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1  | INTRODUC TION

1.1 | Rationale

This paper investigates the impact of spatial training on spatial 
skills that have been specifically trained (near transfer), non‐trained 

spatial skills (intermediate transfer) and mathematics skills (far 
transfer). That spatial training interventions can improve math‐
ematical ability in children is supported by evidence that spatial 
ability is malleable, and that there are significant associations be‐
tween mathematics and spatial skills in childhood populations. In a 
meta‐analysis of 217 studies, Uttal et al. (2013) reported an effect 
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Abstract
There is evidence that spatial thinking is malleable, and that spatial and mathemati‐
cal skills are associated (Mix et al. [2016] Journal of Experimental Psychology: General, 
145, 1206; Mix et al. [2017] Journal of Cognition and Development, 18, 465; Uttal et 
al. [2013] Psychological Bulletin, 139, 352). However, few studies have investigated 
transfer of spatial training gains to mathematics outcomes in children, and no known 
studies have compared different modes of spatial instruction (explicit vs. implicit in‐
struction). Based on a sample of 250 participants, this study compared the effective‐
ness of explicit and implicit spatial instruction in eliciting near transfer (to the specific 
spatial skills trained), intermediate transfer (to untrained spatial skills) and far transfer 
(to mathematics domains) at age 8. Spatial scaling and mental rotation skills were 
chosen as training targets as previous studies have found, and proposed explana‐
tions for, associations between these skills and mathematics in children of this age 
(Journal of Experimental Psychology: General, 145, 2016 and 1206). In this study, spatial 
training led to near, intermediate and far transfer of gains. Mental visualization and 
proportional reasoning were proposed to explain far transfer from mental rotation 
and spatial scaling skills respectively. For most outcomes, except for geometry, there 
was no difference in the effectiveness of implicit (practice with feedback) compared 
to explicit instruction (instructional videos). From a theoretical perspective, the study 
identified a specific causal effect of spatial skills on mathematics skills in children. 
Practically, the results also highlight the potential of instructional videos as a method 
of introducing spatial thinking into the classroom.
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size of almost one half a standard deviation for training stud‐
ies that compared spatial training to control conditions (Hedges 
G = 0.47). The effect size increased to 0.61 (Hedges G) when the 
analysis was limited to studies of children under 13 years, demon‐
strating the particular malleability of spatial thinking in childhood 
(N = 53 studies). Note that similarly to Cohen's d, Hedges G values 
of 0.2, 0.5 and 0.8 correspond to small, medium and large effects 
respectively (Cohen, 1988). There is also convincing evidence that 
spatial and mathematical thinking are associated longitudinally in 
childhood. For example, spatial thinking measured using the Test 
of Spatial Assembly [TOSA]) at 3 years predicts 27% of the vari‐
ation in mathematics problem solving at 5  years (Verdine et al., 
2014), and pattern construction skills at 5 years explain approxi‐
mately 9% of the variation in mathematics performance at 7 years 
(Gilligan, Flouri, & Farran, 2017).

However, the literature does not support a simple linear cou‐
pling between all aspects of spatial and mathematical cognition 
(Fias & Bonato, 2018). There is evidence that spatial‐mathemati‐
cal relations are specific to certain spatial and mathematics tasks 
and that these relations may differ across development. Gilligan, 
Hodgkiss, Thomas, and Farran (2018) measured the relationship 
between four different spatial sub‐domains and mathematics. 
They found that spatial scaling (or the ability to transform distance 
information from one representation to another representation 
of a different size; Frick & Newcombe, 2012) was the strongest 
spatial predictor of standardized mathematics performance in 
6–10 year olds when compared to perspective taking, disembed‐
ding and mental rotation. Mental rotation had an age‐dependent 
role for 6–8 year olds only (Gilligan et al., 2018). Similar age‐de‐
pendent findings were reported by Mix et al. (2016, 2017) who 
found that mental rotation was a significant predictor of math‐
ematics performance at 6 and 9 years but not at 11 years. Frick 
(2019) also reported that, in comparison to other spatial skills (di‐
agrammatic representation, cross‐sectioning, mental transforma‐
tion and perspective taking), spatial scaling and mental rotation at 
6.5 years explained at least 24% of the variation in mathematics 
performance at 8.5 years. This included both arithmetic items and 
items assessing numeric‐logical and spatial functions (e.g. number 
sequences, counting magnitudes, counting cubes, estimating line 
lengths; Frick, 2019). Taken together, the selection of spatial sub‐
domains for training studies should reflect the facts that (a) not all 
spatial skills are equally associated with all mathematics outcomes 
and (b) spatial‐mathematical associations are developmentally 
sensitive.

Mental rotation and spatial scaling were targeted for training 
in this study. As outlined, these skills have previously been asso‐
ciated with mathematics achievement in children aged 6–9  years. 
Furthermore, underlying cognitive mechanisms have been proposed 
that may explain associations between these spatial skills and math‐
ematics outcomes (e.g. Gilligan et al., 2018; Mix et al., 2016, 2017). 
These proposed underlying mechanisms influenced not only the 
selection of training targets, but also the selection of mathematics 
measures for inclusion in this study. Specifically, mental rotation is 

proposed to elicit active processing, including mental visualization 
and manipulation of objects (Lourenco, Cheung, & Aulet, 2018; Mix 
et al., 2016). Thus, mental rotation training may have benefits for 
mathematics tasks requiring the mental manipulation or organiza‐
tion of numbers, for example, complex mathematical word problems 
or multidigit calculations (Lourenco et al., 2018). Missing term prob‐
lems were included in the task battery of this study as mathematics 
tasks of this type require mental manipulation of numbers. In con‐
trast, spatial scaling is proposed to elicit intensive quantification 
skills (proportional reasoning). Thus, spatial scaling training may im‐
prove performance on mathematics tasks that require proportional 
reasoning, for example, number line estimation and geometry per‐
formance (Newcombe, Levine, & Mix, 2015; Newcombe, Möhring, 
& Frick, 2018; Rouder & Geary, 2014). For this reason, both number 
line and Geometry Tasks were included in the task battery of this 
study.

This study included participants aged approximately 8 years. As 
outlined above, there is evidence of significant spatial‐mathematics 
relations at this age. Furthermore, as described in the next section, 
this age range overlapped with other spatial training studies that 
investigated transfer of gains to mathematics (Cheng & Mix, 2014; 
Hawes, Moss, Caswell, & Poliszczuk, 2015). Thus, the inclusion of 
participants aged 8 years allowed for meaningful comparisons be‐
tween this, and previous studies. Additionally, children of this age 
were deemed old enough for independent computer‐based training.

1.2 | Evidence of transfer of spatial training gains to 
mathematics

Spatial interventions that integrate spatial thinking into mathemati‐
cal instruction report gains in both spatial (near and intermediate 
transfer) and mathematical outcomes (far transfer; Hawes, Moss, 
Caswell, Naqvi, & MacKinnon, 2017; Lowrie, Logan, & Ramful, 
2017). However, these studies cannot offer insight into the underly‐
ing causal relationship between spatial and mathematical domains, 
as it is not possible to disentangle the impact of the spatial, and 

Research Highlights
•	 Both explicit instruction (instructional videos) and implicit 

instruction (task practice with feedback) elicited gains in 
spatial performance at 8 years.

•	 Training spatial skills led to near, intermediate and far 
transfer of gains, even after controlling for expectation 
and engagement effects.

•	 Mental visualization and proportional reasoning were 
proposed to explain far transfer from mental rotation and 
spatial scaling skills, to mathematics respectively.

•	 The transfer of spatial training gains from spatial to math‐
ematics sub‐domains provides evidence for a causal influ‐
ence of spatial thinking on mathematics performance.
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mathematical aspects of training respectively. Few studies have 
investigated transfer of gains from spatial training (with no mathe‐
matical component) to mathematics. Cheng and Mix (2014) reported 
significant gains in mental rotation (near transfer) and mathematical 
calculation (far transfer) following 40‐min of mental rotation training 
in 6–8 year olds, compared to a control group. Gains were specific 
to missing term arithmetic problems, for example, 4 + __ = 9. In a 
similar mental rotation training study of 6–8 year olds, Hawes et al. 
(2015) failed to replicate these findings with respect to far transfer. 
Improvements in mental rotation (near transfer) and mental trans‐
formation (intermediate transfer) were reported for the training 
group who completed 15 sessions of computerized mental rotation 
training, compared to controls. However, no improvements in math‐
ematics skills including non‐verbal arithmetic or missing term arith‐
metic problems were found for either group (Hawes et al., 2015).

These differing results may be explained by several factors. 
First, Cheng and Mix (2014) delivered training in small groups (3–4 
children) supervised by a researcher, while Hawes et al. (2015) ad‐
ministered classroom (group) training without direct supervision. 
Without the supervision of a researcher, reduced engagement 
with training may have contributed to the results of the Hawes et 
al. (2015) study. Second, post‐testing was delivered immediately 
following training by Cheng and Mix (2014), while Hawes et al. 
(2015) delivered post‐testing 1 week after training. Thus, caution 
must be taken in assuming that the gains reported by Cheng and 
Mix (2014) are durable. Third, the training method differed be‐
tween the two studies. Implicit instruction was used by Hawes 
et al. (2015). Points were awarded for correct trials, but no in‐
structions were given to explain correct (or incorrect) answers. In 
contrast, Cheng and Mix (2014) used explicit instruction, by giving 
participants physical manipulatives (mirroring those included in 
the onscreen trials) and instructing them to move the shapes to 
check their answers.

Differences in the training modes used in the above two stud‐
ies reflect a broader distinction between explicit and implicit in‐
struction types. In this study, implicit instruction is defined as 
instruction in which students are not aware of learning and use 
their experiences to construct an understanding. In contrast, for 
explicit instruction, the instructor plays a key role in explaining 
concepts to students and the student is aware of the skill or knowl‐
edge being taught. While there is mixed evidence regarding the 
effectiveness of explicit and implicit instruction in learning more 
generally (Kirschner, Sweller, & Clark, 2006), to our knowledge, no 
spatial training studies compare the efficacy of implicit and explicit 
instruction. Most studies of children have demonstrated the ef‐
fectiveness of spatial training using implicit training, for example 
where participants complete task practice with feedback (Uttal et 
al., 2013). Instructional videos are one tool that can be used to de‐
liver explicit instruction. There is evidence that viewing an instruc‐
tional video of successful task completion can improve subsequent 
performance in number line estimation and spatial cross‐section‐
ing in adults (Cohen & Hegarty, 2014; Gallagher‐Mitchell, Simms, 
& Litchfield, 2018). The success of instructional videos may be 

attributable to observational learning (Castro‐Alonso, Ayres, & 
Paas, 2014; Paas & Sweller, 2012). In particular, for spatial think‐
ing, instructional videos may activate the mirror neuron system 
as individuals imagine movements (Rizzolatti & Sinigaglia, 2010; 
Tettamanti et al., 2005). From a practical perspective, instruc‐
tional videos could offer a novel, practical method of introducing 
spatial thinking into the classroom. To maximize the consistency 
of explicit instruction in this study, instructional videos were used. 
However, explicit instruction delivered by an individual, for exam‐
ple, a teacher or other expert, may have differing results and is not 
explored in this study.

Another factor that is not often considered in training studies, but 
that is controlled for in the current study, is the role of motivational fac‐
tors. First, expectation (placebo) effects occur when the expectation 
that training will be effective induces cognitive gains, independently 
from the training content (Green et al., 2019). The placebo effect is 
well documented in medical domains with some limited evidence that 
expectation effects play a role in cognitive psychology studies (Dweck, 
2000; Foroughi, Monfort, Paczynski, McKnight, & Greenwood, 2016; 
Jaeggi, Buschkuehl, Shah, & Jonides, 2014). By controlling for expecta‐
tion effects, the causal inferences made in this cognitive training study 
are enhanced (Boot, Simons, Stothart, & Stutts, 2013). The degree to 
which participants engage with training is also proposed to impact 
training outcomes. For example, differences in participant engagement 
may explain the contrasting findings reported by Cheng and Mix (2014) 
and Hawes et al. (2015). In adult studies, those who show higher levels 
of engagement with cognitive training exhibit larger gains (Jaeggi et 
al., 2014). By controlling for participant engagement, the rigour of this 
study is substantially stronger, as it was possible to determine the ex‐
tent to which cognitive training gains are attributable to training, over 
and above differences in participant engagement.

1.3 | Current study

This study compared explicit and implicit instruction methods as 
means of training spatial skills in children aged 8 years and explored 
transfer of spatial training gains to other spatial and mathematics 
domains. Explicit instruction was delivered using instructional vid‐
eos which were designed for use in this study. The choice of spatial 
scaling and mental rotation as spatial training targets was supported 
by both theoretical and behavioural evidence. The effectiveness of 
the intervention was assessed in the context of near, intermediate 
and far transfer of gains. A further original aspect of this study is that 
motivational factors including engagement with, and expectations 
of spatial training were controlled for.

2  | METHODS

2.1 | Participants

The sample size for this study was determined using GPower. The 
power analysis was based on the largest analysis completed in this 
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study (3 × 2 × 2 ANOVA). To achieve power of 0.8, with a medium 
effect size (f  =  0.25), power analysis indicated that a minimum of 
158 participants were required. As the study design included data 
collection at two‐time points, it was anticipated that there would be 
some participant drop‐off between Time 1 and Time 2. Therefore, 
the sample size was increased to account for possible attrition of 
the sample. Participants were 250 children from six primary schools 
across London, UK. All participants were in Year 3 (Mage = 8.09 years, 
SD = 0.41 years). The overall proportion of males (48%) and females 
(52%) was approximately equal. Participant demographics across 
training groups are shown in Table 1.

2.2 | Study design

As shown in Figure 1, this study used a randomized, controlled, 
pre‐post training design. All participants completed an identical bat‐
tery of tasks 1‐week pre‐training ± 1 day (Time 1), and immediately 
(within 5  min) post‐training (Time 2). All tasks and training proce‐
dures were computer‐based and were delivered using Gorilla soft‐
ware (www.goril​la.sc). Participants completed testing in their school 
IT suites in groups of 6–8 participants supervised by at least one (but 
typically two) researchers. All task instructions were incorporated 
into the Gorilla software and were presented to participants using 
earphones. Participants moved through the task battery at their 

own pace. Data collection was completed over a 7‐month period 
(April–October).

2.3 | Training procedures

Training groups differed by training mode (explicit vs. implicit) and 
training type (mental rotation vs. spatial scaling vs. control). For 
both implicit and explicit instruction, training lasted between 3 and 
4 min. For implicit instruction, the length of training was dependent 
on participants' performance (i.e. the speed taken to complete the 
items). For some participants in the implicit instruction group, train‐
ing lasted up to 6 min.

This combination of two possible training modes and three 
possible training types led to six groups. Participants were ran‐
domly assigned to a group immediately preceding training (see 
Table 1). Allocation was completed using the balanced random‐
ization function on the Gorilla software. The total number of 
predicted participants was entered into the software before 
data collection (N  =  240). As this study has six training groups, 
a ratio of 40:40:40:40:40:40 participants in each group was as‐
sumed. Assignment using balanced randomization in Gorilla is 
like a weighted dice roll. This means that the first participant to 
complete the study had a 40/240 chance of being assigned to 
each group. However, if for example participant 1 was assigned 

Training type Training mode N Gender (% female) Age (mean ± SD)

Mental rotation Explicit 44 45.5 8.011 ± 0.438

Implicit 42 59.5 8.052 ± 0.306

Spatial scaling Explicit 41 51.2 8.151 ± 0.321

Implicit 43 48.8 8.047 ± 0.474

Control Explicit 41 53.7 7.942 ± 0.446

Implicit 39 51.3 8.344 ± 0.291

TA B L E  1   Demographic information 
across training groups

F I G U R E  1   Overview of the study 
design

Task Ba�ery 
(randomised task 

order)

Explicit Mental 
Rota�on Training 

Implicit Mental 
Rota�on Training 

Explicit Spa�al 
Scaling Training 

Implicit Spa�al 
Scaling Training 

Explicit Control 
Training 

Implicit Control 
Training 

(randomised task 
order) 

Random 
assignment to 

Group 

Task Ba�ery 

1 Week later

5 minutes later

• Mental Rota�on Task
• Spa�al Scaling Task 
• Missing Term Problems 
• Number Line Es�ma�on Task
• Geometry Task

• Mental Rota�on Task
• Spa�al Scaling Task 
• Missing Term Problems 
• Number Line Es�ma�on Task
• Geometry Task

Engagement Measure

Expecta�on Measure

http://www.gorilla.sc
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to explicit mental rotation training, the second participant would 
have a 39/240 chance of being assigned to explicit mental rota‐
tion training and a 40/240 chance of being assigned to each of the 
other training groups. This randomization ensures approximately 
equal numbers of participants in each group. Any differences in 
group sizes are attributable to (a) data loss following group assign‐
ment; (b) additional participants being included in the study. Any 
additional participants (beyond the predicted 240) were assigned 
to groups using unbalanced randomization, that is, the probability 
that they were assigned to each group was 1/6 and was not depen‐
dent on the assignment of prior participants.

2.3.1 | Explicit training

Three of the training groups viewed instructional videos that pro‐
vided explicit task instructions. Two groups watched videos with 
spatial content, while the control group watched a video on word 
reading. The videos were designed using Vyond (www.vyond.com). 
All non‐training content was uniform across videos, for example, 
the characters, storyline and narration. The videos can be accessed 
using the links provided below. Group 1 viewed the instructional 
mental rotation video. Participants in this group were given a de‐
scription and viewed eight examples of mental rotation (see Figure 2 
for a screenshot). For more details go to https​://youtu.be/18iyR​svt‐
GAQ. Group 2 viewed the instructional scaling video, in which a de‐
scription of spatial scaling, and eight examples of spatial scaling were 
shown (see Figure 3). For more details go to https​://youtu.be/grhxF​
Eqgz51. For Group 3, the control video was shown. Participants 
watched eight examples of word‐picture matching, in which the 
onscreen characters selected the correct picture to match a given 
word (see Figure 4). Participants allocated to this control group did 
not view any spatial‐related content. For more details go to https​://
youtu.be/qDmgR​R2RLyE.

2.3.2 | Implicit training

The three implicit training groups completed task practice with 
computer‐based feedback. For each trial, participants were shown 
an onscreen tick or cross indicating the accuracy of their response. 

For incorrect trials, participants were given the opportunity to re‐
peat the trial until they had selected the correct answer (all tasks 
had two possible response options). Participants were not given 
any explicit instruction on how to complete the trials. Participants 
moved to the next trial when the correct response was selected. 
For implicit training, two groups completed spatial tasks (the same 
tasks presented at Time 1), while a control group completed a word 
reading task. The number of trials included in implicit training was 
determined as the approximate number of trials that could be com‐
pleted in the same length of time as the explicit instruction. This 
was established through piloting. Group 4 completed implicit mental 
rotation training and were presented with 30 trials of the Mental 
Rotation Task with feedback (further details of this task are outlined 
below). Group 5 completed implicit scaling training comprising of 24 
trials of the Spatial Scaling Task (further details of this task can be 
found below). Feedback was given for each trial. Group 6 completed 
implicit control training. These participants completed 30 trials of 
a Word‐Picture Matching Task in which they were asked to match 
a word to one of two pictures using labelled keys on the keyboard 
(see Figure 5). This was a reading task requiring minimal spatial skills. 
Feedback was provided.

F I G U R E  2  Screenshot taken from the instructional video of 
mental rotation (explicit instruction)

F I G U R E  3  Screenshot taken from the instructional video of 
spatial scaling (explicit instruction)

F I G U R E  4  Screenshot taken from the control instructional 
video (explicit instruction)

http://www.vyond.com
https://youtu.be/18iyRsvtGAQ
https://youtu.be/18iyRsvtGAQ
https://youtu.be/grhxFEqgz51
https://youtu.be/grhxFEqgz51
https://youtu.be/qDmgRR2RLyE
https://youtu.be/qDmgRR2RLyE
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2.4 | Task battery

The task battery included two spatial measures, assessing men‐
tal rotation and spatial scaling respectively. These measures were 

included as potential targets of near transfer (spatial tasks trained 
on) and of intermediate transfer (untrained spatial tasks). Three 
mathematics measures were included in the task battery as poten‐
tial targets for far transfer (missing term problems, a Number Line 
Estimation Task and a Geometry Task). The order of task presen‐
tation was randomized across participants at both time points. To 
assess the role of motivational factors, two participant engagement 
measures were also administered.

2.4.1 | Mental Rotation Task

In each trial of the Mental Rotation Task participants were required 
to identify which of two animal images located above a horizontal 
line matched the target image below the line. As shown in Figure 6, 
the images above the line included a mirror image of the target image, 
and a version of the target image rotated by a fixed degree from the 
target image. Participants used labelled keys on the computer key‐
board to respond. Trials were separated by a fixation dot displayed 
for 500 ms. The task stimuli were taken from Neuburger, Jansen, 
Heil, and Quaiser‐Pohl (2011). Participants completed four practice 
trials at 0° where feedback was provided. Only participants achiev‐
ing at least 50% in the practice trials continued to the 40 experimen‐
tal trials. No feedback was given for experimental trials at Time 1 or 
Time 2. The experimental trials included equal numbers of clockwise 
and anti‐clockwise rotations at 45°, 90° and 135° (eight trials for 
each degree of rotation), and eight trials at 180° and 0°. The order of 
trial presentation was randomized for each participant. Percentage 
accuracy was recorded.

2.4.2 | Spatial Scaling Task

The Spatial Scaling Task was modified from Möhring, Newcombe, 
and Frick (2016). In each trial participants were shown two 2D im‐
ages of a circular space (a farmer's field) containing a target (an egg). 
Participants were asked to identify whether the eggs in the two fields 
were in the same position or in different positions (see Figure 7). For 
half of the trials, the targets were presented in the same position in 
both fields (match trials). For the remaining trials, the position of the 

F I G U R E  5  Sample trial from control training (implicit 
instruction)

F I G U R E  6  Sample stimulus from the Mental Rotation Task (45° 
anti‐clockwise trial)

F I G U R E  7  Sample mismatch trial at a 
scaling factor of 0.875 from the Spatial 
Scaling Task (taken from Möhring et al., 
2016)
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target in one field was adjusted by 2 cm (to the left or right) relative 
to the second field (mismatch trials). Participants responded using 
labelled keys on the computer keyboard. All trials were separated 
by a fixation dot displayed for 500 ms. Participants completed six 
practice trials during which feedback was given and no time limit was 
imposed. Only participants achieving at least 50% in the practice tri‐
als continued to the experimental trials. The 72 randomly experi‐
mental trials were presented randomly. Each trial was displayed for 
5 s. No feedback was given for experimental trials at Time 1 or Time 
2. Experimental trials differed by the location of the target on the 
horizontal axis, and by scaling factor. Six different target positions 
were included (a modification from the original study where 15 posi‐
tions were used). Scaling factor was manipulated by keeping the size 
of one space constant while manipulating the size of the second. In 
this way six scaling factors were included (1, 0.875, 0.75, 0.625, 0.5, 
0.375). Performance was measured as percentage accuracy.

2.4.3 | Missing term problems

The missing term problems included in this study were modified 
from Hawes et al. (2015). For each item participants were required 
to complete the missing number(s) in a simple mathematical equa‐
tion (see Figure 8). This task included two practice items where 
the solutions were shown after participants submitted an answer. 
Following this, 21 test items were displayed. No solutions were 
shown for these items. Test items included the original 18 items 
from Hawes et al. (2015) and three additional, low‐difficulty items 
that were added to the task after piloting to alleviate floor effects. 
Items were presented in order of increasing difficulty and a time 
limit of 25 s was allocated to each test item. Approximately equal 
numbers of addition versus subtraction items, and single versus 
multi‐digit numbers were included. The position of the missing 
box was also balanced across items. Performance accuracy was 
recorded.

2.4.4 | Number Line Estimation Task

The Number Line Estimation Task was used to measure numeri‐
cal representations. The method was adapted from Siegler and 
Opfer (2003). As shown in Figure 9, for each item participants 
were presented with a target number and were asked to estimate 

its location on a 0–100 number line by using the mouse cursor 
to click the number line at their selected location. For practice 
items (N  =  2) solutions were shown onscreen after participants 
attempted an answer. No solutions were given for experimental 
items (N = 30). The target numbers included in the task were taken 
from Gallagher‐Mitchell, Romero‐Rivas, Rodriguez‐Cuadrado, and 
Dackermann, (2017). The order of experimental items was rand‐
omized. Performance was measured as percentage absolute error 
(PAE) and as logarithmic response patterns (R2

LOG; Simms, Clayton, 
Cragg, Gilmore, & Johnson, 2016). PAE is the numerical distance 
from a participant's answer to the correct answer, divided by the 
length of the number line. This measure reflects the accuracy of 
participants' estimates. For each participant, linear (R2

LIN) and 
logarithmic (R2

LOG) response patterns were also calculated using 
curve estimation. Curve estimation is based on the correlation be‐
tween participants' estimates and the target numbers. The prox‐
imity of R2

LIN and R2
LOG scores to the value of 1 is an indicator of 

how well a participant's estimates reflect a linear or logarithmic 
pattern respectively.

2.4.5 | Geometry Task

The Geometry Task was designed for this study based on the statu‐
tory geometry learning requirements for Year 2 students in the UK 
(Department of Education, 2013). The task included two item types, 
Shape Items and Symmetry Items. For Geometry Shape Items, par‐
ticipants were shown an image of a shape and were asked to select 
the correct number of sides (or faces) on the shape from four possi‐
ble response options (see Figure 10). Participants completed a single 
practice item using a 2‐D shape on which they were given feedback. 
All participants successfully completed this item. Geometry Shape 

F I G U R E  8  Sample missing term problem

F I G U R E  9  Sample item from the Number Line Estimation Task

F I G U R E  1 0  Sample 3‐D shape item from the Geometry Task
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Items differed in the dimensionality of the images shown and in‐
cluded six 2‐D shapes and six 3‐D shapes. Performance was meas‐
ured as accuracy across all items.

For each Geometry Symmetry Item, a target shape was displayed 
on screen and participants were asked to select which of four possi‐
ble response options was the mirror image of the target shape (see 
Figure 11). Participants completed a single practice trial in which they 
received feedback. Ten experimental Symmetry Items were presented 
in a randomized order. For each item, the distractor images included a 
match error, a shape error and a symmetry error (see Figure 11). For 
match errors, the distractor was identical in both shape and position to 
the target shape (a). For shape errors, the distractor was in the correct 
position, however the shape was not a mirror of the target image, but 
another similar shape (b). Finally, for symmetry errors the distractor 
was the correct shape however the position of the distractor was not 
an accurate mirror image (c). Performance accuracy was recorded.

2.4.6 | Expectations of the effectiveness of training

Prior to the delivery of training, all participants were asked a sin‐
gle question, measuring their expectations of the effectiveness of 
training, ‘We are going to be playing some games. How much do you 
think the games will help you with your maths?’. The question was 

displayed alongside an onscreen scale (see Figure 12). Participants 
responded by selecting a point on the scale using the mouse cursor. 
Participant's responses were coded as 1–12 based on the onscreen 
position selected. A score of 1 was allocated for responses that indi‐
cated low expectations of training while a score of 12 was allocated 
for responses that indicated high expectations of training.

2.4.7 | Participant Engagement Questionnaire

A participant engagement questionnaire was delivered to assess par‐
ticipant's enjoyment of and engagement with the training that they 

F I G U R E  11  Sample Geometry 
Symmetry Item showing a match error (a), 
a shape error (b), a symmetry error (c) and 
the correct answer (d)

F I G U R E  1 2   Response scale 
for measuring expectations of the 
effectiveness of training

TA B L E  2   Items included in the Participant Engagement 
Questionnaire

Item Explicit training Implicit training

1 How much did you enjoy 
the video?

How much did you 
enjoy the game?

2 How exciting was the 
video?

How exciting was the 
game?

3 How easy was it to under‐
stand the video?

How easy was it to un‐
derstand the game?

4 How much effort did it 
take to watch the video?

How much effort did it 
take to play the game?
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had received. The questionnaire was designed for use in this study. 
As shown in Table 2, the questionnaire included four questions, the 
phrasing of which varied slightly based on the type of training deliv‐
ered. Each question was presented alongside an onscreen scale (for 
an example see Figure 13). Participants responded to each question 
by selecting a point on the scale using the mouse cursor. Participant's 
responses were coded as 1–12 based on the onscreen position se‐
lected. A score of 1 was allocated for responses that indicated low 
engagement while a score of 12 was allocated for responses that 
indicated high engagement. Participants were awarded an overall 
engagement score, an average of their scores across all four ques‐
tions (where necessary items were reverse coded).

2.5 | Exclusion criteria

Due to technical errors and school disruptions, data for a single 
task was lost for nine participants at Time 1 and 15 participants 
at Time 2. These participants were excluded from training analysis 
for the task on which they were missing data. Furthermore, par‐
ticipants scoring higher than 95% on a given task at Time 1, were 
deemed to have reached “ceiling level” performance on the task 
and were excluded from training analysis for that task only. For 
missing term problems and Number Line Estimation, responses 
were open ended. For missing term problems, participants who did 

not score higher than 10% at Time 1, were not deemed to under‐
stand the task aims and were excluded (n = 14). For Number Line 
Estimation participants who didn't attempt at least 75% of items, 
or participants with a mean PAE score higher than 15% for prac‐
tice items were also excluded (n  =  0). Parametric analyses were 
used as all groups were large enough (N > 30) for the central limit 
theorem to apply (Field, 2013).

3  | RESULTS

3.1 | Performance at Time 1

3.1.1 | Overall performance at Time 1

No ceiling or floor effects were present for any measures (Table 3). 
Descriptive information for performance on each of the tasks, 
across groups is shown in Table 6. For the Geometry Task, the 
results of a dependent t test indicated a significant difference 
in performance between Geometry Shape Items (63.73  ±  1.05) 
and Geometry Symmetry Items (54.36  ±  2.08), t(1, 249)  =  4.34, 
p  <  .001, d  =  0.295. Furthermore, while a Pearson's correlation 
indicated a significant association between the different item 
types, r(248) = .178, p = .005, the correlation was small to medium 
in size, that is, between .1 and .3 (Field, 2013). Hence, Geometry 

F I G U R E  1 3  Sample scale from the 
Participant Engagement Questionnaire

Measure

Descriptive Statistics

Mean SE SD Min Max

Mental rotation 59.00 0.99 15.64 25.00 100.00

Spatial scaling 54.00 0.54 8.54 23.61 79.17

Missing box problems 56.42 1.56 24.68 0.00 100.00

Number line PAE 0.10 0.01 0.06 0.03 0.30

Number line R2
LIN 0.93 0.01 0.08 0.63 1.00

Geometry Shape Items 63.73 1.05 16.54 16.67 100.00

Geometry Symmetry 
Items

54.36 2.08 32.94 0 100.00

Expectations (mean rating 
0–12)

9.47 0.23 3.64 0 12.00

Note: For this and all other analysis, unless otherwise stated all results reported are percentage 
correct scores.

TA B L E  3   Descriptive statistics at Time 1
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Symmetry Items and Geometry Shape Items are considered sepa‐
rately throughout. For Number Line Estimation, 74% of partici‐
pants had estimates that were best described by a linear (compared 
to a logarithmic) response pattern.

3.1.2 | Gender differences in task performance at 
Time 1

Independent T tests (controlling for multiple comparisons 
[0.05/8 = 0.006]) were used to explore gender differences in per‐
formance at Time 1. Where homogeneity of variance could not be 
assumed, the results for unequal variances were reported. As shown 
in Table 4, males had significantly lower error scores on the Number 
Line Estimation Task compared to females, t(148) = 3.15, p = .002, 
d  =  0.401. No other significant gender differences were reported 
(ps > .05, ds < 0.261). Thus, gender was included as a control vari‐
able when investigating the effects of training on the Number Line 
Estimation Task only.

3.1.3 | Differences in task performance across 
training groups at Time 1

To confirm that there were no performance differences between 
groups at Time 1, a two‐way ANOVA was completed for each task. 
Training mode (2 levels: explicit vs. implicit) and training type (3 lev‐
els: mental rotation vs. spatial scaling vs. reading) were included as 
between participant variables. Comparing across training types and 
training modes, no significant differences in performance were re‐
ported for any of the mathematics or spatial tasks (p > .05, �2

p
 < 0.010; 

see Table 6). Similarly, there were no differences in expectations of 
training across training modes, F(1, 244) = 3.25, p = .072, �2

p
 = 0.013, 

or training types, F(2, 244) = 0.27, p = .763, �2
p
 = 0.002.

3.1.4 | Associations between measures at Time 1

Pearson correlations were completed between measures at Time 
1. This allowed for the investigation of whether the observed 

TA B L E  4   Gender differences in task performance at Time 1

Test measure

Gender Statistics

Male (n = 121) Female (n = 129)

Test statistic (t) Effect size (d)Mean SD Mean SD

Mental rotation 60.382 16.053 57.761 15.194 0.742 0.094

Spatial scaling 54.764 7.533 53.284 9.359 1.372 0.174

Missing term problems 59.708 24.573 53.341 24.471 2.052 0.261

Number line estimation R2
LIN 0.093 0.051 0.115 0.062 1.435 0.182

Number line estimation PAE 0.938 0.073 0.924 0.084 3.154*  0.401

Geometry Shape Items 62.810 15.592 64.596 17.390 0.853 0.108

Geometry Symmetry Items 53.554 33.834 55.116 32.189 0.374 0.047

Expectations 9.126 3.864 9.791 3.390 1.449 0.184

*p < .05. 

TA B L E  5  Bivariate correlations between tasks at Time 1

 

Spatial tasks Mathematics tasks Expectations

1 2 3 4 5 6 7 8

1. Mental rotation — 0.275***  0.293***  −0.213***  0.247***  0.092 0.227***  0.057

2. Spatial scaling   — 0.345***  −0.304***  0.333***  0.160*  0.258***  0.037

3. Missing box 
problems

    — −0.492***  0.531***  0.303***  0.421***  −0.021

4. Number line PAE       — −0.825***  −0.254***  −0.327***  0.014

5. Number line R2
LIN         — 0.223***  0.305***  −0.023

6. Geometry Shape 
Items

          — 0.178***  0.013

7. Geometry 
Symmetry Items

            — −0.032

8. Expectations               —

*p < .05 
***p < .001. 
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associations between spatial and mathematics skills that have been 
demonstrated in previous studies (e.g. Gilligan et al., 2018; Mix et 
al., 2016) and form the rationale for the training paradigm used in 
this study, were present. As shown in Table 5, significant correla‐
tions were reported between all tasks, except for performance on 
Geometry Shape Items which was not correlated with mental ro‐
tation accuracy, r(248) = 0.09, p =  .147. Expectations of the effec‐
tiveness of training were not correlated with performance on any 
behavioural measures.

3.2 | Performance at Time 2

Mixed ANOVAs were used to investigate training effects across 
near, intermediate, and far transfer measures (see Table 6 for a 
summary of performance scores across Time 1 and Time 2). Time 
was included as a within participant variable (Time 1 and Time 
2). Training mode (explicit vs. implicit) and training type (mental 
rotation vs. spatial scaling vs. control) were included as between 
participant variables. Where sphericity could not be assumed, 
Greenhouse‐Geisser values were reported. It is noteworthy that 
ANCOVAs with Time 2 scores as the dependent variable and Time 
1 scores as a covariate were run in parallel to these analyses. 
Comparable results were reported for all outcomes. Further de‐
tails, including comparisons between training types at Time 2, can 
be found in the Supporting Information.

3.2.1 | Near and intermediate transfer of gains

Mental rotation

A significant main effect of time was reported, with higher per‐
formance at Time 2, F(1, 237) = 21.87, p <  .001, �2

p
 = 0.084. A sig‐

nificant interaction was found between time and training type, F(2, 
237)  =  6.88, p  <  .001, �2

p
  =  0.055. As shown in Figure 14, paired 

sample t tests indicated a significant improvement in performance 
accuracy following mental rotation training, t(83) = 5.49, p <  .001, 
d  =  0.581 (near transfer) and spatial scaling training, t(79)  =  2.30, 
p = .024, d = 0.263 (intermediate transfer). No significant improve‐
ment in performance accuracy was reported following control 

training, t(78) = 0.21, p = .837, d = 0.019. No other main effects or 
interactions with time were reported (ps > .05, �2

p
s < 0.005).

Spatial scaling

A significant main effect of training type was found, with higher per‐
formance for spatial scaling training compared to the other training 
types, F(2, 232) = 8.28, p <  .001, �2

p
 = 0.067. There was also a sig‐

nificant interaction reported between time and training type, F(2, 
232)  =  6.25, p  =  .002, �2

p
  = 0.051 (see Figure 15). Paired sample t 

tests indicated significant performance gains following spatial scal‐
ing training only, t(76) = 3.99, p < .001, d = 0.450 (near transfer). No 
significant gains were reported following mental rotation training, 
t(80) = 0.04, p =  .972, d = 0.004, or control training, t(79) = 0.70, 
p = .485, d = 0.088. There were no other main effects or significant 
interactions with time (ps > .05, �2

p
s < 0.005).

3.2.2 | Far transfer of gains

Missing term problems

A significant interaction between time and training type was 
found, F(2, 209) = 4.58, p = .011, �2

p
 = 0.042 (see Figure 16). Paired 

sample t tests indicated a significant improvement in accuracy 
following mental rotation training only, t(69)  =  2.73, p  =  .008, 
d  =  0.241 (far transfer). No significant improvements were re‐
ported following spatial scaling training, t(74)  =  1.30, p  =  .197, 
d = 0.117, or control training, t(69) = 0.73, p = .466, d = 0.067. There 
were no other significant main effects or interactions with time 
(ps > .05, �2

p
s < 0.009).

Number Line Estimation

As a significant gender effect was reported for PAE scores on this 
task at Time 1, gender was included as a between participant vari‐
able. However, no significant main effect or interactions with gender 
were reported for this task (ps > .05, �2

p
s < 0.014). Hence, gender was 

removed, and the analysis was repeated. A significant main effect 
of time was reported, F(1, 237) = 5.86, p =  .016, �2

p
 = 0.024. There 

was also a significant interaction between time and training type. 

F I G U R E  1 4   Mental rotation accuracy at Time 1 and Time 2 for 
different training types (*p < .05, **p < .01, ***p < .001)
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F I G U R E  1 5  Spatial scaling accuracy at Time 1 and Time 2 for 
different training types (*p < .05, **p < .01, ***p < .001)
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As shown in Figure 17, there was a significant interaction between 
time and training type for PAE scores, F(2, 237)  =  6.05, p  =  .002, 
�
2
p
 = 0.054. Paired sample t tests indicated a significant reduction in 

error following spatial scaling training, t(79) = 2.12, p = .037, d = 0.236 
(far transfer). No significant difference in error was found following 
mental rotation training, t(82) = 1.91, p = .060, d = 0.209. However, a 
significant increase in error was reported following control training, 
t(79) = 3.01, p = .003, d = 0.330. No other main effects or significant 
interactions with time were reported (ps > .05, �2

p
s < 0.005). Similar 

analysis was completed for R2
LIN performance. The patterns of per‐

formance across time and training type were comparable to PAE 
scores. Further information is available on request.

Geometry performance

For Geometry Shape Items there were main effects of time, F(1, 
219) = 12.93, p < .001, �2

p
 = 0.056, training mode, F(1, 219) = 6.39, 

p = .012, �2
p
 = 0.028, and training type, F(2, 219) = 3.25, p = .041, 

�
2
p
 = 0.029. There was also a significant interaction between time 

and training type for Geometry Shape Items, F(2, 219)  =  3.82, 
p  =  .022, �2

p
  =  0.034 (see Figure 18). Paired sample t tests, indi‐

cated significant gains in performance accuracy following mental 
rotation training, t(75)  =  2.93, p  =  .004, d  =  0.308 (far transfer), 

and spatial scaling training, t(75)  =  3.70 p  <  .001, d  =  0.314 (far 
transfer). There were no significant gains following control train‐
ing, t(72) = 0.21, p = .833, d = 0.024. There was also a significant 
interaction between time and training mode for Geometry Shape 
Items, F(1, 219) = 5.95, p = .016, �2

p
 = 0.026 (see Figure 19). There 

was a significant improvement in performance following implicit 
training, t(104) = 4.41, p < .001, d = 0.351, but not explicit training, 
t(116) = 0.85, p = .395, d = 0.069. No significant three‐way interac‐
tion between time, training mode and training type was reported 
F(2, 219)  =  1.60, p  =  .204, �2

p
  =  0.014. For Geometry Symmetry 

Items, all groups had improved performance between Time 1 and 
Time 2, F(1, 213)  =  40.30, p  <  .001, �2

p
  =  0.159. However, there 

were no other main effects or significant interactions with time 
(ps > .05, �2

p
s < 0.013).

3.2.3 | Motivational factors

Expectations of training

An ANOVA was completed with training mode and training type 
as between participant variables and expectations of training as 
the dependent variable. There were no significant differences in 
self‐reported expectations of training across training modes, F(1, 
244) = 3.25, p = .072, �2

p
 = 0.013, or training types, F(2, 244) = 0.27, 

p = .763, �2
p
 = 0.002. ANCOVAs were also used to explore whether in‐

dividual participant gains on each outcome measure were predicted 

F I G U R E  1 6  Percentage correct on missing term problems at 
Time 1 and Time 2 for different training types (*p < .05, **p < .01, 
***p < .001)
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F I G U R E  1 7  Percentage absolute error (PAE) on the Number 
Line Estimation Task at Time 1 and Time 2 for different training 
types (*p < .05, **p < .01, ***p < .001)
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F I G U R E  1 8  Accuracy on Geometry Shape Items at Time 1 and 
Time 2 for different training types (*p < .05, **p < .01, ***p < .001)
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F I G U R E  1 9  Accuracy on Geometry Shape Items at Time 1 and 
Time 2 for different training modes (*p < .05, **p < .01, ***p < .001)
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by expectations of training. A separate ANCOVA was completed for 
each training type group (mental rotation, spatial scaling and con‐
trol) and each training mode group (explicit and implicit). Time was 
included as a between participant variable and expectation score 
was included as a covariate. There were no significant interactions 
between participant expectations of training and time for any of the 
training types (ps >  .05, �2

p
s < 0.033) or any of the training modes 

(ps > .05, �2
p
s < 0.012).

Participant engagement with training

An ANOVA was completed with training type and training mode as 
between participant variables and self‐reported engagement levels 
as the dependent variable. There was a significant difference in en‐
gagement across training types, F(2, 244) = 3.37, p = .036, �2

p
 = 0.027. 

Bonferroni pairwise comparisons indicated significantly higher en‐
gagement levels following control training compared to spatial scal‐
ing training (p = .034). There was no main effect of training mode on 
engagement, F(1, 244) = 1.81, p = .180, �2

p
 = 0.007. However, there 

was a significant interaction between training type and training 
mode on engagement, F(2, 244) = 3.30, p = .039, �2

p
 = 0.026. For ex‐

plicit training there were no differences in engagement across train‐
ing types, F(2, 123) = 0.56, p = .573, �2

p
 = 0.009. For implicit training 

there was an effect of training type, F(2, 121)  =  5.42, p  =  .006, 
�
2
p
  = 0.082. As highlighted in Figure 20, post‐hoc Bonferroni tests 

indicated significantly higher engagement following control training 
compared to spatial scaling training (p = .004).

4  | DISCUSSION

The results reported support and extend previous correlational find‐
ings on spatial‐mathematical relations and provide insight into the 
causal relationships between different aspects of spatial and math‐
ematical thinking. It was demonstrated that training mental rotation 
and, for the first time, training spatial scaling, led to gains in spatial 
and mathematical thinking at 8 years. These gains were present fol‐
lowing explicit and implicit instruction. Spatial training gains had near, 
intermediate and far transfer effects. Spatial thinking is therefore 
one cognitive domain in which transfer of cognitive training gains is 

possible. The gains reported reflect the importance of choosing de‐
velopmentally sensitive, theoretically motivated training targets.

Near transfer: Mental rotation and spatial scaling training led to 
significant gains in mental rotation, and spatial scaling respectively. 
Findings which are consistent with previous evidence that spatial 
skills are malleable in children (Uttal et al., 2013). Previous studies 
typically investigated the malleability of mental rotation or other 
spatial tasks that elicit mental visualization (Uttal et al., 2013) while 
this is the first study to highlight the malleability of spatial scaling in 
children at 8 years.

Intermediate transfer: Significant gains in mental rotation were 
reported following spatial scaling training providing evidence of in‐
termediate transfer of spatial scaling training to an untrained spatial 
task. These findings are consistent with those of Uttal et al. (2013) 
who found that spatial training transferred to other untrained spatial 
tasks. However, Uttal et al. (2013) reported that intermediate trans‐
fer was not evident in all studies and was more likely to occur where 
longer training sessions were included. The short training sessions 
used in this study (3–5 min) may explain why no intermediate trans‐
fer was reported following mental rotation training.

Far transfer: Participants who completed mental rotation training 
had significant accuracy gains on missing term problems. The findings 
of far transfer of gains are consistent with the findings of Cheng and 
Mix (2014) who demonstrated that explicit mental rotation training 
led to gains in performance accuracy on a similar missing box task. 
Cheng and Mix (2014), proposed that these findings are due to the 
fact that children solve arithmetic problems of this type by mentally 
rotating the terms, thus restructuring the equation in a more proto‐
typical format. For example, 4 + __ = 9, can be mentally rotated to 
generate the equation __ = 9 − 4. However, this mental manipula‐
tion would require a relatively advanced understanding of calculation 
rules, that is, a plus becomes a minus when it is moved across the 
equals sign. Alternatively, children may use spatial visualizations to 
represent these equations pictorially. This equation could be solved 
by visualizing 4 blocks in one group and 9 blocks in another, and 
counting the difference between the groups (Lourenco et al., 2018). It 
is noteworthy that this study found no significant difference between 
explicit and implicit instruction on this task in contrast to Hawes et 
al. (2015) who did not find gains on missing term problems following 
implicit mental rotation training. This highlights other factors, such 
as participant engagement during training, as possible explanations 
for the results reported by Hawes et al. (2015). Another explanation 
for the differences reported between studies is that in this study and 
in Cheng and Mix (2014), a part‐whole type mental rotation training 
was used (participants had to rotate an object and combine it with 
another object or picture to create a whole) which may have acted as 
an analog for children when solving missing term problems.

For the Number Line Estimation Task, a significant reduction in 
error was reported for children who completed spatial scaling train‐
ing. This far transfer of gains from spatial scaling to number line 
estimation may be explained by the fact that both tasks require pro‐
portional reasoning. If a child was asked to place the number 27 on 
a number line ranging from 0 to 100, they might reason that 27 is 

F I G U R E  2 0  Self‐reported levels of engagement following 
training, across training modes and training types (*p < .05, 
**p < .01, ***p < .001)
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close to 25, which is one quarter of 100. By accurately dividing the 
number line into quarters, a child could place the number 27 with rel‐
atively high accuracy (Newcombe et al., 2015, 2018; Rouder & Geary, 
2014). Proportional reasoning is also required when comparing two 
spaces of different sizes (Newcombe et al., 2018). Alternatively, the 
Mental Number Line may be responsible for associations between 
spatial scaling and number line estimation. This concept outlines that 
numbers are represented spatially in the brain with smaller numbers 
on the left and larger numbers on the right (Barsalou, 2008; Lakoff 
& Núñez, 2000). Children may scale between a mental number line 
and the number line presented in Number Line Estimation Tasks (see 
Dehaene, 1997; Fischer, 2003). Whilst spatial scaling has been associ‐
ated with number line estimation in a number of studies (e.g. Gilligan 
et al., 2018; Mix et al., 2016), this is the first to show that spatial 
scaling training leads to improvements in number line estimation. To 
note, an unexpected increase in error was reported following control 
training. This may be attributable to fatigue or boredom with the task 
at Time 2. Further investigation is needed to understand this effect.

Performance on the Geometry Task differed across item types. 
Gains on Geometry Symmetry Items were reported across time, 
but no effects of training mode or training type were found. Thus, 
effects in the experimental training conditions did not differ from 
those in the control conditions. This suggests significant practice ef‐
fects for this task. In contrast, there was far transfer of training gains 
from both mental rotation and spatial scaling, to Geometry Shape 
Items. From a theoretical perspective, children might use spatial vi‐
sualization (also used in Mental Rotation Tasks) to picture and rotate 
the shapes presented to count the number of sides (faces) on the 
shape. Improved spatial scaling skills may have enabled participants 
to better use proportional reasoning to answer shape items. Instead 
of counting each individual side (face), participants may have first, 
segmented the shapes presented (all of which were symmetrical) 
into halves or thirds, then counted the sides (faces) in a single seg‐
ment, and finally multiplied this to account for all segments.

Explicit versus implicit instruction: For Geometry Shape Items 
there was a main effect of training mode. Gains were reported fol‐
lowing implicit but not explicit instruction. For this task participants 
were asked to count the number of sides (faces) on a shape. Errors 
can easily be made on this task by counting the same side (face) 
twice or by forgetting where on the shape you started counting. As 
implicit training required participants to carefully select responses 
and revise incorrect responses, this may have increased the likeli‐
hood of participants going back over answers on the Geometry Task, 
which may in turn have increased accuracy.

For all other measures, there were no main or interaction effects 
reported for training mode (explicit vs. implicit instruction). This sug‐
gests that explicit and implicit spatial instruction are largely similar 
in eliciting near, intermediate and far transfer of gains. As outlined 
in the introduction, the efficacy of explicit instruction in this study, 
maybe be due to the fact that the instructional videos used pro‐
vide a model of successful task performance, allowing children to 
acquire new task strategies through observational learning. For im‐
plicit instruction, the results of this study suggests that practice with 

feedback also leads to performance gains. However, here we pro‐
pose that feedback is a key element of this training type. It may be 
argued that participants in the control groups in this study completed 
task practice on account of their completion of the Time 1 task bat‐
tery. However, these participants did not have significant gains on 
any measures. This suggests that task practice alone is insufficient 
to elicit gains, and that the feedback provided in implicit instruction 
is a key component driving the effectiveness of this training. Taken 
together, the findings that both explicit and implicit instruction elicit 
similar gains have practical importance in the classroom. The deliv‐
ery of instructional videos in a group context offers an easily imple‐
mentable method of improving spatial thinking that does not require 
one‐to‐one student interaction or advanced IT facilities (such as a 
laptop for every student). This mode of instruction offers a feasible, 
cost‐effective way of spatializing the primary school classroom.

4.1 | Motivational factors

This study is the first to explore the efficacy of spatial training while 
controlling for motivational factors. Here we demonstrated that nei‐
ther participant expectations of, nor engagement with, training can ex‐
plain the gains reported following spatial training. First, there were no 
significant differences in participants' expectations of training across 
different training modes or training types. The similarities in expecta‐
tions show that differences in expectations of training cannot explain 
the performance gains reported following training. This increases the 
reliability of the causal inferences made (Boot et al., 2013). Second, the 
performance gains reported following training cannot be attributed to 
engagement with training alone. For explicit training, there were no 
differences in reported engagement levels between training types. 
For implicit training, there was significantly higher engagement for 
participants in the control group compared to those who completed 
spatial scaling training. Participants who received implicit spatial scal‐
ing instruction completed additional trials of the Spatial Scaling Task 
that they had previously completed at Time 1. However, for the con‐
trol group the reading task completed was new, that is, not completed 
at Time 1, and therefore may have been more engaging. Although a 
significant difference in engagement was found for implicit instruc‐
tion, the direction of the difference shows that the performance gains 
reported for spatial and mathematics skills persisted despite the fact 
that control training may have been more engaging. Taken together, as 
control training did not lead to gains on any of the outcome measures, 
levels of engagement did not superficially align with training effects.

4.2 | Implications, future directions and limitations

This study provides some of the first evidence that the association 
between spatial and mathematical performance reflects a causal 
influence of spatial ability on mathematics performance. This 
causal relationship between spatial skills and mathematics can be 
inferred because a manipulation in one variable (spatial skill) led 
to changes in the other variable (mathematics skill; Pearl, 2000). 
The findings determine that the observed correlations between 
spatial and mathematical thinking cannot solely be explained by 
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a common cause acting on both variables, for example, genetic 
influence, IQ, language skills or other cognitive skills such as WM. 
As shown in Figure 21, without a direct cause between spatial 
and mathematical thinking, intervening on spatial skills would not 
lead to changes in mathematical outcomes. Thus, while a common 
cause such as a general cognitive factor or neural features may 
also exist between spatial and mathematical thinking (Oberauer, 
2016), this study identified a specific, direct causal effect of spatial 
skills on mathematics performance. Furthermore, these findings 
do not preclude a causal role of mathematical thinking on spatial 
skills, that is, a bidirectional relationship (feedback loop) may exist 
between spatial and mathematical thinking. From a practical per‐
spective, finding novel methods of improving mathematical think‐
ing in children is an educational priority (National Audit Office 
UK, 2018) and this study aimed to determine the causal effect 
of spatial skills on mathematics. However, to establish whether a 
bidirectional relationship exists between spatial and mathematics 
skills, future research is needed investigating the effects of train‐
ing mathematics skills on spatial performance. In summary, the 
identification of a causal effect of spatial thinking on mathematics 
in this study, strengthens arguments for spatializing mathematics 
teaching as a means of improving mathematics outcomes (Bruce & 
Hawes, 2015). The instructional videos presented here offer one 
way of introducing spatial thinking into the classroom. However, 
further research is needed to explore the optimum dosage of this 
training and the durability of these training gains.

While most previous spatial training studies are based on mental 
rotation (or similar spatial tasks; Uttal et al., 2013), this study demon‐
strates an important role for other spatial sub‐domains, particularly 
spatial scaling. This study highlights the importance of carefully choos‐
ing spatial training targets and suggests that training studies should 
be closely aligned with findings from cross‐sectional and correlational 
analyses. Mental rotation and spatial scaling were selected as training 
targets in this study, as these task specifically relate to mathematics 
outcomes at 8 years (Gilligan et al., 2017; Mix et al., 2016, 2017). Future 
studies should explore whether spatial training using age appropriate 

targets might confer benefits to spatial and mathematics performance 
in older children, for example by training perspective taking abilities 
or visuo‐spatial thinking which have been associated with mathemat‐
ics outcomes at 10 years (Gilligan et al., 2018) and 11 years (Mix et al., 
2016, 2017) respectively. Furthermore, there is cross‐sectional evi‐
dence that the role of spatial thinking extends beyond mathematics, 
to other Science, Technology, Engineering and Mathematics (STEM) 
domains (e.g. Hodgkiss, Gilligan, Tolmie, Thomas, & Farran, 2018; Wai, 
Lubinski, & Benbow, 2009). Future studies could explore transfer of 
spatial training gains to other STEM domains.

The results of this study should be interpreted in light of its limita‐
tions. First, there was a short interval (0–5 min) between training and 
post‐testing. Therefore, the training completed in this study may have 
led to priming of certain strategies for task completion, and not con‐
ceptual change. Other studies that have shown that short‐term prim‐
ing is possible and effective in children. For example, 5 min of spatial 
priming increases creativity in children aged 6–9  years (Liberman, 
Polack, Hameiri, & Blumenfeld, 2012), while priming spatial language 
terms (5  min) improves performance on a spatial relations task at 
4 years (Loewenstein & Gentner, 2005). However, even if the findings 
reported reflect a priming effect, the results of this study have signif‐
icant practical applications for teachers, given that priming enhanced 
performance on mathematics performance. Alternatively, transfer 
of gains from spatial training to mathematical skills may reflect both 
priming and conceptual change. These two processes are necessarily 
inter‐linked, as it is not possible to prime a process that you have not 
yet developed. Taken together, although priming cannot be ruled out, 
similarly to Cheng and Mix (2014), here we demonstrate shared cog‐
nitive processing in the completion of spatial and mathematics tasks, 
that is subject to modification through training. A second limitation 
of this study was that the duration of the spatial training delivered 
was relatively short, and there was no investigation of dosage ef‐
fects. Furthermore, although far transfer of gains between spatial 
training and mathematical outcomes was reported, the size of these 
gains was relatively small. Future research is needed to investigate 
whether the amount of training delivered influences the size and 
durability of training gains. However, the findings here demonstrate 
that even short bouts of spatial training lead to transfer of training 
gains to mathematics. Importantly, the findings of other studies sug‐
gest that there is durability of spatial training gains. Uttal et al. (2013) 
compared spatial training studies with post‐testing immediately fol‐
lowing training, to studies that wait days, weeks or even months until 
post‐testing. Uttal et al. (2013) found that spatial training gains were 
durable and that the timing of post‐testing did not significantly in‐
fluence the size of training gains reported following spatial training.

5  | CONCLUSIONS

The use of developmentally sensitive, theoretically motivated spa‐
tial training targets led to near, intermediate and far transfer of 
gains to both spatial and mathematical domains at 8  years. Not 
only do these findings highlight the malleability of spatial skills, 

F I G U R E  2 1   Causal relationship between spatial and 
mathematical thinking.
Note: Established and speculative causal relations are shown in 
orange and grey respectively
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they also call attention to spatial ability as one domain in which 
cognitive training can lead to transfer effects. Explicit and implicit 
instruction led to similar gains in spatial and mathematical domains 
(except for geometry items). This emphasizes the potential of ex‐
plicit instruction as a practical means of eliciting far transfer of 
spatial training gains in the primary school classroom. It is also ad‐
vised that the choice of cognitive training should be constrained 
by an understanding of the underlying cognitive mechanisms of 
training targets. In this study mental visualization was proposed 
as an underlying cognitive mechanism for mental rotation training, 
and proportional reasoning was proposed as an underlying cog‐
nitive mechanism for spatial scaling training. The gains reported 
highlight the importance of choosing task and age sensitive tar‐
gets for spatial training. In turn, evidence from this training study 
lays bare the causal contribution of cognitive processes to math‐
ematical cognition that was previously only inferred based on cor‐
relational evidence.
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