2
Caco-2 cells incubated with 12.5—
200 pmol/L of CnAMP1 and 120 - ECnAMP1  BFluos-CnAMP1 120 4 mCnAMP1  ©Fluos-CnAMP1

Fluos-CnAMPI for 48 h. Data
represent mean = SD of three in-
dependent experiments per-
formed in triplicate. No statistical
differences were observed
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3% 10 cells per well and allowed to attach and grow to
50-60% confluence at 37 °C and 5% CO,. The fluores-
cent intensity of rhodamine 123 (Rh123) accumulated in-
side the cells was measured after 48 h using a Synergy
HT microplate reader (Biotek, USA) under the excitation
wavelength of 485 nm and emission wavelength of
529 nm and data acquisition was achieved using Gene5
software (Biotek). Data was normalized by the protein
content. Cellular accumulation of Rh123 was determined
as the fluorescent intensity per mg protein of each treat-
ment sample in the presence of or absence of elacridar (P-
gp inhibitor). Results were expressed as means + standard

HOECHST

BLANK

15 min

LS 180

30 min

1h

Fig. 2 Indirect immunofluorescence microscopy of LS 180 cells
incubated for 15, 30 or 60 min with 100 umol/L fluorescence-labelled

deviation (SD) for cellular accumulation of Rh123 from
treatment samples compared to control.

Statistical Analysis

Data are presented as the mean + SD. One-way analysis of
variance (ANOVA) was performed for statistical comparison
of'the results, which was followed by Dunett’s test (in order to
compare treatments with control) using GraphPad Prism
(GraphPad Software Inc., San Diego, CA). Two-way analysis
of variance was applied when necessary, followed by

CnAMP1 MERGE

CnAMPI (Fluos-CnAMP1). Blue: Hoechst DNA stain; green: Fluos-
CnAMPI. Bars =50 um
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Bonferoni post-test. If p was <0.05, differences were consid-
ered statistically significant (*P < 0.05).

Results and Discussion

Cytotoxicity

Cell viability assays revealed that CnAMP1 and Fluos-
CnAMPI, for 48 h at concentrations up to 200 umol/L, had

no toxic effects on LS-180 and differentiated Caco-2 cells
(Fig. 1). This is important given the regular coconut water

HOECHST

BLANK

CACO-2
15 min

30 min

=
| -
Fig. 3 Indirect immunofluorescence microscopy of differentiated Caco-2

cells incubated for 15, 30 or 60 min with 100 pmol/L fluorescence-
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intake in some regions of the globe or even considering the
perspective of applying the peptide as a biopharmaceutical
molecule. In agreement with our findings, Silva and co-
workers [12] found no CnAMP1-induced cytotoxicity in mu-
rine macrophage-like cells (RAW 264.7). In non-
differentiated Caco-2 cells, however, they observed that
CnAMP1 reduced cell viability in a dose-dependent manner
[12]. When grown for 21 days after confluence, Caco-2 cells
differentiate into a small intestinal enterocyte-like phenotype
[13]. The proteome of differentiated Caco-2 cells differs from
undifferentiated cells in a number of proteins involved in cell
recognition, structure, defence, transport, and signalling

CnAMP1 MERGE

labelled CnAMP1 (Fluos-CnAMP1). Blue: Hoechst DNA stain; green:
Fluos-CnAMPI. Bars =50 pm
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[14-16]. In particular, the increased expression of brush-
border-associated hydrolases (such as aminopeptidase N and
dipeptidases), membrane transporters and drug metabolizing
enzymes in differentiated Caco-2 cells [15, 17] may explain
the differences in susceptibility to CnAMP1-induced toxicity.

Uptake of Fluos-CnAMP1 into Intestinal Cells

In our previous study, we observed a gradual decline of non-
labelled CnAMP1 in cell culture supernatant but no CnAMP1
within the cell pellet, suggesting extensive hydrolysis by
brush border peptidases [18]. To investigate this hypothesis
and examine if the cells are capable to absorb CnAMP1 or its
breakdown fragments, LS180 and Caco-2 cells were incubat-
ed with fluorescein-labelled CnAMP1. After 15 min, a fluo-
rescence signal emanated by the cells was already detected
(Figs. 2 and 3). At that time point, it was not possible to
distinguish if the fluorescent peptide was bound extracellular-
ly to the membrane or internalized. After 1 h of incubation, the
fluorescence signal was stronger in Caco-2 than in LS180
cells. These results are in line with the rapid disappearance
of CnAMP1 from the Caco-2 supernatant, in comparison with
LS180 cell, when non-labelled peptide was incubated with
these two cell lines in our previous experiments.
Micrographs of cells after 1 h incubation with Fluos-
CnAMP1, especially those from Caco-2 cells, show fluores-
cent vesicles localized in the cytosol. Therefore, the addition
of the fluorescent-label either inhibited hydrolysis of
CnAMP1 by brush border peptidases, which could thus be
internalised in its native form, or a hydrolysis product, carry-
ing the label, was taken up into LS180 and Caco-2 cells.
Incubation for 24 h resulted in complete cell detachment and
no cells remained on the coverslip after the washing cycles,
which precluded the recording of the 24 h micrographs.

Interestingly, another study also observed that the hy-
drolysis product of a casein-derived peptide (VLPVPQK)
was absorbed by Caco-2 cells and secreted into the
basolateral chamber in a trans-well assay, indicating that
the hydrolysis product might reach the systemic circulation
in vivo [19]. Similar findings were reported for another
milk-derived peptide (LHLPLP), for which partial hydro-
lysis by Caco-2 brush border peptidases were observed
prior to the flux across the cell layer. The LHLPLP hydro-
lysis product had a higher flux than its precursor and was
proposed to be responsible for the antihypertensive effects
of LHLPLP in animal models [20].

Gastrointestinal enzymatic breakdown of dietary bioactive
peptides is a recurring concern, as hydrolysis could, potential-
ly, inactivate them. However, after simulated gastrointestinal
digestion, peptide fragments can preserve their original bio-
logical activities [21-23]. Moreover, the smaller the peptide
(di- and tri-peptides) the higher its chance to be more efficient-
ly internalized by intestinal cells [24]. Before transported into
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Fig. 4 Representative Western blot and band densities of P-glycoprotein
(P-gp) protein expression (standardised to (-actin) in LS180 cells incu-
bated for 48 h with increasing concentrations of CnAMP1. Rifampicin
(25 umol/L) was used as positive control. Data represent mean + SD of
three independent experiments performed in triplicate. *Significantly dif-
ferent from control (p <0.05, one-way ANOVA)

the bloodstream, bioactive sequences could also play new and
important roles in regulation of nutrient absorption and mod-
ulation of epithelial cell functions [25]. The activity of intact
CnAMP1 or its fragments could be relevant independently of
their brush border uptake. They could, at the level of the gut
lumen, either modify the intestinal microbiota (as reported for
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Fig.5 P-glycoprotein (P-gp) activity (intracellular accumulation of the P-
gp substrate thodamine 123) quantified in LS-180 cells incubated with
12.5-200 umol/L CnAMP1 for 48 h. P-gp activity was determined in the
presence (black bars) or absence (dashed bars) of the P-gp inhibitor
Elacridar. Data represent mean + SD of three independent experiments
performed in triplicate. *Significantly different from control (one-way
ANOVA) and significantly different from cells in the presence of
Elacridar (two-way ANOVA) at p <0.05
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the duck egg white-derived peptide VSEE [26]) or interact
with receptors on the surface of the intestinal epithelium.
Human trials have demonstrated that small food-derived
peptides resistant to exopeptidases can remain bioavailable,
circulate in the blood and reach target organs [27-30].
Therefore, further studies are necessary to completely under-
stand the hydrolysis of CnAMP1 at the intestinal barrier, the
absorption of the hydrolysis products into the cells, their se-
cretion at the basolateral membrane, their possible efflux to
the gut lumen as well as their potential biological activities.

P-Glycoprotein Expression and Activity

For safety considerations, it is important to know whether a
newly identified natural compound is an inhibitor or inducer
of P-gp and may potentially alter the bioavailability of concur-
rent ingested compounds. We therefore investigated if
CnAMP1 inhibits or induces the expression and transport ac-
tivity of P-gp. However, neither the expression (Fig. 4), nor the
activity of the membrane transporter (Fig. 5) was altered in
LS180 cells upon incubation with 12.5-200 pmol/L
CnAMP1 for 48 h. P-glycoprotein (P-gp) is an efflux transport-
er expressed in the plasma membrane of epithelial cells, includ-
ing those of the intestine, which shuttles xenobiotics out of the
cell. P-gp is thus an important part of the cellular defence
against potentially harmful substances. P-gp has a broad sub-
strate affinity and transports a vast array of chemically and
structurally unrelated compounds [31, 32]. P-gp activity in in-
testinal epithelial cells greatly influences the bioavailability of
many compounds and, thus, P-gp is often involved in drug
interactions affecting the pharmacokinetics and pharmacody-
namics of drugs, which may ultimately alter their safety and
efficacy [9]. Our results suggest that CnAMP1 does not elicit
unfavourable drug interactions.

Conclusions

In summary, we gathered evidence that intestinal epithelial
cells may internalize CnAMP1 brush-border hydrolysis prod-
ucts. Additional experiments are required to identify all hy-
drolysis products and their uptake kinetics in intestinal cells.
Future research should also focus on whether the small frag-
ments of CnAMP1 maintain the previous reported activities or
display novel systemic biological effects. We demonstrate
here that CnAMP1 did not interfere on P-gp expression and
activity, consequently it does not modify the bioavailability of
xenobiotics. These results, along with the absence of cell tox-
icity, reinforce the safety aspects related to coconut water con-
sumption as well as the use of CnAMP1 as potential novel
antimicrobial compound.
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