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ABSTRACT

Ceramides are minor components of the hepatic lipidome that have major effects on liver 
function. These products of lipid and protein metabolism accumulate when the energy needs 
of the hepatocyte have been met and its storage capacity is full, such that free fatty acids start 
to couple to the sphingoid backbone rather than the glycerol moiety that is the scaffold for 
glycerolipids (e.g., triglycerides) or the carnitine moiety that shunts them into mitochondria. 
As ceramides accrue, they initiate actions that protect cells from acute increases in detergent-
like fatty acids; for example, they alter cellular substrate preference from glucose to lipids 
and they enhance triglyceride storage. When prolonged, these ceramide actions cause insulin 
resistance and hepatic steatosis, 2 of the underlying drivers of cardiometabolic diseases. 
Herein the author discusses the mechanisms linking ceramides to the development of insulin 
resistance, hepatosteatosis and resultant cardiometabolic disorders.
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INTRODUCTION

Cells and organisms undergo highly-coordinated responses to the energy status of their 
environment. Nutrient abundance up-regulates anabolic signaling pathways while inhibiting 
catabolic ones. Nutrient deprivation opposes all of these activities to liberate energy stores. 
Despite the relevance of these responses to virtually all physiological processes, the molecular 
events accounting for cell autonomous nutrient sensing are poorly understood.

The preferential energy store in living species is the triglyceride molecule, which has a 
remarkable capacity to pack energy into a distinct organelle known as the lipid droplet. For 
example, a typical, well-nourished 70 kg person has fuel reserves totaling 135,000 kcal as 
triglycerides, as opposed to only 1,600 kcal as glycogen or 24,000 kcal as modifiable protein.1 
Triglycerides comprise 3 fatty acid molecules coupled to a glycerol backbone. The glycerol 
moiety derives from carbohydrate molecules during the course of glycolysis. The fatty acids 
can come from dietary intake or through the metabolism of carbohydrates or proteins. Every 
macronutrient can be converted into acetyl-coenzyme A (CoA) through the citric acid cycle, 
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which can in turn be used to synthesize new fatty acids. The body is thus highly tuned to 
store excess fuel as triglyceride.

Unlike proteins and carbohydrates, fatty acids are not anapleurotic; they cannot be converted 
back into intermediates for the citric acid cycle and thus cannot be used to produce glucose 
or amino acids. After being coupled to CoA, they enter one of 3 metabolic pathways:

1) When energy needs are high, acyl-CoAs couple to carnitine, which allows them to be 
imported into mitochondria for beta oxidation and production of heat or adenosine 
triphosphate.

2) When energy needs are low, acyl-CoAs couple to glycerol, which produces predominant 
membrane glycerolipids (e.g., phosphatidylcholine, phosphatidylethanolamine, etc.) as 
well as the triglyceride stores described above.

3) When the energy needs have been met and the storage capacity is full, they can be 
coupled to a sphingoid backbone derived from the condensation of amino acids and 
palmitoyl-CoA, producing the sphingolipids.

We hypothesize that the sphingolipids serve as nutritional signals of lipid overload, 
accumulating when the fatty acid burden of a cell is particularly high.2 The resultant 
sphingolipids, particularly ceramides, alter the metabolic properties of cells and organisms 
to help them adapt to the fuel surplus.2 Herein we will discuss how ceramides alter 
tissue metabolism and will evaluate how these actions contribute to the development of 
hepatosteatosis and cardiometabolic disease.

FUNDAMENTALS OF SPHINGOLIPID BIOSYNTHESIS

The chief site of sphingolipid biosynthesis is the endoplasmic reticulum, where fatty 
acids and amino acids are converted into the dihydroceramides and ceramides that are 
the building blocks of other sphingolipids (e.g., sphingomyelins (SMs) and dihydro-SMs, 
gangliosides and dihydro-gangliosides, etc.) (Fig. 1).3 The enzymes that convert ceramides 
and dihydroceramides into complex sphingolipid species are localized in the Golgi apparatus. 
The early steps of the biosynthesis pathway involve the following enzymes:
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Fig. 1. Schematic depicting the key reactions in the ceramide biosynthesis pathway. 
CoA, coenzyme A; SPT, serine palmitoyltransferase; KDHR, 3-ketodihydrosphingosine reductase; CERS, (dihydro)ceramide synthases (isoforms in parentheses); 
DES, dihydroceramide desaturase (isoforms in parentheses); GCS, glucosyceramide synthase; SMS, sphingomyelin synthase (isoforms in parentheses); CERK, 
ceramide kinase.



• Serine palmitoyltransferase (SPT) condenses palmitoyl-CoA and serine to produce a 
transient intermediate termed 3-ketosphinganine.3 Occasionally, this enzyme can also use 
alternative amino acids (i.e., alanine and glycine) to produce deoxysphingolipids.4 The 
enzyme is multimeric, comprising 2 essential subunits (SPTLC1 and 2) which are requisite 
for enzyme function, as well as a third (SPTLC3) that can allow myristoyl-CoA to be used 
in place of palmitoyl-CoA. A family of 3 ORMDL proteins modulate SPT activity; their 
simultaneous knockdown increases ceramide biosynthesis while their overexpression 
lowers ceramides.5 The broad spectrum of substrates and components of this enzyme 
complex suggests that the enzyme complex may serve as a highly regulated gateway for 
nutrients entering the sphingolipid pool.

• 3-ketosphinganine reductase converts the 3-ketosphinganine produced by SPT into 
dihydrosphingosine. This reaction proceeds rapidly, such that 3-ketosphinganine levels 
are exceptionally low. The resultant dihydrosphingosine serves as the sphingoid scaffold 
that acquires additional, variable fatty acids through the reaction that follows.

• (Dihydro)Ceramide synthases add a variable acyl-CoA to dihydrosphingosine to produce 
dihydroceramides. The family includes 6 isoforms (CERS1–6) that differ by substrate 
preference and tissue distribution.6,7 Though CERS2 is the major isoform in the liver, its 
products, which are very long chain ceramides that include C24 or C24:1 acyl-chains, 
do not elicit deleterious actions on tissue metabolism.8 The species that most influence 
anabolic and catabolic processes are the C16 ceramides produced by CERS6, which is 
upregulated in obesity.9,10 CERS5 also produces C16 ceramides and has been implicated 
in cardiovascular complications of obesity,11 but does not influence glucose and lipid 
homeostasis.12 CERS1, which produces C18 ceramides and is the major isoform in skeletal 
muscle, also influences tissue metabolism and insulin sensitivity.13 CERS3, which also 
produces really long ceramides, is the major isoform in skin and sperm. As we will discuss 
below, a recent study suggests that these enzymes have the ability to migrate to the 
nucleus under conditions of high activity, where they serve as transcriptional repressors of 
lipase gene expression.14

• Dihydroceramide desaturases insert a conserved double bond into the d4 position of the 
sphingoid backbone to convert the dihydroceramides into ceramides. This structural 
feature imparts many of the sphingolipids unique biophysical properties and enables 
ceramides to serve as regulators of cellular metabolism.2 Two desaturases are present 
in mammalian tissues, including the ubiquitous isoform DES1 and the tissue-restricted 
DES2 which is present in the skin and gut. The products of DES2 can contain an additional 
hydroxyl-group in the D4 position and are termed phytoceramides.

Sporadic reports have also suggested that the process may also occur in mitochondria, but 
the quantitative or biological importance of this as a site of ceramide synthesis is still unclear.

Both the dihydroceramides and ceramides can then be transported to the Golgi, where they 
serve as substrates for enzymes that add various headgroups. For example, the SM synthases 
add phosphocholine, producing the SMs which represent the most abundant sphingolipid 
class. Glucosyceramide synthase adds a glucose moiety to initiate the enzymatic cascade that 
produces the gangliosides. And ceramide kinase can phosphorylate ceramides to produce the 
bioactive signaling molecule ceramide-1-phosphate.

For the purposes of this review, we will concentrate on the ceramides, which have evolved 
important roles as metabolic regulators during conditions of nutrient surplus.
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HYPOTHESIS: CERAMIDES ARE EVOLUTIONARILY 
CONSERVED SIGNALS OF FREE FATTY ACID OVERLOAD
Free fatty acids (FFAs) are amphipathic, detergent-like molecules. Since FFAs would 
otherwise perturb bilayer structures (Fig. 2A), cells go to great lengths to quickly esterify 
them, coupling them to CoA and subsequently to carnitine, glycerol or sphingoid bases as we 
described above (Fig. 2B). As ceramides start to accrue, they initiate a series of changes to cell 
metabolism that effectively lower levels of FFAs (Figs. 3 and 4). We hypothesize that they thus 
play an evolutionarily conserved role to protect cellular bilayers in times of lipid excess. We 
will detail these cellular actions below.

Ceramides (and SM) facilitate FFA uptake and esterification
The means by which fatty acids traverse the plasma membrane has been a source of active 
discussion and occasional debate. They are fully capable of diffusing through the bilayer,15-19 
owing to their amphipathic nature. Nonetheless, families of translocases (e.g., CD36) that 
increase the rate of fatty acid uptake have been identified.20 Many researchers have argued 
that the role of these translocases is to direct fatty acids to acyl-CoA synthetases, thus 
enhancing their esterification and thus their rate of retention within the cell.21,22
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Fig. 2. Schematic depicting the pathways that incorporate fatty acids entering the cell. (A) When detergent-
like fatty acid levels get too high, they emulsify cellular membranes. The lysis occurs over 3 stages: fatty acid 
penetration into the bilayer; their equilibration into both faces of the bilayer; and the transition of the bilayer 
into a micelle. (B) To prevent lysis, fatty acids entering the cell are quickly coupled to CoA and then incorporated 
into backbones to produce acylcarnitines, glycerolipids, and sphingolipids. Acylcarnitines are formed as fatty 
acids translocate into mitochondria. Glycerolipids that are produced make up the bulk of membrane bilayers and 
create the triglyceride stores that form the majority of the lipid droplet. Sphingolipids are signals of lipid excess 
that signal to upregulate the other 2 pathways under conditions of lipid excess. 
CoA, coenzyme A.



The Scherer lab demonstrated an interesting relationship between ceramides and CD36.23 
The work stemmed from an animal model that overexpressed acid ceramidase in either 
adipose tissue or the liver. Overexpression of the enzyme in either locale led to substantial 
decreases in CD36. It also decreased the activity of the atypical protein kinase C (PKC) 
isoform PKCζ, which is ceramide effector that had been shown previously to play a 
permissive role in lipid uptake. Using cultured H4IIe hepatocytes, the authors determined 
that short-chain ceramide analogues or cell treatments that increased endogenous ceramides 
stimulated palmitate uptake and markedly enhanced PKCζ activity. Overexpression of 
dominant-negative PKCζ isoforms negated the ceramide actions on lipid uptake, while 
constitutively active constructs enhanced lipid uptake. Lastly, they determined that ceramide 
analogs, via a PKCζ-dependent mechanism, enhanced translocation of CD36 to plasma 
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membranes. This study identified an unanticipated role for ceramides to enhance lipid 
uptake and esterification.

In 2019, my group confirmed this mechanism using mice lacking DES1, where the livers 
predominantly contained dihydroceramides in place of ceramides.2 In those animals, lipid 
uptake into the liver was greatly reduced, such that they were protected from hepatic steatosis. 
In cultured hepatocytes, ceramides, but not dihydroceramides, stimulated CD36 translocation.

These actions of ceramides effectively lower the concentration of FFA in the lipid bilayer, by 
enhancing their transport and facilitating their esterification. These actions protect cells 
from these detergent-like structures.

Beyond these ceramide actions on CD36, we suspect that other sphingolipids also serve an 
evolutionarily conserved role to facilitate safe diffusion of FFA across lipid bilayers. SMs, 
with its binding partner cholesterol, is a key component of caveolae and lipid rafts. Studies in 
adipocytes, where caveolae are particularly abundant, indicate that these SM and cholesterol-
rich microdomains are important scaffolds that support fatty acid diffusion and uptake.24-26 
Thus, sphingolipids may also have a role in producing membrane structures that support the 
safe diffusion of the detergent-like FFA across cellular membranes.

Ceramides induce sterol response element binding protein (SREBP) to drive 
triglyceride formation
SREBPs are master regulators of triglyceride and cholesterol synthesis. Gonzalez and 
colleagues determined that exogenous administration of C16-ceramides to mice was 
sufficient to induce hepatic expression of the Srebf1 gene and several of its downstream 
targets that enable either triglyceride production (e.g., Dgat1, Dgat2, etc.) or fatty acid 
elongation (Elovl1).27 Similarly, our studies demonstrated that the Srebf1 gene that encodes 
SREBPs was the most dramatically downregulated gene in liver-specific ceramide-depleted, 
Degs1 knockout mice.2 Our data confirmed that ceramide reduction reduced levels of the Dgat 
enzymes and Elovl1. These findings are consistent with work by Worgall and colleagues28 
in cell lines, where ceramide depletion lowered SRE-dependent gene expression in vitro. 
Collectively, these data suggest that ceramides modulate gene expression profiles to enhance 
incorporation of the excessive fatty acids into triglycerides.

The likely mechanism for these ceramide actions again involves the atypical PKCs (e.g., 
PKCλ or PKCζ) that are ceramide effectors and established inducers of hepatic steatosis.29,30 
Prior studies revealed a ceramide-PKCζ axis that contributes to hepatic steatosis and 
hypertriglyceridemia in mice.30

Ceramides inhibit glucose and amino acid uptake and utilization
While ceramides are facilitating the entry of fatty acids into the cell, they are simultaneously 
inhibiting the uptake of glucose31,32 and amino acids.33-35 This series of ceramide actions 
enables the cell to adapt to use the abundant fatty acids as the preferred fuel source.

Most of the studies that evaluated ceramide effects on glucose or amino acid uptake have 
been done in cultured adipocytes or myotubes, typically looking at the insulin-responsive 
changes in transport rates that occur in the postprandial condition. Nonetheless, this 
attribute of sphingolipids to modulate nutrient uptake also appears to be present in single 
cell organisms, including yeast.35-38
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In mammals, the ceramide antagonism of glucose uptake results from the regulation of 
the insulin-responsive GLUT4 glucose transporter. The first studies utilized exogenous 
short-chain ceramide analogs, which potently inhibited GLUT4 translocation to the plasma 
membrane in adipocytes.31,32,39 These analogues altered GLUT4 trafficking by blocking 
insulin-stimulation of Akt/PKB, a serine/threonine kinase that is obligate for insulin 
and growth-factor activation of glucose uptake, anabolic signaling events (e.g., protein, 
glycogen, and fatty acid synthesis), and cell survival.40-46 Ceramide inhibition of Akt/PKB is 
accomplished by one of 2 mechanisms.

1. Ceramides inhibit insulin and growth-factor stimulated translocation of the anabolic 
serine/threonine kinase Akt/PKB to the plasma membrane.40 This step precedes the 
phosphorylation of Akt/PKB phosphorylation on 2 activating residues. The ceramide 
effector PKCζ is an obligate intermediate in this ceramide action, as it phosphorylates 
Akt/PKB on a third, inhibitory site in the enzyme's PH-domain.42 The phosphorylation 
lowers the kinase's affinity for phosphoinositides, thus preventing its PI3-kinase-
dependent activation.42 Expression of an Akt/PKB isoform with the S34 site converted 
to an alanine confers resistance to ceramide in cultured myotubes and vascular smooth 
muscle.47,48 Ceramides stabilize interactions between Akt/PKB and PKCζ by recruiting the 
enzymes to membrane rafts or caveolae.48,49

2. Ceramides enhance dephosphorylation of Akt/PKB by activating protein phosphatase 
2A.43-46 Inhibition of PP2A, which could be accomplished in cells by either treating with 
okadaic acid or by overexpressing the SV40 small T antigen, prevents the ceramide 
inhibition of Akt/PKB in a number of cell types.43-46

The relative importance of either pathway varies by cell type.41,43,47,48,50 In cells with abundant 
caveolae, the PKCζ-dependent mechanism predominates.51

Ceramides and ceramide synthases inhibit TAG lipolysis
Since ceramides appeared to be enacting cellular actions that lowered the FFA burden of cells, we 
predicted that they might inhibit release of fatty acids from the lipid droplet. Indeed, ceramide 
analogues inhibited isoproterenol-stimulated phosphorylation of hormone sensitive lipase.11 
Simultaneous addition of the PP2A inhibitor microcystin-LR negated these ceramide actions.

Ceramide synthases, via actions unrelated to their ability to make ceramides, may also 
regulate lipolysis. The Drosophila, and most mammalian, CERS isoforms contain a 
nuclear localization sequence and a homeodomain, suggesting that they may regulate gene 
expression. Sociale and colleagues14 determined that CERS enzymes respond to fatty acids by 
translocating to the nucleus and repressing expression of lipases. This observation identifies 
an additional means by which the entry of FFA into the ceramide synthesis pathway may alter 
metabolism to alleviate the FFA burden of cells during conditions of lipid oversupply.

Ceramides decrease mitochondrial efficiency
Obesity is often associated with mitochondrial “dysfunction” evidenced by decreased activity 
(i.e., oxygen consumption) of the complexes in the electron transport chain (ETC). Review 
of the literature indicates that ceramides can account for this obesity-induced change in 
mitochondrial efficiency.

Short-chain ceramide analogs,52,53 as well as interventions that increase endogenous ceramide 
levels, inhibit the activity of several ETC complexes.8,54,55 For example, treating mitochondria 
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with C16-ceramide, sphingosine or sphinganine inhibits complex IV activity in vitro.54 
Similarly, overexpressing CERS6 in hepatocytes increases C16-ceramide levels and inhibits 
complex II activity.8 Lastly, pharmacological inhibition or knockdown of sphingomyelinase 
synthase-2 induces accumulation of ceramides while inhibiting mitochondrial respiration.55

Studies in rodents also suggest that ceramides impair mitochondrial function. 1) Cert1 
knockout mice, which lack the ceramide transport protein that carries ceramides from 
the ER to the Golgi for ganglioside production, display elevated mitochondrial ceramide 
content and impaired complex IV activity.56 2) Cers2 null mice display compensatory 
increases in C16-ceramides and decreased complex II and IV activity. 3) Cers2 heterozygous 
mice, when fed a high fat diet, display decreased complex I, II and IV activity in the liver 
and increased susceptibility to hepatosteatosis.8 For this latter study, treatment with the 
SPT inhibitor myriocin negates the effect of high fat feeding or haploinsufficiency for Cers2 
on mitochondrial activity in adipose tissue and/or the liver. 4) Convincingly, depletion of 
ceramides (i.e., knockout of Cers6, Cers1, or Degs1) from the whole body or specific tissues 
reduces ceramide levels and increases mitochondrial oxygen consumption in liver, muscle, 
and brown and white adipose tissue.2,10,12,13,57

The mechanism linking ceramides to impaired complex activity are unresolved. 
Hammerschmidt and colleagues12 determined that sphingolipids produced by CERS6 bound 
to mitochondrial fission factor, which led to enhanced mitochondrial fission. Indeed, the 
Cers6 knockout mice contain fused, very large, and highly efficient mitochondria.12 Bikman 
and colleagues58 also reported that ceramides induced fission, which they found responsible 
for ceramide actions on oxygen consumption. Ceramides likely initiate other actions on 
mitochondria, whoever, as the fission effects cannot explain the acute, direct effects of 
sphingolipids on the purified organelle.

We surmise that the decrease in mitochondrial efficiency serves a biological purpose. By 
doing so, ceramides limit the effect of a given substrate on the mitochondrial membrane 
potential, which may enable the cell to burn a larger number of fatty acid substrates.

The end is nigh: ceramides in apoptosis and fibrosis
As ceramides continue to accrue, they signal the cell to undergo apoptosis and to initiate the 
processes of fibrosis. This likely evolved as an extension of the aforementioned actions, as 
they trigger the organism to rid itself of cells that have a compromised lipid bilayer.

Ceramides increase mitochondrial outer membrane permeability (MOMP) to increase 
cytochrome C release and subsequent caspase activation.59 Several mechanisms underlie 
these effects. Ceramides recruit the pro-apoptotic protein BAX to mitochondrial 
membranes.60 They also bind to voltage-dependent anion channel 2, another protein 
implicated in the induction of MOMP.61 Certain ceramides are also reported to form channels 
that allow passage of cytochrome C.62-65 The anti-apoptotic protein BCLXL1 disrupts 
formation of these ceramide channels.66-68

Ceramides may also trigger fibrosis, which will protect the tissue from a lysing cell. 
Ceramides may modulate expression of collagen genes via a mechanism termed “regulated 
intramembrane proteolysis.” The mechanism was identified from research CREB3L1,69 an ER-
bound protein. Site-1 or site-2 proteases (S1P/S2P) cleave CREB3L1, releasing a fragment that 
enters the nucleus and binds Smad4, subsequently inducing transcription of genes required 
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for assembly of collagen-containing extracellular matrix.69,70 Ceramides activate this process 
by altering the orientation of TM4SF20, a protein that otherwise blocks access of S1P and S2P 
to CREB3L1.69,71

Summary of evolutionary basis of these ceramide mechanisms
We thus surmise that ceramides are evolutionarily-conserved signals of lipid excess. The 
ceramide actions described above prevent the aberrant lysis of cell membranes caused by the 
accumulation of detergent-like FFA. The ceramide effects on apoptosis and fibrosis likely 
evolved as an extension of this response, helping the organism limit the damage resulting 
from the spilling of cytosolic components following aberrant FFA-driven membrane lysis. 
This hypothesis provides a unifying framework for understanding ceramide actions in 
cellular stress and generates several testable hypotheses. Moreover, it provides a plausible 
mechanism for the role of ceramides in “selective” insulin resistance and cardiometabolic 
diseases (discussed below).

CERAMIDES DRIVE SELECTIVE INSULIN RESISTANCE, 
HEPATOSTEATOSIS, AND OTHER CARDIOMETABOLIC 
DISORDERS

Hepatosteatosis and other cardiometabolic disorders result from a common disease 
progression that includes 2 stages: selective insulin resistance followed by lipotoxicity (e.g., 
lipo-apoptosis and fibrosis). The mechanisms described earlier explain how ceramides 
contribute to both stages of disease progression.

Stage 1: selective insulin resistance
The peptide hormone insulin has 2 major actions. First, insulin lowers blood glucose levels 
by enhancing its uptake and storage in skeletal muscle and adipose tissue and blocking its 
production by the liver. Second, insulin promotes the storage of nutrients as triglycerides. 
Individuals with pre-diabetes or the metabolic syndrome typically display impaired insulin-
stimulated glucose disposal, as tissues adjust to utilize fatty acids as the primary insulin 
source. Simultaneously, they display enhanced triglyceride storage. Brown and Goldstein72 
termed this “selective” insulin resistance in order to highlight the fact that insulin actions 
towards lipid storage are actually enhanced in the pre-diabetic condition.

Ceramides, as signals of acute lipid overload, manage to accomplish most of the elements of 
selective insulin resistance. Ceramides inhibit insulin-stimulated glucose disposal by blocking 
activation of Akt/PKB, which leads to decreased translocation of the GLUT4 glucose transporter 
in adipose tissue and skeletal muscle. Ceramide's inhibition of Akt/PKB also releases the 
insulin-applied brake on gluconeogenesis, leading to enhanced hepatic glucose output. 
Ceramides induce steatosis by enhancing lipid uptake and triglyceride production into the liver. 
It does this by enhancing CD36 translocation to the membrane and upregulating SREBP and its 
target genes. Indeed, inhibition of ceramide biosynthesis improves glucose homeostasis and 
resolves hepatic steatosis in a number of rodent models (Fig. 5).

1. Myriocin, the aforementioned inhibitor of SPT, prevents or reverses atherosclerosis,73-78 
insulin resistance (i.e., glucose lowering),8,79-83 and hepatic steatosis8,30,79,84-86 in mice, rats, 
and/or hamsters.
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2. Deletion of an essential SPT subunit from adipose tissue of mice resolves glucose 
intolerance and hepatic steatosis.87

3. Excision of CERS6 from the whole body, liver, or brown adipose tissue of mice improves 
insulin sensitivity and resolves hepatic steatosis.9,10,12

4. Excision of CERS1 from skeletal muscle of mice resolves insulin resistance.13

5. Excision of DES1 from whole body, adipose tissue, or the liver of mice resolves insulin 
resistance and hepatic steatosis.2

6. Fenretinide, an inhibitor of DES1, resolves insulin resistance and hepatic steatosis.88

These data strongly suggest that ceramides, through the mechanisms described earlier, drive 
the key features of metabolic syndrome and pre-diabetes.

Stage 2: lipoaptosis and fibrosis
This perfect storm of insulin resistance and hepatic steatosis exacerbates the hyperlipidemia 
that is associated with obesity, leading to additional delivery of fatty acids to tissues not suited 
for fat storage. As ceramides continue to accrue, they cause irreversible damage resulting from 
the initiation of apoptosis and fibrosis. This leads to hepatosteatosis, type 2 diabetes, and renal 
and heart failure. Indeed, inhibition of SPT has been shown to reverse type 2 diabetes70,89 and 
heart failure.90,91 Though additional work is needed, the induction of apoptosis and fibrosis by 
ceramides appears to be a key component of cardiometabolic disease.

THERAPEUTIC TARGETS WITHIN THE CERAMIDE 
BIOSYNTHESIS PATHWAY
Inhibition of ceramide synthesis thus holds enormous potential to combat the metabolic 
diseases associated with obesity including non-alcoholic fatty liver disease/non-alcoholic 
steatohepatitis, type 2 diabetes, coronary artery disease, and heart failure. Two enzymes have 
emerged as particularly intriguing therapeutic targets that show an intriguing combination 
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diabetes, cardiomyopathy, coronary artery disease, hypertension, and heart failure. 
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of efficacy and potential safety. 1) Knockout or knockdown of CERS6 ameliorates most 
metabolic complications of obesity, as it depletes the C16-ceramides that drive the insulin 
resistance and hepatic steatosis. Researchers at Evotec (Hamburg, Germany) and Sanofi-
Aventis (Paris, France) used anti-sense oligonucleotides to target the gene in the livers 
of mice, finding that it recapitulated the effects of gene ablation.9 The authors of this 
manuscript recommended that such an isoform selective targeting approach should be 
sufficient to ameliorate insulin resistance and hepatic steatosis. Similarly, 2) we collaborated 
with Merck Research Laboratories (Kenilworth, NJ, USA) to interrogate the therapeutic 
efficacy of inhibiting DES1 activity, and thus producing a higher percentage of ceramides 
that lack the double bond that is critical ceramide action. Delivery of short hairpins targeting 
the Degs1 transcript recapitulated the beneficial effects of gene depletion, restoring insulin 
sensitivity and resolving fatty liver disease.2 Therapeutics targeting these enzymes hold 
enormous potential as a means of combating a broad spectrum of cardiometabolic disorders.

SUMMARY

We surmise that ceramides initiate actions that relieve the cell of an acute FFA burden, 
inhibiting glucose utilization and enhance triglyceride deposition. This theory provides 
a unifying framework for understanding the role of ceramides in the development of 
cardiometabolic disease. While these ceramide actions at some point served a protective 
role for organism survival, they now present an incredible burden to humans, as they drive 
the “selective” insulin resistance that is a hallmark of cardiometabolic disease. Therapeutic 
approaches targeting ceramide production thus holds great promise for treating a broad 
spectrum of diseases associated with obesity.
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