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Abstract

Cancer is a genetic disease comprising multiple subtypes that have distinct molecular 

characteristics and clinical features. Cancer subtyping helps in improving personalized treatment 

and making decision, as different cancer subtypes respond differently to the treatment. The 

increasing availability of cancer related genomic data provides the opportunity to identify 

molecular subtypes. Several unsupervised machine learning techniques have been applied on 

molecular data of the tumor samples to identify cancer subtypes that are genetically and clinically 

distinct. However, most clustering methods often fail to efficiently cluster patients due to the 

challenges imposed by high-throughput genomic data and its non-linearity. In this paper, we 

propose a pathway-based deep clustering method (PACL) for molecular subtyping of cancer, 

which incorporates gene expression and biological pathway database to group patients into cancer 

subtypes. The main contribution of our model is to discover high-level representations of 

biological data by learning complex hierarchical and nonlinear effects of pathways. We compared 

the performance of our model with a number of benchmark clustering methods that recently have 

been proposed in cancer subtypes. We assessed the hypothesis that clusters (subtypes) may be 

associated to different survivals by logrank tests. PACL showed the lowest p-value of the logrank 

test against the benchmark methods. It demonstrates the patient groups clustered by PACL may 

correspond to subtypes which are significantly associated with distinct survival distributions. 

Moreover, PACL provides a solution to comprehensively identify subtypes and interpret the model 

in the biological pathway level. The open-source software of PACL in PyTorch is publicly 

available at https://github.com/tmallava/PACL.
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1. Introduction

Cancer is a complex disease characterized by uncontrolled, uncoordinated, and undesirable 

growth of abnormal malignant cells. There are several types of cancers, and each cancer has 

multiple distinct subtypes that result in different responses to therapy. Although cancer 

subtypes progress in a single parent cell, they have distinct genetic identity, gene expression 

pattern, gene regulatory or protein signaling network. Hence, identifying subtypes based on 

molecular characteristics improves the understanding of cancer biology and enhances both 

diagnosis and prognosis, which consequently helps cancer patients to have personalized 

therapy [4]. For instance, breast cancer is typically classified into four primary molecular 

subtypes based on Human Epidermal growth factor Receptor 2 (HER2), hormone receptors, 

and tumor grade. The subtypes have distinct prognosis and respond differently to hormone 

therapy.

Furthermore, each subtype has multiple nested subtypes. Head and Neck Squamous Cell 

Carcinoma (HNSCC) has two subtypes: Human Papillomavirus (HPV)-positive and HPV-

negative [28]. HPV-positive patients often show higher survival rate and better response to 

treatment than HPV-negative patients. Recent reports have shown that some HPV-positive 

patients also may have poor outcomes, which implies nested subtypes that involve different 

biological processes in HPV-positive patients [36]. Similarly, HER2 positive subtype of 

breast cancer responds to chemotherapy effectively, whereas HER2 negative subtype shows 

better outcome with hormonal therapy [35].

Identification of molecular cancer subtypes has been leveraged by advanced high-throughput 

microarray techniques and the availability of large biological databases. A number of 

machine learning techniques have been widely used for identifying unknown cancer 

subtypes. For instance, two subtypes of Diffuse Large B-Cell Lymphoma (DLBCL) were 

detected by hierarchical clustering on gene expression data. The two subtypes are related to 

the two stages of B-cell differentiation and activation [1]. Six subtypes of Triple-Negative 

Breast Cancer (TNBC) were detected by K-means clustering using gene expression data and 

the robustness of these subtypes was analyzed by consensus clustering [20]. An enhanced 

deterministic K-means clustering was proposed for cancer subtyping and successfully 

identified subtypes in various cancers like leukemia, lung cancer, etc [26]. Five subtypes of 

colorectal cancer (CRC) and four subtypes of lung cancer were identified by Enhanced 

Maximum Block Improvement (eMBI) algorithm based on matrix factorization [7]. In eMBI 

algorithm, 20% of the total genes with largest variance were selected and initialized by K-

means clustering. Then weights were assigned to genes based on their connections in the 

network and consensus clustering was used for the final clusters.

Pathway-based clustering methods have been developed by incorporating biological pathway 

databases. Pathway-based analysis plays an important role in understanding collective 

biological functions of genes and their impact on the phenotypic changes of the patients 

[33]. Pathifier discovered several pathways which are significantly associated with patients’ 

survivals in glioblastoma and colorectal cancer [12]. The method inferred pathway 

deregulation scores from gene expression data and then performed clustering. R-PathCluster 

identified two subtypes of glioblastoma and several pathways associated with the cancer 
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progression [23]. In the study, pathway scores were generated from gene expression and 

subtypes were identified by clustering the pathway scores.

However, the relationships between genomic data and patients’ survivals are highly non-

linear in cancer. The t-SNE plot [31] illustrates the nonlinear association between gene 

expression data and survivals of Glioblastoma Multiforme (GBM) patients in Fig. 1. 

Therefore, conventional clustering methods based on similarity (or distance) between data 

often fail to cluster. Moreover, it was reported that even binary classification for survival 

prediction (short- vs. long-term survival prediction) produces a low Area Under the Curve 

(AUC) of around 0.65 in a balanced dataset [21] due to the high nonlinearity. It may be 

caused by multiple intermediate complex biological processes between genomic data and 

survivals.

In this paper, we propose a novel PAthway-based deep CLustering (PACL) method. PACL 

constructs a biologically interpretable stacked Restricted Boltzmann Machine (RBM) model 

by integrating pathway databases and identifies multiple cancer subtypes by capturing 

nonlinear and hierarchical effects of genomic data to the patients’ survivals. Furthermore, 

the proposed model can interpret the model in a pathway level.

The rest of this paper is structured as follows. In Section 2, we present our proposed method 

PACL to address a cancer subtype identification problem. Then, we demonstrate our 

experimental settings and results of PACL comparing with benchmark methods in Section 3. 

Finally, we discuss about pathway-based model interpretation of PACL with GBM data in 

Section 4.

2. Methods

In this section, we elaborate on our proposed method, Pathway-based Deep Clustering 

model (PACL) for identifying unknown cancer subtypes from high-dimensional genomic 

data. First, we briefly introduce Restricted Boltzmann Machine (RBM) and Deep Belief 

Network (DBN), on which our proposed method is based. Then, we describe the architecture 

of the proposed model and how it incorporates pathway databases for robust analysis.

2.1. Restricted Boltzmann Machine and deep belief network

Restricted Boltzmann Machine (RBM) is an energy-based stochastic model with a visible 

layer and a hidden layer. The visible units correspond to input data, whereas the hidden units 

learn non-linear transformation of the input data in a lower dimensional space. The two 

layers are connected with symmetrical weights, but there are no intraconnections between 

nodes in the same layer. Hence, the hidden units, which are conditionally independent on the 

visible units, represent posterior distributions of the variables over the inputs. A joint 

configuration (v, h) of the visible nodes v and hidden nodes h is represented by the 

following energy function:

E (v, h; θ) = ∑
i ∈ v

civi − ∑
j ∈ h

bjℎj − ∑
i, j

viℎjW ij, (1)
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where v = (v1, v2⋯vL) is a set of nodes in the visible layer and h = (h1, h2⋯hK) is a set of 

nodes in the hidden layer. L and K are the numbers of nodes in the input layer and the 

hidden layer, respectively. θ = {c, b, W} are model parameters; c ∈ ℝL and b ∈ ℝK are 

biases in the visible and the hidden layers, respectively; W ∈ ℝL × K is a weight matrix that 

defines symmetric connections between the layers. The conditional probability of a visible 

node given the hidden layer is obtained by:

p(vi = 1 ∣ h) = a ∑
j

KW ijℎj + ci , i = 1, …, L . (2)

The posterior probability of the input data (v) on the j-th node in the hidden layer is obtained 

by:

p(ℎj = 1 ∣ v) = a ∑
i

LW ijvi + bj , j = 1, …, K, (3)

where a(·) refers to an activation function (e.g., sigmoid function). RBM reconstructs the 

nodes of the visible layer and estimates the hidden layer, so that the high-level 

representations in the hidden layer preserve the information of the visible layer.

Deep Belief Network (DBN) is stacked RBMs that can provide multilayered high-level 

representation. Hinton et al proposed a greedy layer-by-layer training algorithm that builds 

an RBM block for each paired layers [16]. DBN learns deep data representation of the input 

data. The last hidden layer can capture multilayered high-level features of the input data.

2.2. Pathway-based Deep Clustering (PACL)

PACL is a multilayered deep belief network that identifies molecular subtypes of cancer by 

not only incorporating high-dimensional transcriptional data but also prior biological 

knowledge of pathway for robust analysis and biological interpretation. The framework of 

our model consists of a gene layer, a pathway layer, two hidden layers, and a cluster layer 

(see Fig. 2). PACL takes gene expression data (e.g., DNA microarray or RNA-seq) to the 

gene layer (as an input layer). Pathway expression is inferred from gene expression data by 

incorporating prior knowledge from pathway databases. The pathway layer represents 

quantitative activities or changes of biological pathways. Then, the hidden layers describe 

nonlinear hierarchical relationships among biological pathways, whereas a cluster layer 

shows clusters of cancer subtypes.

2.2.1. Gene layer—The gene layer, an input layer in DBN, represents biological genes 

with gene expression of a patient. Each node in the gene layer corresponds to a gene, so the 

number of nodes depends on the number of genes in the dataset. In our model, we 

considered only genes that belong to at least a biological pathway for pathway-based 

analysis. The gene layer is normalized between zero and one.

2.2.2. Pathway layer—The pathway layer infers expression of gene sets of biological 

pathways. Each node in the pathway layer corresponds to an individual biological pathway, 
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which shows molecular activities that lead to a certain product or a change in a cell. Pathway 

databases (e.g., Reactome and KEGG) contain the experimental and biological knowledge of 

associations between genes and pathways. A biological pathway includes a set of genes, and 

each gene can be associated with multiple pathways.

The connections between the gene layer and the pathway layer are interpreted as biological 

relationships between the genes and pathways, and the connections are determined by given 

prior biological knowledge of pathway databases in PACL. The incorporation of biological 

pathway databases makes it possible to interpret the model as a pathway-based analysis.

In order to initialize the connections between the gene layer and the pathway layer, a binary 

biadjacency matrix A is considered from pathway databases. The biadjacency matrix is 

defined as A ∈ BP × L, where P is the number of pathways in the pathway layer and L is the 

number of genes in the gene layer. A = {aij|1 ⩽ i ⩽ P, 1 ⩽ j ⩽ L} is set to one if gene j 
belongs to pathway i, otherwise zero. The biadjacency matrix is used to model the sparsity 

between the input and the pathway layers.

2.2.3. Hidden layer—The two hidden layers describe nonlinear and hierarchical 

associations of pathways to a cluster. The hidden layer nodes show active or inactive states 

of the associated multiple pathways. The hidden layer does not explicitly represent 

biological processes, but it may capture the group effects of multiple pathways.

2.2.4. Cluster layer—The cluster layer encodes a posterior probability that a high-level 

representation of given data belongs to a cluster. Most clustering algorithms assign a single 

cluster label to a sample, whereas our stochastic model provides a probability of a sample to 

each cluster. Given data are clustered with the maximum posterior probability. The number 

of nodes in the cluster layer corresponds to the number of clusters.

2.3. Training

Since gene expression data are High Dimensional, Low Sample Size (HDLSS) data, we 

tackle the overfitting problem by L-2 and dropout regularization. L-2 regularization is added 

to the objective function to penalize the model parameters:

ℒ(W) = ∑ (h(l + 1)Wl − hl)2 + λ ∥ Wl ∥ 2, (4)

where λ is a regularization parameter to control weight values.

Moreover, our model trains with small sub-networks instead of the whole network by 

dropout regularization of high dropout rate. It reduces the computational challenge of 

HDLSS and further improves the mode performance. Since our model is based on DBN, it 

trains in the greedy layer by layer manner (Fig. 3). First, the gene layer and the pathway 

layer form a two layered RBM. The sparse connections between the gene layer and the 

pathway layer are imposed by the mask matrix A, which determines active and inactive 

connections between them (Fig. 3a). The weights in the active connections and bias are 

initialized with random normal values, whereas the weights in the inactive connections are 

set to zero. The sub-networks are trained by contrastive divergence. The training with the 
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small networks is illustrated by the solid lines and nodes in Fig. 3b. The training is repeated 

to the following layers (Fig. 3b and c). After training the two layered network between the 

gene and pathway layers, PACL trains the following fully connected layers of the pathway 

layer, the hidden layers, and the cluster layer in the same manner.

Dropout regularization is introduced in all layers by randomly eliminating nodes with a high 

dropout ratio (ϕ) while training the model [29]. During dropout, the conditional distributions 

of the input and the hidden nodes are:

p(ℎj = 1 ∣ v, d) = dja ∑
i

W ijvi + bj , (5)

p(vi = 1 ∣ h, d) = a ∑
j

W ijℎj + ci , (6)

where d = {0, 1} is a binary mask vector with the given dropout ratio. If an element of the 

binary vector is one, the corresponding hidden node is retained, otherwise dropped from the 

model.

3. Experimental results

We conducted experiments to evaluate PACL with high-dimensional gene expression data of 

patients in Glioblastoma Multiforme (GBM) and ovarian cancer. GBM is the most 

aggressive brain tumor with higher inter- and intra-tumor heterogeneity [13]. The median 

survival time of GBM patients after initial diagnosis is approximately 12–14 months [14]. 

Despite significant advances in understanding of disease progression and molecular 

pathogenesis, prognosis of GBM remains poor.

Ovarian cancer is the most frequent gynecologic cancer and is the fifth leading deaths cancer 

to women [18]. The chance of five-year survival rate is just around 30–40%. Ovarian cancer 

is highly asymptomatic during early stages and shows non-specific symptoms in advanced 

stages. Therefore, ovarian cancer is difficult to be diagnosed early and shows poor prognosis 

rate [6].

3.1. Datasets

We assessed the effectiveness of PACL by comparing with a number of clustering methods 

that most cancer subtype studies have used. For the experiments, we used microarray gene 

expression data of GBM and ovarian cancer downloaded from The Cancer Genome Atlas 

(TCGA).2 GBM dataset consists of 523 samples of 12,042 genes, while ovarian cancer 

dataset includes 532 samples of 12,043 genes (see Table 1). We considered the four pathway 

databases: Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, Pathway 

Interaction Database (PID), and BioCarta for pathway-based analysis. The pathway 

databases were obtained from Molecular Signatures Database (MSigDB).3 Small pathways 

2https://cancergenome.nih.gov.
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which include less than 15 genes were excluded to avoid substantial redundancy with large 

pathways, and also genes that have no association with pathways were not considered for the 

experiments. After the preprocessing, each cancer dataset has 998 pathways of 6,073 genes. 

The experiments were repeated ten times with randomly selecting 80% of the samples for 

reproducibility and robustness. For each experiment, data was normalized to a mean of zero 

and a standard deviation of one.

3.2. Experimental settings

We compared the performance of our model with the benchmark methods including K-

Means (KM) [20], Density K-Means + + (DKM + +) [26], Hierarchical Clustering (HC) [1], 

Spectral Clustering (SC) [8], Consensus Clustering (CC) [24], and Consensus Non-negative 

Matrix Factorization (CNMF) [5]. The architecture of PACL consisted of 6073 nodes in the 

gene layer, 998 nodes in the pathway layer, and 500 and 200 nodes in the two hidden layers, 

where a sigmoid function was considered as an activation for all layers. Note that each node 

in the gene layer corresponds to a gene, so the number of nodes in the gene layer varies with 

respect to the number of genes in the dataset. The cluster layer nodes ranged from two to 

four to find the optimal number of cancer subtypes. For the optimal model of PACL, we 

empirically determined hyper-parameters from multiple experiments. In particular, learning 

rate was set as 0.0005, 0.05, 0.05, and 0.0005 for each layer, respectively; L-2 regularization 

parameter (λ) was set as 1e–4; dropouts were applied with a drop probability of 0.7 for all 

layers.

For K-means and hierarchical clustering, default settings such as Euclidean and Ward’s 

minimum variance linkage were used, respectively. Consensus clustering was trained with 

Pearson distance function, whereas spectral clustering was with Gaussian kernel of 

Euclidean distance.

3.3. Experimental results

First of all, we determined the optimal number of clusters (i.e., the number of subtypes). 

Silhouette scores were computed with various cluster numbers (two to four clusters). A 

silhouette score ranges from negative one to positive one, where a high score indicates better 

clustering performance. For all benchmark clustering methods of K-means, DKM + +, HC, 

SC, CNMF, and CC, the original gene expression data of clusters were used to compute the 

silhouette score, whereas the last hidden layer node values were considered for PACL that 

produces high-level representations of the original data.

The silhouette scores on each clustering method with GBM are depicted in Fig. 4 and listed 

in Table 2. Most clustering methods produced the highest silhouette scores with two clusters, 

which may show that two major subtypes exist in GBM. It is worth noting that the higher 

silhouette score of PACL than other methods shows that the pathway-based high-level 

representation of the data describes the nonlinear effects of the data (see Table 2). The 

silhouette scores are to determine the optimal number of clusters, rather than comparing the 

3http://software.broadinstitute.org/gsea/msigdb.
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performance of the benchmark methods. The average cluster sizes in PACL were 274.5 and 

144.5 with two clusters (see Table 3).

Then, we assessed the hypothesis that clusters (subtypes) may be associated to different 

survivals by logrank tests. Logrank tests were performed with survival times and survival 

events of clusters (see Fig. 5). For more than two clusters, the lowest p-values were 

considered among the pairwise logrank tests. PACL showed the lowest p-values on average 

with two clusters among the benchmark methods in Fig. 5. It demonstrates the patient 

groups clustered by PACL may correspond to subtypes in GBM, which are significantly 

associated with distinct survival distributions. Interestingly, DKM + + showed lower p-

values than PACL in three clusters. However, DKM + + produced the highest silhouette 

score in two clusters. In contrast, PACL’s silhouette score appears to be associated with p-

values of logrank tests. Note that the clustering methods identified subtypes only using gene 

expression data; no survival data were introduced for clustering.

We also performed the analyses on ovarian cancer data. The silhouette scores on each 

clustering methods with ovarian cancer are illustrated in Fig. 6 and listed in Table 4. Most 

clustering methods also produced the highest silhouette scores with two clusters in ovarian 

cancer. Although consensus clustering showed the highest silhouette scores, the clusters are 

extremely biased to one (see Table 5). The average cluster sizes in PACL were 265 and 161 

with two clusters. Logrank tests were performed with the ovarian cancer data (see Fig. 7). 

PACL also showed the lowest p-values on average with two clusters among the benchmark 

methods in Fig. 7.

4. Model interpretation

PACL is a biologically interpretable deep belief network that describes different biological 

mechanisms of cancer subtypes. Specifically, the nodes in the gene layer and the pathway 

layer correspond to biological genes and pathways, respectively. The node values in the 

layers indicate active or inactive status of the biological components, although a sign of the 

corresponding weight does not show the characteristics of activation or inhibition.

For the model interpretation of PACL, we clustered the entire GBM data into two groups 

using PACL. The survival distributions of the two subtypes are analyzed by Kaplan-Meier 

estimator in Fig. 8. The survival distributions over time in the two subtypes were shown 

significantly different, i.e., logrank test p-value = 0.0013. One cluster shows a long-term 

survival group (LTS), whereas another cluster indicates a shortterm survival group (STS). 

The average (and median) of the patients’ survival months of LTS and STS clusters were 

18.42 (12.6) and 13.31 (11.9), respectively. In this paper, we discussed with the GBM data 

only.

The last hidden layer (hidden layer 2) and the pathway layer are visualized in Figs. 9 and 10. 

In Fig. 9a, the 200 nodes in the last hidden layer are sorted by p-values of t-test, which 

analyzes the differences of samples in two clusters. The lower p-value implies the more 

differential node values between the two clusters in the layers. Specifically, the high-ranked 

hidden nodes are shown as active in most patients of LTS cluster, whereas most patients of 
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STS cluster show inactive nodes. The hidden nodes of the two clusters are visualized by the 

t-SNE plot. The nonlinear associations between PACL’s clusters and survival months are 

illustrated in Fig. 9b.

Similarly, the pathway nodes are also visualized in Fig. 10. The hidden nodes can be 

considered as prognostic factors, although the hidden nodes do not represent biological 

processes directly. On the other hand, the pathway nodes can explicitly describe the 

molecular status of corresponding biological pathways.

Top-ranked pathways by t-test between the two clusters are listed in Table 6. The ten top-

ranked pathways include Anaplastic Lymphoma Kinase (ALK) pathway, Angiotensin II 

Receptor Type 1 (ATR1) pathway, P38 Alpha Beta downstream pathway, aquaporin 

mediated transport pathway, triglyceride biosynthesis, agrin (AGR) pathway, calcium 

signaling pathway, regulation of water balance by aquaporins, Vasoactive Intestinal Peptide 

(VIP) pathway, and DAG and IP3 signaling pathway. Most of these pathways are referred as 

related pathways in GBM progression in biological literature.

In particular, ALK is a druggable tyrosine kinase receptor. Preclinical studies reported that 

ALK pathway is over-expressed in GBM tumorigenesis, so ALK is a potential therapeutic 

target in GBM [17]. The expression of ATR1 has been reported as being associated with 

poor prognosis in human astrocytomas in GBM [10,3]. Overexpression of aquaporin (AQP) 

signaling is associated with multiple types of cancer as a distinctive clinical prognostic 

factor. Among the six transmembrane aquaporin proteins, the roles of AQP1 and AQP4 in 

tumor cell migration, invasion and angiogenesis were reported [15]. GBM cells exhibit 

higher levels of AQP 1 protein comparing to normal brain, and up-regulation of AQP1 

provides a therapeutic target [30]. Recent studies reported that AGR correlates with the 

expression of AQP4 protein [27]. Loss of agrin leads to destruction of blood brain barrier by 

AQP4 protein and contributes to the regulation, invasion and migration of glioma [32]. 

Calcium signaling pathway is associated with positive regulator of tumorigenesis in GBM. 

Thus, manipulating Ca2+ signaling may help in reprogramming the GBM cells, which 

would either be easier to cure or have no pathological effects [19]. VIP is a major regulatory 

factor in the central and peripheral nervous systems. Two human GBM cell lines were tested 

for the effect of both VIP and synthetic VIP antagonists, where it revealed that the VIP-

receptor system negatively regulates cell migration [9]. DAG and IP3 pathway activates 

protein kinase C delta (PKC-delta) enzyme, which further activates epidermal growth factor 

receptor (EGFR) pathway [2]. A number of studies have supported the involvement of PKC-

delta [11] and over expression of EGFR [34] in glioma cells. Thus, inhibition of the DAG 

and IP3 pathway may reduce the proliferation and survival of glioblastoma cells [25].

5. Conclusion

Identification of molecular subtypes allows one to understand heterogeneous genetic 

mechanisms of cancer subtypes, each of which may respond to chemotherapy and 

radiotherapy differently. A number of machine learning techniques have been developed in 

the last decade to systematically cluster patients into groups based on the genomic profiles. 

However, most of the conventional clustering methods are based on similarity (or distance) 
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between high-dimensional gene expression data, although they are nonlinearly associated 

with patients’ survivals. Moreover, most of them lack pathway-based biological 

interpretation.

In the paper, we proposed a new pathway-based deep clustering method (PACL) that 

identifies molecular subtypes by incorporating biological pathway databases for pathway-

based model interpretation. PACL also provides a biologically interpretable deep belief 

network that can explicitly describe active/inactive status of genes and pathways. PACL 

effectively clusters high-dimensional gene expression data, which are nonlinearly associated 

to patients’ survivals. PACL outperformed the benchmark clustering methods in experiments 

with GBM and ovarian cancer data. PACL discovered two subtypes in both GBM and 

ovarian cancer, which show significantly different survival distributions. Then, the optimal 

model of PACL was interpreted with GBM data, where node values represent active/inactive 

status of pathways in long/short-term survival groups. The top-ranked ten pathways were 

further investigated. Most of the pathways have been reported to be associated with GBM 

progression in biological literature.
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Fig. 1. 
Nonlinear association between gene expression data and survivals in GBM. Red color shows 

longer survival, whereas blue indicates shorter. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
The architecture of PACL.
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Fig. 3. 
Layer-by-layer training with small sub-networks. (a) Sparse connections between the gene 

layer and the pathway layer given by biological pathway databases, (b) training with small 

sub-networks in the pathway layer and the hidden layer, and (c) training between the hidden 

layer 2 and the cluster layer.
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Fig. 4. 
Silhouette scores with two to four clusters with GBM dataset. The x-axis shows the number 

of clusters.
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Fig. 5. 
−log10(p-value) comparison of models with GBM dataset. Each column shows performance 

with up to four clusters.
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Fig. 6. 
Silhouette scores with two to four clusters with ovarian cancer data. The x-axis shows the 

number of clusters.
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Fig. 7. 
−log10(p-value) comparison of models with ovarian cancer dataset. Each column shows 

performance with up to four clusters.
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Fig. 8. 
Kaplan-Meier survival curves of two subtypes in GBM.
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Fig. 9. 
Visualization of the nodes in the last hidden layer. The line in red separates the samples of 

the two clusters. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 10. 
Visualization of the nodes in the pathway layer. The line in red separates the samples of the 

two clusters.
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Table 1

Summary of experiment datasets.

Dataset Genes Patients

GBM 12,042 523

Ovarian 12,043 532
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Table 2

Silhouette scores with two to four clusters with GBM data.

Model Two clusters Three clusters Four clusters

K-means 0.091 ± 0.002 0.092 ± 0.004 0.077 ± 0.013

DKM + + 0.088 ± 0.003 0.090 ± 0.006 0.053 ± 0.004

HC 0.102 ± 0.059 0.092 ± 0.011 0.068 ± 0.024

SC −0.001 ± 0.002 −0.019 ± 0.011 −0.03 ± 0.035

CNMF 0.081 ± 0.013 0.03 ± 0.003 0.025 ± 0.005

CC 0.331 ± 0.028 0.335 ± 0.014 0.30 ± 0.014

PACL 0.400 ± 0.005 0.209 ± 0.062 0.197 ± 0.038
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Table 3

Average cluster sizes in GBM.

Model Two clusters Three clusters Four clusters

K-means [236.5, 182.5] [233.1, 136.8, 39.1] [232.1,124.2,37.1,25.6]

DKM+ + [270.4, 148.6] [241.6, 131.4, 46] [153.3,129.8,98.1,37.8]

HC [300.6, 118.4] [272.5, 115.7, 30.8] [226.8,107.6,60.8,23.8]

SC [258, 161] [208.7,128.9,81.4] [199.5,104.4,70,45.1]

CNMF [260.5, 158.5] [194,149.3,75.7] [144.6,117.3,90,67.1]

CC [413.7, 6.1] [410.6,7,1.4] [394.7,18.2,4.8,1.3]

PACL [274.5, 144.5] [230.7,150.9,37.4] [224.9,154.4,30.1,15.3]
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Table 4

Silhouette scores with two to four clusters with ovarian cancer data.

Model Two clusters Three clusters Four clusters

K-means 0.066 ± 0.001 0.047 ± 0.004 0.034 ± 0.009

DKM + + 0.064 ± 0.002 0.037 ± 0.001 0.028 ± 0.007

HC 0.061 ± 0.015 0.04 ± 0.011 0.028 ± 0.014

SC 0.001 ± 0.002 −0.012 ± 0.013 −0.01 ± 0.004

CNMF 0.030 ± 0.011 0.032 ± 0.006 0.015 ± 0.002

CC 0.377 ± 0.001 0.35 ± 0.056 0.198 ± 0.012

PACL 0.233 ± 0.038 0.16 ± 0.038 0.135 ± 0.023
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Table 5

Average cluster sizes in ovarian cancer.

Model Two clusters Three clusters Four clusters

K-means [274.9, 151.7] [196.5,127.8,101.7] [151.5,119.9,95.1,67.5]

DKM + + [269.2, 156.8] [182.6,131.1,112.3] [143,112,94.9,76.1]

HC [304.9, 121.1] [216.8,128.3,80.9] [170.5,113.2,75.3,49.8]

SC [244.4, 181.6] [198.3,134.2,93.5] [173.8,115.3,80.6,56.3]

CNMF [225.7, 200.3] [174.3,144,107.7] [137.4,108.9,97,82.7]

CC [421.5, 3.8] [424,1,1] [423,1,1,1]

PACL [265, 161] [190.5,152.9,82.4] [150.9,105.4,30.1,15.3]
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Table 6

Ten top-ranked pathways in GBM.

Pathway name Reference

ALK pathway [17]

ATR1 pathway [10,3]

P38 Alpha Beta downstream pathway –

Aquaporin mediated transport pathway [15,30]

Triglyceride biosynthesis –

AGR pathway [27,32]

Calcium signaling pathway [19]

Regulation of water balance by Aquaporins –

VIP pathway [9]

DAG and IP3 signaling pathway [25,2]
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