
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12354  | https://doi.org/10.1038/s41598-020-69433-w

www.nature.com/scientificreports

Novel application 
of an automated‑machine learning 
development tool for predicting 
burn sepsis: proof of concept
Nam K. Tran1*, Samer Albahra1, Tam N. Pham2, James H. Holmes IV3, David Greenhalgh4, 
Tina L. Palmieri4, Jeffery Wajda5 & Hooman H. Rashidi1*

Sepsis is the primary cause of burn-related mortality and morbidity. Traditional indicators of sepsis 
exhibit poor performance when used in this unique population due to their underlying hypermetabolic 
and inflammatory response following burn injury. To address this challenge, we developed the 
Machine Intelligence Learning Optimizer (MILO), an automated machine learning (ML) platform, to 
automatically produce ML models for predicting burn sepsis. We conducted a retrospective analysis 
of 211 adult patients (age ≥ 18 years) with severe burn injury (≥ 20% total body surface area) to 
generate training and test datasets for ML applications. The MILO approach was compared against 
an exhaustive “non-automated” ML approach as well as standard statistical methods. For this study, 
traditional multivariate logistic regression (LR) identified seven predictors of burn sepsis when 
controlled for age and burn size (OR 2.8, 95% CI 1.99–4.04, P = 0.032). The area under the ROC (ROC-
AUC) when using these seven predictors was 0.88. Next, the non-automated ML approach produced 
an optimal model based on LR using 16 out of the 23 features from the study dataset. Model accuracy 
was 86% with ROC-AUC of 0.96. In contrast, MILO identified a k-nearest neighbor-based model using 
only five features to be the best performer with an accuracy of 90% and a ROC-AUC of 0.96. Machine 
learning augments burn sepsis prediction. MILO identified models more quickly, with less required 
features, and found to be analytically superior to traditional ML approaches. Future studies are 
needed to clinically validate the performance of MILO-derived ML models for sepsis prediction.

Burn patients are at high risk for infections, with sepsis being the most common cause of morbidity and 
mortality1. Traditional indicators of sepsis defined previously by the Surviving Sepsis Campaign2 and other 
organizations exhibit poor performance when used in this unique population due to their underlying hypermeta-
bolic and inflammatory response to burn injury. For example, the systemic inflammatory response syndrome2,3 
lacks clinical sensitivity and specificity when applied to severely burned patients1, while the newer 2016 “Sep-
sis-3” criteria remain controversial in both burned and non-burned patients4–7. To this end, early and accurate 
recognition of sepsis represents a significant clinical knowledge gap in burn critical care.

The American Burn Association (ABA) Consensus Guidelines published in 2007 was intended to better dif-
ferentiate burn sepsis from the natural host-response to injury (Table 1)1. These guidelines recognized deficiencies 
of traditional indications of sepsis and removed less specific parameters such as white blood cell count (WBC). 
Fever was re-defined as temperatures > 39 °C to improve specificity and at the cost of sensitivity. Glycemic vari-
ability and thrombocytopenia were also included in the ABA Consensus Guidelines; however, measurement of 
glycemic variability is challenging without continuous glucose monitoring technology and platelet count aids 
burn sepsis recognition at later stages of severe infection.

The emergence of artificial intelligence (AI) and machine learning (ML) provides an opportunity to improve 
burn sepsis recognition. Recent studies suggest AI/ML improves the diagnostic accuracy, and clinical sensitivity/
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specificity for predicting burn related sequalae such as acute kidney injury (AKI)8. However, widespread adop-
tion of AI/ML in laboratory diagnostics is challenged by the lack of programming expertise in the medical 
community and accessibility of health data to develop clinically relevant models9. To this end, the development 
of automated ML platforms to facilitate pragmatic clinical studies are needed to fully realize the true capabilities 
of health AI. The objective of this study is to provide proof of concept clinical utility of ML for sepsis recognition 
in comparison to existing criteria in the high-risk burn population.

Methods
We developed and validated ML models for burn sepsis prediction using a retrospective dataset. The database 
was derived from a previous multicenter (5-site) randomized controlled trial (ClinicalTrials.gov#NCT01140269) 
evaluating the clinical impact of molecular pathogen detection in burn sepsis patients where vital signs and 
laboratory data was recorded daily for the duration of each patient’s intensive care unit (ICU) stay (Supplemen-
tal Data Fig. S1)10. Vital signs and laboratory data was consistently collected per study protocol. Contributing 
sites were ABA verified burn centers in the United States. Human subjects’ approval was obtained at each study 
site and through the United States Army Human Research Protection Office. From this study population, we 
used the data to help predict sepsis when analyzed using traditional statistics, as well as ML using traditional 
non-automated programming, and then compared against our novel automated ML approach. Study methods 
are described below.

Table 1.   Comparison of sepsis criteria. ABA American Burn Association, aPTT activated partial 
thromboplastin time, CRP c-reactive protein, FiO2 fraction of inspired oxygen, GCS Glascow Coma Score, 
INR international normalized ratio, IV intravenous, NS not significant, PaO2 partial pressure of oxygen, 
PCT procalcitonin, PLT platelet count, SBP systolic blood pressure, SD standard deviation, SIRS systemic 
inflammatory response syndrome, SOFA sequential organ failure assessment, SvO2 saturation of venous oxygen, 
temp temperature, UOP urine output, WBC white blood cell count.
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Study population.  The database consisted of 211 adult (age ≥ 18 years) patients with ≥ 20% total body sur-
face area (TBSA) burns enrolled from across five United States academic hospitals. Patients with non-survivable 
injuries or lacking the ability to provide informed/surrogate consent were excluded. Relevant medical informa-
tion including patient demographics, vital signs (i.e., heart rate, respiratory rate, systolic/diastolic blood pressure, 
mean arterial pressure, central venous pressure), laboratory results (i.e., blood gas indices, complete blood count, 
chemistry panels, coagulation status, and microbiology results), Glascow Coma Score (GCS), medical/surgical 
procedures (e.g., surgery, intravascular line placement/removal), mechanical ventilator settings, and prescribed 
antimicrobial medications were recorded daily over the course of their ICU stay. Outcome measures include 
sepsis status, and mortality were also recorded. Sepsis status was based on the 2007 ABA Consensus Guidelines1. 
The study population included patients with respiratory, urinary tract, soft tissue, and/or bloodstream infec-
tions. Recorded data variables are outlined in Table 2 and were used for curating the data to determine sepsis 
status, as well as for performing traditional statistical analyses, and ML model development and generalization.

Traditional machine learning method.  Machine learning sepsis algorithms were first developed using 
our exhaustive “traditional” non-automated ML approach8,11. The process entailed manually selecting various 
feature set combinations aided with an unsupervised select percentile techniques such as ANOVA F-classifica-
tion for feature selection from the original dataset followed by building a large number of models on various 
supervised algorithms. The five ML supervised algorithms employed for this task included: (a) logistic regression 
(LR), (b) k-nearest neighbor (k-NN), (c) random forest (RF), (d) support vector machine (SVM), and our multi-
layer perceptron deep neural network (DNN). Scikit-Learn’s version 0.20.2 was used to construct models as in 
previous studies11. Cross validation and hyperparameter tuning studies were also performed for LR, RF, k-NN, 
SVM, and DNN methods using the Scikit-learn cross validation and grid search tools. This technique along with 
the grid search hyperparameter variations allowed us to develop and compare a large number (49,940) of unique 
models based on various feature set combinations (identified from our select percentile feature selection) within 
our five ML methods/algorithms. This approach enabled us to empirically assess and compare all models and to 
identify the best performing ML model for a given set of unique hyperparameters and feature set combinations.

Automated ML (auto‑ML) platform.  In addition to the above manual ML approach, we developed the 
Machine Intelligence Learning Optimizer (MILO) platform to perform a similar task in a fully automated fash-
ion (Fig. 1)12. The MILO infrastructure includes an automated data processor, a data feature selector (ANOVA 
F select percentile feature selector and RF Feature Importances Selector) and data transformer (e.g., principal 
component analysis), followed by custom supervised ML model building using our custom hyperparameter 
ranges used with search tools (i.e., grid search and random search tools) to help identify the optimal hyper-
parameter combinations for DNN, LR, naïve Bayes (NB), k-NN, SVM, RF, and XGBoost gradient boosting 
machine (GBM) techniques. Additionally, MILO enables addition of other algorithms and hyperparameter 
combinations—allowing us to easily add in NB and GBM for analysis.

Following the training and validation of models, MILO executes an automated performance assessment with 
results exported for user viewing. In the end, MILO employs a combination of unsupervised and supervised ML 
platforms from a large set of algorithms, scalers and feature selectors/transformers to create greater than 1,000 
unique pipelines (i.e., set of automated machine learning steps)—ultimately generating > 100,000 models that 
are then statistically assessed to identify optimal algorithms for use (Supplemental Data Table S1).

For this study, we imported the trial data into MILO using sepsis status as the outcome measure for analysis. 
The following functions are then performed automatically by MILO. First, rows with any missing values are 
removed (e.g., laboratory results that were not performed for a given day). Next the information is assessed to 
ensure model training and the initial validation step is based on a balanced dataset. A balanced dataset is used 
for training because the system was built to work with small amounts of training data and since accuracy was a 
scoring discriminator, the measured accuracy can then be better assessed against a lower null accuracy baseline 

Table 2.   Daily recorded variables for enrolled subjects. aPTT activated partial thromboplastin time, BUN 
blood urea nitrogen, CVP central venous pressure, DBP diastolic blood pressure, FiO2 fraction of inspired 
oxygen, HCT hematocrit, HGB hemoglobin, INR international normalized ratio, MAP mean arterial pressure, 
MODS multiple organ dysfunction score, PaO2 partial pressure of arterial oxygen, pCO2 partial pressure of 
CO2, pO2 partial pressure of oxygen, SBP systolic blood pressure, SOFA sequential organ failure assessment 
score, SO2 oxygen saturation, TCO2 total CO2, WBC white blood cell count.

Vital sign Blood gas Chemistry Heme/Coag Microbiology Calculated values Clinical events

Heart rate pH Na+  HGB Blood culture Anion gap Surgery

Respiratory rate pCO2 K+  HCT Respiratory culture BUN/creatinine ratio Ventilatory status

SBP/DBP pO2 Cl−  WBC Urine culture MODS Antibiotic therapy

CVP HCO3−  TCO2 Platelet count Wound culture SOFA Dialysis status

MAP FiO2 Glucose aPTT PaO2/FiO2 Survival status

GCS Creatinine INR

BUN D-dimer

Total bilirubin
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which ultimately would minimize overfitting. This balanced dataset is then split into training and validation test 
sets in an 80–20 split, respectively. Since many algorithms benefit from scaling, in addition to using the unscaled 
data, the training dataset also underwent two possible scaling transformations (i.e., standard scaler and minmax 
scaler). To evaluate the effect of various features within the datasets, a combination of various statistically signifi-
cant feature was then selected to build new datasets with less or transformed features. The features selected in this 
step are derived from several well-established unsupervised ML techniques including ANOVA F-statistic value 
select percentile, RF Feature Importances or transformed using our principle component analysis approach9. 
A large number of ML models are then built from these datasets with optimal parameters on large number of 
pipelines which include a combination of various algorithms (i.e., DNN, SVM, NB, LR, k-NN, RF, and GBM), 
scalers, hyper-parameters, and feature sets. All pipelines generated by MILO undergo generalization assessment 
no matter their performance. For model validation, MILO creates and assesses hundreds of thousands of mod-
els. All models for each category are then identified and passed onto the next phase of the software pipeline for 
generalization assessment. Machine learning model performance data is then tabulated by MILO and reported 
as clinical sensitivity, specificity, accuracy, F1 score, receiver operator characteristic (ROC) curves, and reliability 
curves. Finally, to evaluate if ABA Consensus Guidelines1 and Sepsis-3 criteria4 are compatible with ML applica-
tions, MILO algorithms were generated using their respective parameters (ABA Consensus Guidelines: body 
temperature, respiratory rate, and heart rate, platelet count (PLT), and glucose; Sepsis-3: respiratory rate, PaO2/
FiO2, GCS, PLT, MAP, and total bilirubin) and compared against models evaluating optimized features from the 
dataset. American Burn Association Consensus Guideline1 criteria such as insulin rates/resistance, intolerance 
to enteral feedings, abdominal distension, and uncontrollable diarrhea were not available for the study dataset.

Traditional statistical analysis.  JMP software (SAS Institute, Cary, NC) was used for statistical analy-
sis. Descriptive statistics were calculated for patient demographics. Data was also assessed for normality using 
the Ryan-Joiner Test. Continuous parametric variables were analyzed using the 2-sample t-test, while discrete 
variables were compared using the non-parametric Chi-square test. As appropriate, continuous non-parametric 

Figure 1.   Machine intelligence learning optimizer: the MILO auto-machine learning (ML) infrastructure 
consists of begins with two datasets: (a) balanced data (Data Set 1) set used for training and validation, and (b) 
an unbalanced dataset (Data Set 2) for generalization. MILO removes missing values, assessed and scaled by the 
software. Unsupervised ML is then used for feature selection and engineering. The generated models are trained 
and then tested with the Data Set 1 during the supervised ML stage. Primary validation is then performed using 
Data Set 1 and followed by generalization using Data Set 2. Selected models can then be deployed thereafter as 
predictive model markup language (PMML) files.
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variables, the Mann–Whitney U Test was used. Multivariate LR was used to determine predictors of sepsis with 
age and burn size serving as covariates with 95% confidence intervals (CI) reported. Repeated measures ANOVA 
was used for time series data. A P-value < 0.05 was considered statistically significant with ROC analysis also 
performed to compare sepsis biomarker performance. Bootstrapping (minimum of 2,500 bootstrap samples) 
via JMP software was employed to calculate 95% confidence intervals (CI) for the area under the ROC curves.

Results
The study dataset was compromised of data from 211 patients with 704 incidents requiring collection of cultures 
in suspicion of sepsis. Table 3 highlights the demographics for septic versus non-septic burn patients. Briefly, 
septic patients significantly differed in terms of vital signs and laboratory parameters compared to their non-
septic counterparts. Multiple organ dysfunction score (MODS) (4.42 [2.8] vs. 3.87 [2.9], P = 0.006) and sequential 
organ failure assessment (SOFA) scores (4.10 [2.7] vs. 3.17 [2.3], P < 0.001) were also found to be significantly 
higher in sepsis versus non-sepsis patients. Burn sepsis patients also exhibited greater disease severity scores 
(maximum MODS: 17 vs. 13 and maximum SOFA: 14 vs. 10). Figure 2 compares ROC curves for these statisti-
cally significant variables. Multivariate LR identified body temperature, WBC, HGB, HCT, Na+, and PLT as 
predictors of sepsis when controlled for age and burn size (OR 2.8, 95% CI 1.99–4.04, P = 0.032). The area under 
the ROC curve when using these seven predictors was 0.88 (95% CI 0.61–1.00).

Generalization performance of ML algorithms produced by traditional ML versus the MILO 
approach.  Traditional ML approach required 400 h to train and test various models and utilizing manual 
interventions and discussions, while MILO automatically completed the same programming tasks plus addi-
tional comparisons in 20 h.

Table 4 compares the generalization performance for the top five performing ML models on each given 
algorithm produced by our traditional ML programming approach versus MILO’s Auto-ML approach which 
included DNN, LR, NB, k-NN, SVM, RF, and GBM methods. For ML model development using both traditional 
and MILO techniques, our heuristic approach employed a balanced training dataset of 250 culturing events that 
resulted in sepsis and 250 that did not result in sepsis pulled from the 704 events derived from the 211 patient 

Table 3.   Comparison of septic versus non-septic burn patients. BUN blood urea nitrogen, HCT hematocrit, 
HGB hemoglobin, ICU intensive care unit, F female, GCS Glascow Coma Score, IQR interquartile range, LOS 
length-of-stay, M male, MODS multiple organ dysfunction score, N/A not applicable, Na+ ionized sodium, 
NS not significant, PLT platelet count, SD standard deviation, SOFA sequential organ failure assessment score, 
TBSA total body surface area, TCO2 total CO2, and WBC white blood cell count.

Variable Septic (n = 92) Non-septic (n = 119) P-value

A. Demographics

Mean (SD) age (years) 44.5 (18.1) 38.6 (15.7) NS

Mean (SD) TBSA (%) 38.9 (16.9) 21.7 (10.8) 0.033

Gender (M/F) 59/33 80/39 NS

Inhalation injury (%) 14.1% 13.9% NS

ICU LOS (days) 58.7 (25.6) 40.2 (26.2) 0.021

Median (IQR) # infections per patient

 Bloodstream 5.5 (6.0) N/A N/A

 Pneumonia 7.2 (5.5) N/A N/A

 Urinary tract 3.6 (2.7) N/A N/A

 Wound 4.4 (3.6) N/A N/A

 Mortality (%) 31.5 11.8 0.001

 Mean GCS (SD) 10.3 (2.8) 11.4 (2.8) 0.005

 Mean (SD) MODS 4.4 (2.8) 3.9 (2.7) 0.006

 Mean (SD) SOFA 4.1 (2.7) 3.2 (2.3) < 0.001

B. Laboratory data

Median Temperature (IQR) (ºC) 39.2 (4.0) 38.0 (3.5) 0.010

Median HCT (IQR) (%) 24.0 (7.0) 25.5 (8.6) 0.003

Median HGB (IQR) (g/dL) 7.8 (2.2) 8.5 (3.0) < 0.001

Median WBC (IQR) (cells/µL) 13.1 (10.7) 12.1 (9.0) 0.001

Median creatinine (IQR) (mg/dL) 0.80 (0.91) 0.71 (0.38) < 0.001

Median BUN (IQR) (mg/dL) 21 (20.8) 13 (9.8) < 0.001

Mean Na+ (SD) (mmol/L) 139.2 (5.28) 136.8 (4.53) < 0.001

Mean TCO2 (SD) (mmol/L) 26.8 (4.9) 24.8 (3.68) 0.001

Median PLT (IQR) (cells/µL) 289 (300.5) 352.5 (344.8) < 0.001
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dataset. The remaining 204 culturing events which represented the study population’s sepsis prevalence (48 sepsis 
and 156 non-sepsis), were then used for the final validation/generalization of each of the ML models.

First, using our traditional ML approach, comparisons (i.e., 4,540 models times 11 categories) were made 
for the generated 49,940 ML models. Within this approach, the best performing ML model used LR with 16 
features (i.e., mean arterial pressure, respiratory rate, body temperature, GCS, WBC, HGB, HCT, PLT, Na+ , 
K+ , BUN, plasma creatinine, glucose, TCO2, and MODS) with an accuracy of 86% and an area under the ROC 
curve of 0.96.

For MILO, 345,330 model comparisons were automatically produced for the ML models using the same 
training-generalization split for the data (Supplemental Data Table S2). Based on the MILO approach, a k-NN 
model using heart rate, body temperature, HGB, BUN, and TCO2 as features was found to be the best performer. 
The MILO k-NN accuracy was found to be 89.7% with an area under the ROC curve of 0.96 (95% CI 0.85–1.0). 
Clinical sensitivity and specificity were 95.8% and 87.8% respectively (Fig. 3). When using only ABA Consensus 
Guidelines consisting of body temperature, respiratory rate, heart rate, PLT, and glucose, the optimal model 
produced by MILO achieved an accuracy of 67.1% with an area under the ROC curve of 0.76 (95% CI 0.68–0.82) 
using the RF approach. Clinical sensitivity and specificity were 75.0% and 65.7% respectively. In contrast, apply-
ing Sepsis-3 criteria with ML exhibited an optimized accuracy of 74.5% using NB with an area under the ROC 
curve of 0.55 (95% CI 0.50–0.81), and sensitivity of 61.2% and specificity of 55.1%.

Discussion
Burn sepsis exhibits high mortality attributed, in part, to delayed recognition of infection. Studies have indicated 
traditional sepsis criteria are not suitable for this unique population1. Recent investigations suggest ML may be 
able to identify unique pathologic patterns not recognized by the “human eye” and enhance the performance 
of traditional biomarkers for certain diseases (e.g., acute kidney injury)8,11. In this article, we report the use 
of ML for predicting sepsis in this unique high-risk burn population. Study data was based on a unique ABA 
sponsored multicenter randomized controlled trial that ensured complete and high-quality data for the entirety 
of each patient’s ICU stay.

Figure 2.   Receiver operator characteristic curves for statistically significant burn sepsis biomarkers: (A–J) 
represent receiver operator characteristic (ROC) curves and the area under the curve (AUC) analysis (in 
fractions) with 95% confidence intervals (CI) for statistically significant predictors of burn sepsis. (K) is the 
ROC curve for the multivariate model that best predicts sepsis using logistic regression. The tangent line for 
each ROC curve identifies the point where sensitivity and specificity are optimized. BUN blood urea nitrogen, 
GCS Glascow coma score, HCT hematocrit, HGB hemoglobin, Na+ sodium, PLT platelet, TCO2 total carbon 
dioxide, TCO2 total carbon dioxide.
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Table 4.   Machine learning algorithm performance for the top 5 models identified by traditional programming 
versus MILO. BUN blood urea nitrogen, CI confidence interval, CVP central venous pressure, DBP diastolic 
blood pressure, GCS Glascow Coma Score, HCT hematocrit, HGB hemoglobin, HR heart rate, MAP mean 
arterial pressure, MODS multiple organ dysfunction score, PLT platelet count, RR respiratory rate, SBP systolic 
blood pressure, SO2 oxygen saturation, TCO2 total CO2, and WBC white blood cell count. *Area under the 
ROC curves are reported in fractions. a MAP, RR, body temperature, GCS, WBC, HGB, HCT, PLT, Na+ , K+ , 
BUN, creatinine, BUN/creatinine, glucose, TCO2, and MODS. b Body temperature, WBC, HGB, HCT, Na+ , 
K+ , BUN, creatinine, BUN/creatinine, and TCO2. c RR, body temperature, GCS, WBC, HGB, HCT, PLT, Na+ , 
K+ , BUN, creatinine, BUN/creatinine, TCO2, and MODS. d SBP, MAP, HR, TEMP, HCT, Na+ , K+ , BUN, 
BUN/creatinine, anion gap, and TCO2. e HR, body temperature, HGB, BUN, and TCO2. f SBP, DBP, MAP, CVP, 
RR, HR, body temperature, GCS, SO2, WBC, HGB, HCT, PLT, Na+ , K+ , Cl−, anion gap, BUN, creatinine, 
BUN/creatinine, glucose, TCO2, and MODS. g MAP, HR, RR, TEMP, WBC, HGB, HCT, PLT, Na+ , K+ , BUN, 
creatinine, BUN/creatinine, glucose, anion gap, TCO2, and MODS.

Method Accuracy (95% CI) AUROC (95% CI)* Sensitivity (95% CI) Specificity (95% CI) Features

A. Traditional programming

Logistic regression 86 (80–90) 0.96 (0.88–1.00) 98 (89–100) 82 (75–88) 16a

Deep neural network 81 (75–86) 0.96 (0.85–1.00) 94 (83–99) 77 (70–83) 10b

k-nearest neighbor 81 (75–86) 0.92 (0.84–1.00) 98 (89–100) 76 (68–82) 10b

Support vector machine 85 (79–89) 0.97 (0.86–1.00) 98 (89–100) 81 (74–87) 14c

Random forest 79 (73–85) 0.92 (0.84–1.00) 94 (83–99) 75 (67–82) 10b

B. MILO

k-nearest neighbor 90 (85–94) 0.96 (0.85–1.00) 96 (86–99) 88 (82–93) 5e

Logistic regression 87 (81–91) 0.95 (0.83–1.00) 98 (89–100) 83 (77–89) 23f

Naïve bayes 89 (84–93) 0.95 (0.84–1.00) 94 (83–99) 87 (81–92) 11d

Random forest 84 (79–89) 0.94 (0.84–1.00) 96 (86–99) 81 (74–87) 23f

Deep neural network 84 (79–89) 0.95 (0.85–1.00) 100 (93–100) 80 (72–86) 17 g

Support vector machine 86 (80–90) 0.97 (0.87–1.00) 98 (89–100) 82 (75–88) 11d

Gradient boosting machine 81 (75–86) 0.94 (0.88–1.00) 96 (86–99) 76 (69–83) 5e

Figure 3.   MILO ROC for optimal ML model: screenshot of the optimal machine learning (ML) model 
generated by MILO based on logistic regression. (A) is the MILO read out for the receiver operator 
characteristic (ROC) curve using the selected ML model (i.e., logistic regression). (B) is the generalization/
reliability plot for the selected ML model. (C) is the filtered list of ML models displaying other parameter such 
as average sensitivity and specificity (Sn + Sp “bar”), area under the curve (AUC) for the ROC analysis, F1 score, 
binary sensitivity and specificity, Brier Score, scaler used, feature selector used, scorer used, and searcher used.
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Burn sepsis recognition is challenged by the underlying hypermetabolic and inflammatory response that 
persists for days or months following injury1. Using a combination of heart rate, body temperature, HGB, BUN, 
and TCO2, k-NN was able to predict burn sepsis with high accuracy, sensitivity, and specificity—exceeding the 
performance of both the ABA Consensus Guidelines and Sepsis-3 criteria reported in literature. These findings 
are clinically significant, since this is the first time burn sepsis has been detected with this level of accuracy, 
sensitivity, and specificity. Interestingly, PLT, which is often included in burn sepsis criteria was excluded in our 
optimal ML algorithm. This observation may be due to PLT representing a late-stage indicator of burn sepsis, 
while inclusion of HGB and TCO2 may be attributed to hematological derangements and acid–base/electro-
lyte disturbances encountered during sepsis13–15. Interestingly, when MILO was limited to the ABA Consensus 
Guidelines or Sepsis-3 criteria, the optimal model performed marginally better than traditional statistics. These 
findings highlight the capacity for ML, and especially MILO’s ability to run an exhaustive search of models 
and across all collected variables to identify clinically significant patterns not observed by the human eye or by 
traditional statistics.

In the end, the ABA Consensus Guidelines provides a framework to improve burn sepsis recognition, however 
its clinical performance remains limited with an area under the ROC curve of 0.62 based on current literature16. 
Studies by Mann-Salinas et al. proposed novel predictors that could outperform the ABA Consensus Guidelines 
with an area under the ROC curve of 0.78. We were able to improve predictive performance using traditional sta-
tistics in our study and achieve an area under the ROC curve of 0.88. Sepsis-3 has also been investigated, however 
its heavy reliance on the SOFA score remains controversial in multiple populations including in burned patients. 
It must be noted that a new study recently suggested Sepsis-3 may be superior to ABA Consensus Guidelines5, 
however, performance appears to still lag behind AI/ML models produced in this study.

Despite the promising performance of various ML algorithms reported in literature for in vitro diagnostic 
applications9, the accessibility of ML in healthcare remains limited to facilities employing experienced program-
mers and data science experts17. Unique to this study, we employed an automated ML application, called MILO. 
MILO eliminates these limitations and improves the accessibility and feasibility of ML-based data sciences, and 
more importantly, helps identify the optimal ML models in an unbiased and transparent way. No assumptions 
are made on a given dataset using MILO and programming expertise is not necessary. The benefits of using an 
automated ML platform not only accelerates development of new predictive models (400 vs. 20 h), but also iden-
tifies the best performing algorithm after running a very large feature and ML model combinations. Ultimately, 
MILO serves to limit selection and method bias to make ML more accessible to the general public.

Limitations of this study include its retrospective nature and the use of protocolized clinical trial data from 
another study. In particular, clinical trial data is more controlled compared to what is encountered on a routine 
basis, however, the data does offer the benefit of having been vetted for accuracy and completeness. Reproduc-
ibility of AI is also a concern due to differences in populations, test methodology, differences in test practices 
across institutions/disciplines, and ML methods9,18. Thus, the generalizability of the data is limited to this retro-
spective dataset, therefore additional studies are needed to further verify performance and assess how these ML 
algorithms perform under real-world conditions prior to any clinical implementation.

Conclusions
Sepsis contributes to high mortality in the severely burned patient population. Existing sepsis criteria are not 
well suited to differentiate between the host response to infection versus burn injury. Machine learning offers 
unique opportunities to exploit and enable sophisticated computer-based pattern recognition tools to predict 
sepsis in the burn patient population. Traditional methods for creating ML is both time consuming and relies on 
experienced programmers to work through a large permutation of features across a range of models. The deploy-
ment of MILO not only accelerates the development of ML models, but quickly helps identify optimal features 
and algorithms for burn sepsis prediction. Future multicenter studies are needed to refine the performance and 
confirm generalizability of ML models. Next steps include deploying the MILO burn sepsis algorithm at our 
institution to observationally test its accuracy when using prospective data.
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