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Lung injury and inflammation are complex pathological processes. The influence and crosstalk between various cells form a
characteristic microenvironment. Extracellular vesicles from different cell sources in the microenvironment carry multiple cargo
molecules, which affect the pathological process through different pathways. Here, we mainly discussed the mechanism of
crosstalk between alveolar epithelial cells and different immune cells through extracellular vesicles in lung inflammation and
reviewed the mechanism of extracellular vesicles released by blood and airways on lung inflammation. Finally, the role of
extracellular vesicles in viral infection of the lung was also described.

1. Introduction

The lung is an important part of the respiratory tract and the
organism, which is susceptible to inflammation and damage
caused by microbes or systemic diseases. It is not fully under-
stood how the inflammation and injury of the lungs, espe-
cially those caused by noninfectious stimuli, are initiated
and transmitted. Crosstalk between infected and stressed
lung epithelial cells and immune cells forms a characteristic
microenvironment. Stress signals are transmitted between
microenvironment cells and the system level, and they are
involved in the inflammatory process [1].

Extracellular vesicles (EVs) are actually the key messen-
gers of intercellular communication in these microenviron-
ments [2]. EVs contain different cargoes (such as proteins,
RNA, DNA, and lipids) for intercellular transmission at the
paracrine and systemic levels. EV's can be released due to cell
activation, hypoxia, radiation, damage, complement protein
exposure, and cellular stress [3, 4]. According to different
biological mechanisms, EVs include exosomes, shed micro-
vesicles (sMVS), and apoptotic bodies [5]. However, the sub-
types of different EVs cannot be completely separated
according to size or density, because of the overlapping phys-
ical characteristics [6]. Exosomes originate from the process

of endocytosis and are formed by releasing multivesicular
bodies (MVBs) into the extracellular environment [7]. sMVs
are formed by the rearrangement of the actin cytoskeleton
and buds directly from the plasma membrane [8]. Apoptotic
bodies are vesicular bodies formed by atrophy and fragmen-
tation of cells during apoptosis [9]. Although exosomes and
sMVs have different biogenesis and membrane origin, their
functions appear to be similar after they are released outside
the cell [10].

Many lung cell types, including epithelial cells and endo-
thelial cells, as well as infiltrating macrophages, can produce
EVs. In most cases, these EVs promote the inflammatory
process. However, the functions of extracellular vesicles are
complex and dynamic in the process of inflammation. This
review focuses on recent studies that have explored the role
of EVs in crosstalk between microenvironmental and sys-
temic levels during lung inflammation and injury.

2. Effects of Epithelial Cells Releasing EVs on
the Inflammatory Process in the
Lung Microenvironment

Under the action of stimulating factors, respiratory epithe-
lial cells release extracellular vesicles with pathological
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characteristics and participate in signal pathways of target
cells to stimulate the inflammatory response [11]. For exam-
ple, mouse lung epithelial cells release exosomes carrying
annexin A2, activate through the NF-xB pathway and pro-
duce proinflammatory cytokine IL-6, and participate in pul-
monary fibrosis and inflammation caused by the anticancer
drug Bleomycin reaction [12]. Experiments using A549 cell
transfection and phagocytosis confirmed that IFN-y induced
pl1 expression can promote the release of exosomes carrying
ANXA2. This process upregulated the expression of ANXA2
on the surface of lung epithelial cells, enhancing its phagocy-
tosis of apoptotic cells [13].

The process of lung inflammation is the result of intercel-
lular crosstalk in the microenvironment. Extracellular vesi-
cles as an information carrier are involved in the cellular
communication between pulmonary epithelial cells and alve-
olar macrophages and form an important part of lung injury.
Diftuse alveolar damage (DAD) and lung epithelial cell death
associated with pulmonary inflammation could prompt lung
epithelial cells to release vesicles to nearby or distant macro-
phages, thereby triggering or transmitting inflammatory
responses. After hyperoxic stress, lung epithelial cells pro-
duced a large amount of EV through ER stress. These EVs
encapsulate caspase-3, activate alveolar macrophages
through the ROCK1 pathway, and increase their secretion
of proinflammatory cytokines and macrophage inflamma-
tory protein 2 (MIP-2) to be involved in lung injury [14].
Combined with in vitro and in vivo experimental methods,
it was confirmed that IL-13 can promote the release of epi-
thelial cell-derived exosomes and induces proliferation and
chemotaxis of undifferentiated macrophages in the lung dur-
ing asthmatic inflammation [15]. LPS stimulation can induce
respiratory epithelial cells to release exosomes containing
prolyl endopeptidase (PE), which is an important regulator
of lung remodeling and airway inflammation. Transfected
cells with siRNA and knockout mice confirmed that this
pathway is achieved through the activation of Toll-like recep-
tor 4(TLR4) [16].

In addition to carrying protein peptides, EVs also contain
nucleic acids, such as microRNA, and they are associated
with lung injury and inflammation [17]. Hyperoxia stress
upregulates the expression of certain miRNAs in epithelial
EVs, such as miR-320a and miR-221. These EVs promote
macrophage activation, which mediates the inflammatory
response in the lungs [18]. Experiments confirmed that EV's
isolated from bronchoalveolar lavage fluid (BALF) were
derived from alveolar epithelial type I cells (ATIs). These
miRNA-containing ATI-EVs are delivered to alveolar mac-
rophages, activate inflammatory factors to polarize the mac-
rophages to M1, and participate in pneumonia caused by
Pseudomonas aeruginosa. It is worth noting that these
miRNA-rich EVs contained Caveolin-1, a lipid raft protein
that may be a biomarker of EV-miRNA enrichment [19]. In
addition to miRNA, it has been shown that mitochondrial
DNA fragments could be involved in the inflammation
through EVs. Low levels of oxidative stress caused by ciga-
rette smoke exposure can damage mtDNA in lung epithelial
cells. mtDNA fragments enter naive (nonoxidative stress)
epithelial cells through exosomes, activating the ZBP1(Z-
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DNA binding protein 1)/TBKI(TANK-binding kinase
1)/IRF3(interferon regulatory factor 3) pathway to induce
inflammation [20].

3. Two-Way Regulation of Immune Cell-
Derived Exosomes on Inflammatory
Process in the Lung Microenvironment

The interaction of immune cells with alveolar epithelium
maintains the alveolar homeostasis. They communicate with
each other through cell surface receptors, gap junction chan-
nels, release, uptake of secreted EVs, and cytokine signaling
[21]. EVs crosstalk between innate immune cells and struc-
tural cells to promote inflammation. In chronic inflamma-
tion, activated neutrophils release CD63+/CD66b+
exosomes. These exosomes degrade the extracellular matrix
(ECM) through integrin Mac-1 and neutrophil elastase
(NE), causing chronic obstructive pulmonary disease
(COPD) [22]. The hemorrhagic shock (HS)mouse model
and the cell hypoxia-reoxygenation model confirmed that
exosomes released from HS-activated alveolar macrophage
(AM¢) induce NADPH oxidase-derived reactive oxygen spe-
cies (ROS) production inside polymorphonuclear neutro-
phils (PMNs) and subsequent promotion of necroptosis.
This experiment revealed the mechanism of pulmonary
inflammation caused by HS [23].

EVs released by immune cells can also affect the inflam-
matory microenvironment through the included miRNAs.
After airway inflammation, infiltrating immune cells released
miR-223 and miR-142a-containing extracellular RNA (ex-
miRNA) and EVs in the inflamed tissue to change the local
microenvironment [24]. A lipopolysaccharide (LPS) induced
mouse model of acute septic lung injury confirmed that
exosomes released by bronchoalveolar lavage fluid (BAL)
in the lungs pack miRNAs and cytokines involved in reg-
ulating inflammation. Using a coculture model, these exo-
somes derived from macrophages disrupt the structural
barrier by influencing the expression of tight junction pro-
teins in bronchial epithelial cells and promote the inflam-
matory response [25].

It should be noted that the maintenance of alveolar
microenvironment homeostasis also depends on the two-
way regulation of immune cells. Some experiments have con-
firmed that alveolar macrophages secrete exosomes and par-
ticles that encapsulate SOCS1 and 3. The SOCS protein
family is the endogenous braking factor of JAK-STAT signal-
ing pathway. Alveolar epithelial cells can inhibit the activa-
tion of STAT after taking up the exosomes. This SOCSI
and -3 released into the extracellular space through vesicles,
by inhibiting intracellular STAT1 and STATS3 signaling, to
mediate the crosstalk between macrophages and epithelial
cells, is a new way to control inflammation and immune
response [26]. Lung epithelial cell (LEPC)-derived IL-25
can affect the expression of Rab27a and Rab27b in lung mac-
rophages (AM¢), negatively regulate LPS-induced exosomes
released by AM¢, and attenuate the expression of TNF-«
induced by exosomes [27]. It can be seen that the signal
transmission of lung epithelial cells and macrophages
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through extracellular vesicles maintains a dynamic balance
between microenvironments. However, this state may be dis-
turbed under stimulation such as smoking to advance the
inflammatory state.

4. Circulating Exosomes Participate in
Inflammatory Damage in
the Microenvironment

In addition to intercellular communication in the local
microenvironment, pulmonary inflammatory lesions are also
a local response to stress conditions in the body. Exosomes
released by the circulatory system activated immune cells
through their cargo molecules to participate in the inflamma-
tory response. Such as high oxygen stress will further pro-
mote the increase of serum circulating EVs and activate
systemic macrophages outside the alveoli, eventually mediat-
ing the inflammatory response and causing lung injury [3].
Exosomes from sera of sepsis mice induce cytokines to
induce Th1 and Th2 cell differentiation and enhance T lym-
phocyte proliferation and migration [28]. After acute lung
injury (ALI), serum-derived exosomes transfer miR-155 to
macrophages, activate nuclear factor kB (NF-xB), and pro-
duce tumor necrosis factor a (TNF-a) and interleukin-6,
which promotes macrophage proliferation and inflammatory
response [29]. miRNA-126 carried by serum exosomes in
patients with allergic asthma is involved in the infiltration
of inflammatory cells [30]. Taurocholic acid-induced lung
injury in rats with acute pancreatitis showed that circulating
exosomes after stress can effectively reach the alveolar com-
partment and activate lung macrophages as a proinflamma-
tory phenotype [31]. Cigarette smoke (CS) exposure can
release circulating exosomes with specific miRNAs to affect
the clearance of apoptotic cells by macrophages, participate
in endothelial damage and inflammation-related diseases in
smokers [32]. As an important part of the systemic circula-
tory system, lymphoid-derived exosomes are also involved
in pulmonary inflammation. Inflammatory disorders fol-
lowing hemorrhagic shock (HS) can cause acute lung injury
(ALI). The mechanism is driven by intestinal-derived
inflammatory mediators after HS, which promotes exo-
somes derived from the supernatant of mesenteric lymph
node extracts and triggers activation of alveolar macro-
phages by Toll-like receptor 4 to produce proinflammatory
cytokines [33].

The release of circulating exosomes is very important
for the inflammatory response. Studies have shown that
Rab27a and Rab27b double knockout (Rab27DKQO) mice
have insufficient secretion of circulating exosomes, have a
chronic inflammatory phenotype, and have increased inflam-
matory cytokines and bone marrow proliferation. Rab27-
dependent release of circulating exosomes contributes to
homeostasis within the hematopoietic system and appropri-
ate responsiveness to inflammatory stimuli [34]. Overexpres-
sion of serum exosome miR-103-3p can attenuate the
inflammatory response induced by lipopolysaccharide.
Using luciferase reporter assay and immunoprecipitation
technology, it was confirmed that miR-103a-3p directly

binds to transducin f-like 1X-related protein 1 (TBL1XR1),
mediating the NF-xB signaling pathway, thereby regulating
the immune response [35].

In addition, circulating exosomes in the respiratory tract
are also involved in the inflammatory process. The exosomes
isolated from inflammation-mediated bronchoalveolar
lavage fluid (BALF) are complex and contain many cargo
molecules related to inflammation. Proteomics comparison
of BALF-derived exosomes from cystic fibrosis (CF) and
asthma patients found higher levels of antioxidant proteins
(superoxide dismutase, peroxidase, etc.) and those involved
in leukocyte chemotaxis. Exosomes regulate the inflamma-
tory process by carrying proteins, preventing excessive
inflammation [36]. BALF-derived exosomes from asthma
patients promote inflammation by increasing the production
of cytokines and leukotriene-4 in airway epithelium [37].
After exposure to house-dust mite (HDM), using miRNA
microarrays confirmed that airway-secreted EVs (AEVs) iso-
lated from BALF contained increased Th2 inhibitory miR-
NAs, which promoted airway secretion and be involved in
the allergic airway inflammation [38]. This miRNA secreted
into mouse BALF microvesicles has significantly upregulated
miR-223 and miR-142, activates lung macrophages through
Nlrp3 inflammatory bodies, and mediates pulmonary
inflammation [39]. Analysis of tracheal aspiration fluids
(TAs) in preterm infants with oxygenation and mechanical
ventilation showed that this AEVs originated from mast cells.
AEVs can mediate the release of $-hexosaminidase (f3-hex)
associated with inflammation and participate in the inflam-
mation of the lungs of chronic preterm infants caused by
oxygen poisoning [40]. In a mouse model of congenital
inflammation lacking the Toll-like receptor TLR3-NFxB/
RelA, BALF-derived exosomes are rich in coagulation fac-
tors and are involved in inflammation through interstitial
fibrin deposition [41]. In addition, changes in the lipid
composition of AEVs, such as higher levels of sphingo-
myelin in exosomes derived from asthma patients, signifi-
cantly reduced phosphatidylglycerol, ceramide-phosphate,
and ceramide, are associated with chronic airway inflam-
mation [42].

5. Extracellular Vesicles Are Messengers and
Vectors of Virally Infected
Lung Inflammation

Airway and alveolar epithelial cells are targets for viral infec-
tions including rhinovirus, influenza virus, coronavirus, and
pneumonia virus. Infected epithelial cells issue an innate cel-
lular antiviral response, coordinating myeloid and lymphoid
cells to participate in the immune process, which can be
achieved by the EVs pathway. For example, human rhinovi-
rus (RV) infects bronchial epithelial cells, activates Toll-like
receptor (TLR)3, produces immunoregulatory extracellular
matrix protein proinflammatory tenascin-C and releases
small extracellular vesicles (SEV). These sEVs may enhance
airway inflammation and regulate immune response to infec-
tion [43]. Exosomes isolated from respiratory syncytial virus
(RSV)-infected cells can activate the innate immune response
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FIGURE 1: Information transfer and cargo carried by extracellular vesicles in the inflammatory microenvironment of the lungs. (a)
Communication and cargo molecules of extracellular vesicles derived from alveolar epithelial cells and alveolar macrophages. (b)
Information transmission of circulating extracellular vesicles. (c) The respiratory tract secretes cargo molecules of extracellular vesicles.

by inducing human monocytes and airway epithelial cells to
release cytokines and chemokines [21].

Extracellular vesicles are not only involved in the inflam-
matory process following a viral response but are also a pow-
erful vector for transmitting viral particles and viral genomes
in bulk between organisms [44]. Vesicles transport large
numbers of mature infectious virus particles between cells,
which can increase the infectivity to host cells [45]. Cluster
packaging of vesicles by multiple single-stranded RNA virus
particles, including rhinoviruses, allows multiple viral RNA
genomes to be collectively transferred to a single cell, pro-
moting genetic replication between viruses and quasispecies
[46]. This observation offers a new insight into the mecha-
nism of virus transmission.

6. Conclusions

Extracellular vesicles of different origins provide multiple
biological roles in complex lung inflammatory injury. Cell-
derived EVs of the lung microenvironment and the circula-
tory system disrupt the original microecological balance
and promote the inflammatory process by transmitting
inflammation-related proteins and nucleic acids (Figure 1).
An in-depth understanding of the structural characteristics
and biological functions of EVs is of great significance for
elucidating the pathogenesis of pulmonary inflammation,
the transmission of infection, and providing new treatment
strategies.
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