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1  | INTRODUC TION

Metabarcoding, the use of a polymerase chain reaction (PCR) and 
high‐throughput sequencing (HTS) to characterize organisms present 
in a sample, has been used to address an array of ecological questions 
(Creer et al., 2016) (PCR‐free sequencing is an emerging technology 
(Paula et al., 2015; Srivathsan, Ang, Vogler, & Meier, 2016) but is not 
the focus of this analysis). For example, metabarcoding has allowed 
the taxonomic identification of many specimens simultaneously using 

a standardized DNA region (Valentini, Pompanon, & Taberlet, 2009) 
without the need for on‐the‐ground taxonomic expertise. Similarly, 
environmental DNA (eDNA) studies, which sequence DNA in soil and 
water (Yu et al., 2012) without first isolating any organisms, facilitate 
rapid biodiversity monitoring with only small sediment or water sam‐
ples. Metabarcoding has also played an important role in uncovering 
diets and resolving food webs (Pompanon et al., 2012), as well as re‐
constructing community dynamics temporally using ancient DNA pre‐
served in sedimentary layers (Thomsen & Willerslev, 2015).
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Abstract
Metabarcoding has been used in a range of ecological applications such as taxo‐
nomic assignment, dietary analysis and the analysis of environmental DNA. 
However, after a decade of use in these applications there is little consensus on the 
extent to which proportions of reads generated corresponds to the original propor‐
tions of species in a community. To quantify our current understanding, we con‐
ducted a structured review and meta‐analysis. The analysis suggests that a weak 
quantitative relationship may exist between the biomass and sequences produced 
(slope = 0.52 ± 0.34, p < 0.01), albeit with a large degree of uncertainty. None of the 
tested moderators, sequencing platform type, the number of species used in a trial 
or the source of DNA, were able to explain the variance. Our current understanding 
of the factors affecting the quantitative performance of metabarcoding is still lim‐
ited: additional research is required before metabarcoding can be confidently uti‐
lized for quantitative applications. Until then, we advocate the inclusion of mock 
communities when metabarcoding as this facilitates direct assessment of the quan‐
titative ability of any given study.
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Early adopters of metabarcoding were hopeful that outputs 
would be quantitative; that is, that reads obtained from a sequencing 
run would correlate with biomass in the original sample (Symondson 
& Harwood, 2014) in a similar manner to other applications such as 
RNA sequence analysis (Mohorianu et al., 2017) and the characteri‐
zation of microbial communities (where it is referred to as meta‐ge‐
nomics). However, several factors, detailed in Figure 1, can introduce 
bias into the results and yield inaccurate biomass estimates. Yet, de‐
spite these factors being well documented, after more than a decade 
of use there is no clear consensus as to what extent metabarcoding 
is quantitative. Many studies report their findings in a quantitative 
manner where the relative read abundance (RRA) (Deagle et al., 
2018) is interpreted as the relative abundance of biomass (Kowalczyk 
et al., 2011; Soininen et al., 2015; Sousa et al., 2016; Vaz et al., 2017). 
Others use a frequency of occurrence (FOO) approach, also referred 
to as weighted occurrence (Deagle et al., 2018), where the propor‐
tion of samples in which a given sequence was detected is used to 
infer a different sort of quantitative measure (Bohmann et al., 2011; 
De Barba et al., 2014). It is also common to incorporate a qualitative 
approach (detected/not detected), sometimes simply referred to as 
occurrence (Deagle et al., 2018) or a “species list,” alongside these 
quantitative approaches (Vesterinen et al., 2016).

Empirically determining the extent to which metabarcoding is 
quantitative should be relatively simple: take a mixture of organ‐
isms with known biomass, PCR and sequence, then compare the 
results of the HTS run to the original biomass of each community 
member. Indeed, many studies have used this approach (Leray & 
Knowlton, 2017; Piñol, Mir, Gomez‐Polo, & Agustí, 2015). However, 
often only one primer set is used and the output may be a result of 
primer bias (the differential amplification of target DNA due to dif‐
ferent numbers of nucleotide mismatches between the primer and 
target DNA between samples) rather than a reflection of the ability 
of metabarcoding techniques. Even if multiple primers are used, 
they are normally used on the same sequencing run, in which case 
results cannot be considered independent. An experiment featur‐
ing enough sequencing runs to gather sufficient statistical power to 
disentangle the various factors that may affect quantitative perfor‐
mance would be prohibitively expensive for most research groups. 
Consequently, there is an ad hoc collection of methodologies that 
provide different levels of quantitative performance, but little cer‐
tainty as to whether the variance is due to unique parameters in the 
experimental set‐up or a result of more general drivers.

In this study, we aim to address this knowledge gap. A structured 
review was conducted to collate our knowledge about the extent 
to which metabarcoding for taxonomic assignment is quantitative. 
Subsequently, a meta‐analysis was conducted to investigate the 
degree to which metabarcoding is quantitative across multiple in‐
dependent studies. Factors affecting the quantitative performance 
such as platform choice, the experimental set‐up (does using bio‐
mass, individuals or DNA as the input unit affect quantitative esti‐
mates?) and the number of species incorporated in a study were also 
investigated. Factors that could not be addressed are also discussed 
to direct future research.

2  | METHODS

2.1 | Search strategy

Articles that used quantified multispecies assemblages, PCR and 
HTS platforms for taxonomic assignment with metabarcoding were 
targeted using specific search terms. Identifying optimized search 
terms was important since metabarcoding is now widely used across 
evolutionary, ecological and medical research. After assessing a 
variety of search terms, an appropriate combination was finalized: 
the Web of Science was searched on 31/10/2017 for English lan‐
guage articles for all available years using the following search terms: 
((quant* OR diet OR biomass) AND (barcod* OR metabarcod*)). In 
total, 1,262 articles were retrieved.

2.2 | Article screening

Initial filtering of the articles was based on their titles: any ar‐
ticles that obviously had no relevance to quantification of bio‐
mass using metabarcoding were discarded. After initial filtering, 
262 articles remained. These articles were manually inspected, 
and any that included a quantified community of biomass, indi‐
viduals or DNA as starting material and reported the proportion 
of reads obtained from a HTS platform were used for data ex‐
traction. Since the slope of a fitted linear model was to be used 
as an effect size (see below), variation in the amount of input 
material was also required (equal amount of starting biomass 
could not be used). In total, 22 articles (Table 1) were used in 
the meta‐analysis.

2.3 | Data extraction

The composition of the community assessed (either biomass, num‐
ber of individuals or concentration of DNA) and the proportions of 
reads corresponding to the relevant species in the test community 
obtained from the sequencing platform were recorded for each trial 
within an experiment. The sequencing platform, number of species 
used and the source of input material for each trial within any given 
study were recorded. The main manuscript and Supporting informa‐
tion were inspected: if possible, data were taken from a table, and 
if tables were unavailable, the data were manually extracted from 
figures using Web Plot Digitizer (Rohatgi, 2017). If data were not pre‐
sented in the main article, the corresponding author was emailed to 
obtain the data.

The composition of the mock community and corresponding se‐
quence data were converted in percentage values (see Figure 2(a)). 
For the Elbrecht, Peinert, and Leese (2017) study using individuals 
of varying sizes (Elbrecht et al., 2017), the composition of individu‐
als in the mock community, and the output of reads, was presented 
grouped by size (large, medium and small individuals) and unsorted. 
In this instance, we calculated input and output percentages by the 
sorted size groupings as this was most similar to the approaches 
used in other included studies.
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Slope is a commonly used effect size when the relationship be‐
tween two continuous variables is being investigated (Rosenberg, 
Rothstein, & Gurevitch, 2013). In this instance, it was chosen as it is 
easy to interpret and meets the statistical assumptions of the meta‐
analysis model without transformation (in this instance, because 
slopes did not approach vertical asymptotes and little skewness was 
present in the data).

2.4 | Meta‐analysis model fitting

Slope (the effect size) was calculated by fitting a linear model for 
each trial detected in the review using R (R Core Team 2017), such 
that the proportion of reads produced from the sequencing run 

would be a function of the proportion of starting material in the ex‐
periment. The variance of the slope was calculated in R and used 
as the sampling variance as described by Rosenberg et al. (2013). 
Figure 2 illustrates how the results of a mock community experiment 
are incorporated into this analysis.

All meta‐analysis was conducted in the customizable, open‐
source, meta‐analysis package “metafor” (Viechtbauer, 2010) in 
R. Many studies used multiple trials within a single study; how‐
ever, these trials cannot be treated as statistically independent 
from one another. To account for this nonindependence, a cross‐
study slope estimate was determined using a two‐level nested 
random‐effects model using a restricted likelihood function. 
Trials within an experiment were nested at the study level. The 

F I G U R E  1   Overview of HTS 
procedure and factors that can influence 
the quantitative output [Colour figure can 
be viewed at wileyonlinelibrary.com]
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influence of sequencing platform, and DNA source material, was 
tested by including them as moderating factors in the model. 
Terms were iteratively omitted from the model, and AIC was used 
to select the final model.

Weighting of each study in the meta‐analysis model was deter‐
mined solely by the number of sequencing runs used in each study 
(e.g., 1 for 1 run, 2 for 2 runs). However, when multiple trials were 
conducted within a single study, the weight of each trial was calcu‐
lated by dividing the number of reads produced for the trial by the 
total number of sequences produced by the sequencing run within the 
study. This allows different sequencing depths within a single study to 

be accounted for (using a nested model) while maintaining sequencing 
runs as independent data points. For example in Saitoh et al. (2016), 
a single sequencing run was used and a meta‐analysis model study 
weight of one was assigned. Within this study, there were two trials: 
the 16 s trial produced 45% of the reads; therefore, it accounted for 
45% of model weight within the nested model (at the study level).

2.5 | Sensitivity testing

Assessing publication biases (the increased probability of positive 
results being accepted for publication) in meta‐analytical models 

TA B L E  1   Articles included in the meta‐analysis

Author
Species 
per trial Sequencer

Starting 
material Organisms Marker

Albaina, Aguirre, Abad, Santos, and Estonba 
(2016)

6 454 Biomass Marine invertebrates 
(crustaceans, annelids)

18s

Blanckenhorn, Rohner, Bernasconi, Haugstetter, 
and Buser (2016)

4 to 9 Illumina Biomass Macroinvertebrates 
(coleoptera, diptera, 
hymenoptera)

COI

Bokulich and Mills (2013) 12 Illumina DNA/RNA Yeast ITS

Deagle, Chiaradia, McInnes, and Jarman (2010) 3 454 Biomass & 
Faecal

Fish 16s

Diaz‐Real, Serrano, Piriz, and Jovani (2015) 3 454 Individuals Feather mites COI

Egge et al. (2013) 11 454 DNA/RNA Haptophytes 18s

Elbrecht and Leese (2015) 52 Illumina Biomass Macroinvertebrates 
(freshwater)

COI

Elbrecht et al. (2016) 52 Illumina Individuals Macroinvertebrates 
(freshwater)

COI

Elbrecht et al. (2017) 52 Illumina Biomass Macroinvertebrates 
(freshwater)

16s

Geisen, Laros, Vizcaíno, Bonkowski, and De Groot 
(2015)

8 454 Individuals Protist culture 18s

Hatzenbuhler, Kelly, Martinson, Okum, and 
Pilgrim (2017)

5 454 Biomass Fish COI

Hirai et al. (2015) 33 454 Biomass Copepods LSU

Iwanowicz et al. (2016) 12 Illumina DNA/RNA Plants ITS

Klymus, Marshall, and Stepien (2017) 11 Illumina DNA/RNA Bivalves, gastropods 16s

Kraaijeveld et al. (2015) 6 to 11 Ion Torrent Individuals Plants (pollen) TrnL

Pochon, Bott, Smith, and Wood (2013) 9 454 DNA/RNA Marine invertebrates 
(echinoderms, crustaceans, 
ascidians, molluscs, annelids)

18s

Porazinska et al. (2010) 38 454 Individuals Nematodes 18s

Rocchi, Valot, Reboux, and Millon (2017) 9 Illumina DNA/RNA Fungus ITS2

Saitoh et al. (2016) 9 454 Biomass Macroinvertebrates 
(springtails)

16s, COI

Smith, Kohli, Murray, and Rhodes (2017) 10 Illumina Individuals Dinoflagellates Cyt b, 
LSU, 
18s

Thielecke et al. (2017) 5 Illumina DNA/RNA Plasmid constructs n/a

Thomas, Deagle, Eveson, Harsch, and Trites 
(2016)

3 Illumina Biomass Fish 16s
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is challenging for nested models. Funnel plots are difficult to inter‐
pret: studies cluster together due to statistical dependencies rather 
than genuine biases (Lau, Ioannidis, Terrin, Schmid, & Olkin, 2006). 
Egger’s regression test (Egger, Smith, Schneider, & Minder, 1997), 

another commonly used metric, is not supported for nested models 
in the current version of metafor. Consequently, it was not possi‐
ble to assess whether publication bias may be present in the data 
set. However, influential trials in the meta‐analysis were visually 

F I G U R E  2   A schematic illustrating 
how data are utilized in the meta‐
analysis. (a) The mock community with 
quantified biomass. (b) Three hypothetical 
outcomes of the metabarcoding step: 
(i) a perfect quantitative relationship 
between biomass and sequencing yield; 
that is, a 1% increase in biomass yields 
a 1% increase in reads, generating 
a slope = 1. (ii) A quantitative signal 
in which rank abundance is same in 
the mock community, but with over‐
representation of common sequences and 
under‐representation of rare sequences 
resulting in a slope greater than 1. A 
slope of between 0 and 1 would be 
produced when common sequences are 
under‐represented and rare sequences 
over‐represented (not shown). (iii) No 
quantitative information, with a slope 
close to 0. Negative slopes would 
also be indicative of nonquantitative 
signals. (c) shows how (i),(ii) and (iii) 
would be visualized in a forest plot with 
corresponding variance of slope denoted 
by error bars [Colour figure can be viewed 
at wileyonlinelibrary.com]
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identified using hat values, which show the importance of any given 
trial in relation to the model as a whole (Krahn, Binder, & König, 
2013), and plotted against the standardized residuals of the meta‐
analysis model.

3  | RESULTS

Across all studies, a significant (p < 0.01) relationship existed be‐
tween the proportion of input material for each species present and 
the proportions of sequences obtained from metabarcoding. A large 
amount of observed variation was due to actual differences in the 

interstudy slope estimate (I2 = 88.5%). Across all studies, an effect 
size estimate (slope) of 0.52 (±0.34 variance of slope) was identified.

None of the tested moderators, type of sequencer, number of spe‐
cies used in a trial or type of starting material had a significant effect 
(p > 0.05 in all instances) on the estimate provided by the meta‐anal‐
ysis model. Figure 3 illustrates the lack of difference in quantitative 
ability (a) between the materials used for metabarcoding, (b) among 
the sequencers and (c) the number of species used in a trial.

Sensitivity testing, using hat values and residuals (Figure 4) appear 
to show a single trial (Hirai, Kuriyama, Ichikawa, Hidaka, & Tsuda, 2015), 
was having a large influence on the final output of the model. However, 
three sequencing runs were used for a single trial in this study, and as 
such, it has a relatively greater weight in the meta‐analysis compared to 
most other trials that only used a single sequencing run.

4  | DISCUSSION

4.1 | How quantitative is DNA metabarcoding?

Across all studies, a slope estimate of 0.52 was identified as the 
relationship between biomass and sequence read number. This 
shows that the RRA produced from a metabarcoding loosely cor‐
responds to the relative occurrence of species in the starting 
material. If no data about composition of a sampled community 
exist, metabarcoding data interpreted quantitatively could there‐
fore be more informative than treating it in a strictly detected/
not‐detected manner even if the accuracy is low. This supports 
evidence from simulations presented in Deagle et al. (2018), which 
suggest that a more accurate interpretation of communities can 
be achieved by treating metabarcoding data quantitatively rather 
than relying solely on qualitative measures. However, this estimate 
has a large degree of uncertainty: ±0.34 variance of slope suggests 

F I G U R E  3   The quantitative ability of 
metabarcoding using (a) various starting 
materials, (b) different sequencing 
platforms and (c) different number of 
species within in a trial. Note that each 
point represents a trial, which may not 
be fully independent from one another. 
However, this nonindependence is 
accounted for in the meta‐analysis model
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F I G U R E  5   Forest plot showing the slope estimates for all trials in the meta‐analysis (± variance of slope). Trials are clustered at the paper 
level denoted by the grey and white shading
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that in real‐world applications, metabarcoding can be either some‐
what quantitative or produce a very weak signal. This uncertainty 
is reflected within some of the experiments themselves: Figure 5 
shows that while many of the included trials appeared to produce 
quantitative results, variance of the slopes was sufficiently large, 
overlapping with 0, that a nontrivial probability exists that non‐
quantitative data will be produced on any given sequencing run. 
Furthermore, there are several trials included in this meta‐analy‐
sis in which metabarcoding produced extremely poor quantitative 
performance. With such variation between studies, and no easy 
way to diagnose whether any given metabarcoding study has pro‐
duced quantitative results, it is easy to see how different opinions 
on the quantitative ability of metabarcoding have arisen. Focusing 
on the factors influencing the quantitative performance is essen‐
tial to further clarify this situation.

The influence of sequencing technology and initial experimental 
design was included as moderating factors in the initial model. The 
sequencing platforms did not significantly differ in quantitative abil‐
ity. This was unexpected, as the different platforms have different 
technical approaches towards sequencing (Mardis, 2008), and dif‐
ferent levels of bias were expected. Additionally, Illumina platforms 
produce many more reads than other platforms, so a greater level 
of precision might have been expected. This is not to say platform 
choice is not important when undertaking a metabarcoding study: 
read length, sequencing accuracy and cost will all play a role in de‐
termining the best choice for a given study. However, these results 
suggest that in terms of attaining quantitative data, any difference 
between sequencing technologies is too subtle to be detected in this 
meta‐analysis, and the factors driving quantitative performance per‐
haps lie elsewhere in the experimental set‐up.

It has been hypothesized that including a higher number of 
species in a metabarcoding study will improve the quantitative 
performance as different amplification efficiencies will have dimin‐
ishing effects on the overall quantitative performance as the num‐
ber of species used increases (Deagle et al., 2018; Piñol, Senar, & 
Symondson, 2018). However, this relationship was not detected 
here. This may be due to most of the included studies using relatively 
few species: only three studies had more than 30 species. Thus, the 
lack of relationship may be driven by lack of variation in the data. 
Additionally, it is expected that different primer sets, or other fac‐
tors tested here, would explain much of the variation. Our ability to 
detect subtle trends in a noisy data set is limited with relatively few 
studies. This relationship could be better characterized with empiri‐
cal studies, or if the amount of data available for meta‐analysis were 
to increase substantially.

Different input materials had no explanatory ability in the final 
model: sequences were able to replicate the original biomass, quan‐
tity of DNA or individuals in a study equally well. We believe this may 
be because counts of individuals were frequently used for species of 
similar size: if there is little variation in size of individuals between 
different species, count data can be regarded as a proxy for biomass. 
A notable exception in using counts of individuals from species of 
similar sizes was the Elbrecht et al. (2017) study: here, species were 

sorted by size prior to sequencing. The authors demonstrated that 
sorting individuals by size affected the quantitative ability of me‐
tabarcoding by comparing a mock community sorted by size and a 
mock community where individual size was not considered. We used 
the sorted data treatment as this was most similar to other stud‐
ies in the meta‐analysis. However, given that counts of individuals 
and biomass were proxies in many studies, and empirical evidence 
suggests that the RRA does not correspond with the number of in‐
dividuals if significant size differences are present (Elbrecht et al., 
2017), we would advocate caution when inferring count data from 
metabarcoding data without a priori knowledge of minimal size vari‐
ation between individuals.

No difference in quantitative performance existed between 
studies using quantified DNA as a starting material and those that 
used biomass. Given DNA extraction is the only step (Figure 1) sep‐
arating these points in the protocol, this suggests it is not a source 
of significant bias in the studies included in the meta‐analysis. 
However, it must be noted that this is not always the case: Pornon 
et al. (2016) reported a 300‐fold difference in DNA concentrations 
after extraction. It is possible that structural differences in the exine 
(the tough protective coating of pollen) may have driven the vari‐
able DNA yield. Although not a significant factor in this study, best 
practice would dictate that quantifying the relationship between 
biomass and DNA yield in the target organisms is advised prior to 
metabarcoding.

4.2 | Future directions

This analysis has shed light onto some, but not all, of the factors that 
influence the quantitative performance of metabarcoding. Although 
not considered here, primer bias is likely a large source of variation in 
the quantitative performance of metabarcoding studies: Piñol et al. 
(2015) empirically tested the relationship between primer mismatch 
and amplification efficiency and found mismatches accounted for 
75% of variation. We had hoped to explore the effect of primer bias 
on the quantitative performance of metabarcoding by using the nu‐
cleotide pairwise diversity at the primer binding site of the mock com‐
munity as a moderating factor in the final model. Unfortunately, this 
was not possible: the sequence in the target DNA at the primer site 
could not be inferred from the studies included in this meta‐analysis 
as, at most, only the primer sequence can be obtained. For a number 
of studies, sequences covering the primer binding region were not 
present in DNA databases. Additionally, even for those species which 
had relevant sequences, interindividual variation was a concern: am‐
plification efficiency is very sensitive to both the type of nucleotide 
mismatch between the target DNA and the primer, and the location 
of the mismatches in the primer sequence (Stadhouders et al., 2010). 
Without knowing the actual sequence present in the individuals used 
in the studies, we opted to omit primer site mismatches from this analy‐
sis. However, the effect of nucleotide mismatches in primer sequences 
on quantitative performance of metabarcoding is explored in detail 
through the use of simulations in this issue (Piñol et al., 2018). This topic 
will be an ongoing research area, and until we accurately determine the 
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quantitative performance of any given primer set, we would advocate 
reporting all in silico testing to assess the quantitative ability of primers, 
and the inclusion of a mock community control on each sequencing run 
to gauge how accurately RRA corresponds with the starting material.

4.3 | Reflection on meta‐analysis

It is important to remember what is entailed in a meta‐analysis: a 
consensus of studies included in the analysis, weighted by sample 
size. Studies were included based on their detection in a structured 
review; although this presents a transparent, repeatable, way of 
including literature, our approach may have missed some relevant 
studies. Indeed, not all of the high‐quality literature detected in the 
structured review was included (Leray & Knowlton, 2017; Piñol et al., 
2015), due to their experimental design being incompatible with our 
analytical framework, rather than any shortcomings of the work or 
relevance to contribute further understanding on the topic.

It should be noted that incorporating results into meta‐analysis 
necessitates some loss of nuance in the results. Most notably, in this 
study, we used the slope derived from a linear model as an effect 
size to facilitate synthesis. However, the quantitative nature of the 
relationships reported in this analysis may well be more complex than 
reported by a linear model. As such, we would encourage readers to 
use this manuscript only as reference material, and assess the cited 
literature themselves, as a perfect distillation of included literature is 
inherently not possible.

Furthermore, publication bias remains an unknown factor. Using 
a nested model to account for nonindependence makes using most 
common tests for publication bias problematic as they detect the 
structure implemented in the model, not genuine publication bias. 
Not accounting for the nonindependence of trials run on the same 
sequencing run was, we felt, a more immediate flaw than accounting 
for publication bias. That unfortunately leaves us in a position where 
the extent of any publication bias is unknown, and we are unable to 
say how important, or trivial, the issue may be: as such, we reiterate 
that any synthesis drawn from this model may have been influenced 
by the omission of unpublished data, as much as the studies included.

Another issue worth considering is the relative weighting given to 
each study. Meta‐analyses differ from a simple vote count by assigning 
increased weighting to studies with a larger sample size. Here, weighting 
was assigned based on the number of sequencing runs used in a study. 
We feel this weighting is more appropriate than a simple vote count, 
but it is worth highlighting the results presented here are influenced 
more heavily by some studies than others; for example, Porazinska, 
Sung, Giblin‐Davis, and Thomas (2010) had the greatest influence on 
the model (21.7%) due to the study’s use of seven sequencing runs.

Finally, it should be noted this analysis quantifies the under‐
standing of the field at a point in time rather than attempting to be 
a final point of authority. As highlighted above, much more research 
is still to be done in this area, and we hope the shortcomings and 
gaps highlighted will be filled as exciting new research reveals a more 
mechanistic understanding of this topic.

5  | CONCLUSION

Our meta‐analysis suggests that metabarcoding possesses some 
quantitative ability: a cross‐study slope estimate of 0.52 was 
found, suggesting a weak quantitative signal is present, albeit 
with a large degree of uncertainty (±0.34 variance of slope). 
Quantitative ability did not appear to differ among sequencing 
platforms, the number of species included in a trial or with dif‐
ferent starting materials: biomass, individuals or DNA. We remain 
sceptical that individual count data can be reliably inferred from 
metabarcoding if there are large size differences between the in‐
dividuals being assessed and would advise against count‐based 
inferences without a priori knowledge of the community being 
assessed. All presented results have probably been influenced by 
the relatively small sample sizes: additional research is warranted 
to reveal the mechanistic factors driving quantitative perfor‐
mance. While metabarcoding may eventually become a quantita‐
tive tool, many uncertainties remain. Moving forward, we suggest 
explicitly testing the relationship between read abundance and 
input biomass using mock communities included as quantitative 
controls during metabarcoding. Not only will this allow research‐
ers to assess their own study, but it will also assist future meta‐
analyses. We also recommend presenting all trials and simulations 
used in primer selection to make the rationale behind primer 
choice transparent. Finally, we would encourage additional em‐
pirical research into the mechanistic factors behind primer bias in 
metabarcoding since this is difficult to study using meta‐analyti‐
cal techniques, yet potentially holds the key to truly quantitative 
metabarcoding.
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