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Summary

In completely insular microbial communities, evolu-
tion of community structure cannot be shaped by the
immigration of new members. In addition, when those
communities are run in steady state, the influence of
environmental factors on their assembly is reduced.
Therefore, one would expect similar community
structures under steady-state conditions. Yet, in par-
allel setups, variability does occur. To reveal ecologi-
cal mechanisms behind this phenomenon, five
parallel reactors were studied at the single-cell level
for about 100 generations and community structure
variations were quantified by ecological measures.
Whether community variability can be controlled was
tested by implementing soft temperature stressors as
potential synchronizers. The low slope of the lognor-
mal rank-order abundance curves indicated a pre-
dominance of neutral mechanisms, i.e., where
species identity plays no role. Variations in abun-
dance ranks of subcommunities and increase in
inter-community pairwise β-diversity over time

support this. Niche differentiation was also observed,
as indicated by steeper geometric-like rank-order
abundance curves and increased numbers of correla-
tions between abiotic and biotic parameters during
initial adaptation and after disturbances. Still, neutral
forces dominated community assembly. Our findings
suggest that complex microbial communities in insu-
lar steady-state environments can be difficult to syn-
chronize and maintained in their original or desired
structure, as they are non-equilibrium systems.

Introduction

Stochasticity represents a variation for which we do not
have, or choose not to give, a mechanistic explanation.
Demographic stochasticity, for example, represents the
observation that individual organisms are affected by numer-
ous processes that we cannot know in detail, but this varia-
tion is important for understanding the extinction risk (Grimm
and Wissel, 2004). By contrast, for deterministic processes,
such as the exponential growth of populations if resources
are not limiting, random variation can often be ignored.

Both stochastic and deterministic processes determine
community assembly, but to what degree it has long
been debated in macroecology (Leibold et al., 2004;
Chase, 2003, 2007, 2010). For tropical forests, which
were at the origin of this debate, the current consensus is
that the proportion of both mechanisms varies between
communities and in time and space (Hubbell, 2001). For
microbial communities, much less is known in this con-
text, although they are the drivers of all biogeochemical
cycles, support higher life in countless aspects (Nelson
et al., 2016; Zhou and Ning, 2017) and are imperative for
human health, nutrition and biotechnology (Schirmer
et al., 2016; Johnson et al., 2017; Zeng et al., 2017; Byrd
et al., 2018; Wackett, 2018). Microorganisms are ubiqui-
tously distributed and assembled into loosely or strongly
connected associations of individuals. Assembly charac-
teristics, such as the type and number of microorganisms
and stability of the assembly states, can influence a com-
munity’s ability to either persist or be prone to extinction
(Allison and Martiny, 2008). The extent to which
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deterministic or stochastic processes influence commu-
nity assembly mechanisms must be understood if we are
to rationally assess, exploit or even control microbial
communities.

Deterministic mechanisms, such as niche differentia-
tion, are found in defined localities where community
assembly is shaped by selective abiotic parameters,
e.g., by the conditions of a habitat, or by biotic interac-
tions between species, e.g., by competition, cooperation
and mutualism (Hibbing et al., 2010; Vellend, 2010; Faust
and Raes, 2012; Nemergut et al., 2013). The effects of
abiotic parameters that influence community assembly
have been reported in both natural and bioengineering
systems. For instance, bacterioplankton communities
assemble according to turbidity, temperature and other
water nutrient qualities, such as total phosphate and
nitrogen (Peter et al., 2017). The composition of soil com-
munities seems to depend, to a large degree, on the soil
redox status, pH and carbon quality and quantity (Fierer,
2017). In full-scale wastewater treatment plants, the fluc-
tuation of the carbon load of the inflow has been found to
select for specific phylotypes and even functions
(Günther et al., 2012, 2016), and the core operating taxo-
nomic units (OTUs) of communities from six different acti-
vated sludge basins from one region have been found to
react in a synchronous manner to weather data (Griffin
and Wells, 2017). While abiotic parameters constrain
community assembly by limitations in space and
resources, biotic parameters do so by species interac-
tions. For example, a famous early study by Gause
(1934) demonstrated competitive exclusion, whereby two
different Paramecium species competing for the same
resources led to the domination and survival of only one.
Synthetic co-cultures are well known to also mutually
benefit from the cross-feeding of organic acids and nutri-
ents (e.g., McCully et al., 2017) and various individual-
based modelling approaches are developed to predict
the individuals’ competition for process control (Friedman
et al., 2017; Daly et al., 2018). Additionally, predator–prey
relationships contribute to microbial assembly dynamics,
such as the bacterial predator Bdellovibrio spp., which
feeds on gram-negative bacterial species (Johnke et al.,
2014), or host–parasite relationships in which genotype-
specific phages change community structures (Laanto
et al., 2017). All these deterministic niche differentiation
mechanisms ultimately lead to equilibria, corresponding
to a steady-state climax community (Morris and Black-
wood, 2007; Nemergut et al., 2013).

By contrast, stochastic mechanisms disrupt strong
interrelationships between organisms, and their biotic
and abiotic circumstances and can, thereby, prevent
deterministic processes from becoming dominant (Burns
et al., 2016; Zhou and Ning, 2017). Neutral theory, for
example, disregards the influence of species identities

but declares all species essentially identical. Therefore,
community assembly is random (Hubbell, 2001; Bell,
2000). Neutral forces encapsulate random birth, death,
immigration and emigration events (Sloan et al., 2006;
Ofiţeru et al., 2010). A typical characteristic of neutral
forces is drifting in community assembly (Nemergut et al.,
2013; Zhou and Ning, 2017) when niche differentiation
mechanisms are weak (Ofiţeru et al., 2010). In addition,
events such as random dispersal followed by birth can
lead to different colonization patterns (Zhou et al., 2013;
Evans et al., 2017). Initial assembly and colonization can
also be strongly affected by the random death of microor-
ganisms (Langenheder and Székely, 2011; Woodcock
and Sloan, 2017), especially when cell densities are low
(demographic stochasticity; Evans et al., 2017; Woodcock
and Sloan, 2017). A similar effect can be caused by ran-
dom cell loss from existent communities due to emigration
or dilution of the medium (Nemergut et al., 2013).

A disturbance (a stochastic or an induced event) cre-
ates conditions for a new assembly of communities based
on either the neutral behaviour of organisms or, and per-
haps and, new niche differentiation processes. Under
neutral conditions, a community can, after a disturbance,
assume a vast number of likely variants of compositions
(Ferrenberg et al., 2013). This high level of variation might
be diminished by deterministic mechanisms, such as envi-
ronmental filters or speciation effects, when specific
microorganisms persist because of exclusive abilities. For
instance, forest fire has been found to promote increasing
abundances of spore-forming Firmicutes in soil (Smith
et al., 2008; Pérez-Valera et al., 2017). Niche differentia-
tion usually establishes dominant phylotypes, which, how-
ever, can be replaced after a disturbance by conditionally
rare taxa that assemble into a new community with a dif-
ferent and, by chance, even higher diversity. According to
the high functional redundancy in natural microbial com-
munities (Allison and Martiny, 2008; De Vrieze et al.,
2017; Tully et al., 2017), such disturbance events do not
necessarily affect the functions of a community. There-
fore, if a disturbance is of a stochastic nature and causes
respective effects, it may also have the potential to reduce
neutral forces, in which case it causes strong deterministic
responses (Ferrenberg et al., 2013; Vanwonterghem
et al., 2015; Choi et al., 2017).

The relative roles of niche differentiation and neutral
mechanisms on microbial communities were estimated in
this study in insular and steady-state environments.
Technical and operational parameters of such insular
steady-state reactors can be well controlled and are valu-
able for testing performances of biotechnologically rele-
vant strains. Classical continuously operated bioreactors
can grow a mono-dominant strain under such conditions
over infinite generations until disturbances, such as
mutations or changes in substrate rates, may lead to

© 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 21, 164–181

Non-equilibria systems 165



extinction and, ultimately, to a loss of catalytic efficiency
(Jannasch, 1974; Hoskisson and Hobbs, 2005). We have
chosen to test species-rich reactors because biodiversity
is usually believed to increase a systems’ stability
(Hooper et al., 2005). Highly diverse microbial communi-
ties are assumed to be resilient catalysts with redundant
and interconnected functions and are able to grow on
waste substrates. A multitude of species can run identical
metabolic pathways with similar efficiency, thus support-
ing the presence of neutral forces. By contrast, other
species dispose of interdependent pathways, thus
strengthening niche differentiation. From the ecological
perspective, the question arises how highly diverse
microbial communities assemble into insular and steady-
state bioreactors and whether they, concurrent with the
abiotic conditions, also facilitate a steady-state commu-
nity structure. In addition, the engineering perspective
requires available means to facilitate community structure
control by, e.g., using environmental disturbances, as
suggested by DeAngelis and Waterhouse (1987) and Wu
and Loucks (1995) for macroecological systems and by
Vanwonterghem et al. (2015) for anaerobic microbial sys-
tems. In our experimental set-up, we used soft tempera-
ture stressors for this purpose.
Observations of the dynamics of species-rich systems

are challenging. Available studies have either used
sequencing approaches (Faust et al., 2015; Shen et al.,
2018) or flow cytometry (Props et al., 2016, 2017 and
2018; Koch and Müller, 2018), but the use of these tech-
nologies to measure dynamic community behaviour is still
rather rare. Next-generation sequencing platforms provided
by, e.g., Illumina, PacBio and Nanopore (Goodwin et al.,
2016) are currently the most up-to-date and commonly
used methods to resolve microbial community composition
and function. However, data generated with these methods
are not quantitative, and their analysis and quantification
are still costly and time-consuming, rendering them imprac-
tical for rapid, cheap, on-site enumeration of time series.
By contrast, flow cytometry observes every cell in a com-
munity sample and allows the precise quantification of
cells with similar properties. Recently, rapid data genera-
tion advanced flow cytometry to reveal the real-time resil-
ience behaviour in microbial communities (Liu et al., 2018).
In this study, a dense sampling strategy was used to

assess whether only neutral mechanisms dominate com-
munity assembly. In this case, communities will drift in an
unpredictable manner with no synchrony. The unpredict-
ability of neutral mechanisms is problematic for biotechnol-
ogies, and there are already many indications that process
control via niche differentiation is difficult to achieve (Zhou
et al., 2013; Evans et al., 2017; Du et al., 2017). However,
the principal aim of engineers in process control of biore-
actors is to construct a niche with differentiating bound-
aries to strengthen and sustain an initially manufactured

community. Due to the homogeneous environment of our
reactor set-ups, we expected community assembly to
occur in synchrony at the outset due to adaptation pro-
cesses; however, these synchronized assembly states
should subsequently diverge under the chosen conditions.
Disturbances may either add to this divergence due to
their stochastic nature or shape community structures to
re-synchronize them if they possess niche-differentiating
power. We sought to determine how seemingly antagonis-
tic paradigms are balanced in closed environments to
irrevocably elucidate mechanisms for their control.

Results

Description of the ecological situation

Five insular reactors were inoculated with the identical
natural community and continuously operated in parallel
for 91 days at a dilution rate of D = 0.72 d−1, a working
volume exchange rate of 33.3 h and, accordingly, a gen-
eration time ( ) of 23.1 h, allowing bacteria with slower
growth rates to be sustained. Bacteria with longer than
23.1 h were lost by continuous reactor operation and
became extinct. The reactor steady-state was reached by
a fivefold working volume exchange after approximately
7 days (adaptation phase) and was maintained for
84 days (Supporting Information S1).

To precisely describe the conditions of our experiment,
we are following Grimm and Wissel’s (1997) recommen-
dations (later applied to microbiological ecology studies
by Liu et al., 2018) to specifying six features that define
the background of a study. In this study, the features
were as follows.

i. The level of description, which is a highly diverse natu-
ral microbial community originating from a wastewater
treatment plant (Supporting Information S1). The indi-
vidual microorganisms within this community were
physiologically characterized using flow cytometry. A
3-parameter descriptor of each of the 200 000 cells
measured per sample (Supporting Information S4 and
S5) was generated: forwards scatter (FSC) of light,
which is related to cell size; side scatter (SSC) of light,
which is related to cell density; and fluorescence
related to chromosome information per cell, which is
an extrinsic cell parameter. Chromosome information
per cell is dependent on the type of cell (G/C content
and genome size) and its state in the cell cycle (Müller,
2007). Therefore, every sample is characterized by
600 000 data points. In our study, 326 samples were
measured. In addition, to verify the general trends visu-
alized by the cytometric data 44 whole community and
sorted 12 gates were analyzed by 16S rRNA gene
amplicon sequencing and evaluated both on the class
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and genus level (Supporting Information S12, data
repository https://osf.io/4tkcg/).

ii. The second feature is the variable of interest, which is
the change in the community structure over time. Here,
a fingerprinting method (Koch et al., 2013, 2014) was
used where groups of cells with similar cell parameters
were declared as an entity type (Ovaskainen and
Meerson, 2010). This is synonymous with a subcommu-
nity, or technically, a gate (Supporting Information S5).
Cells with similar parameter values belong to one gate,
but they can also move between gates when their mor-
phology, and hence their 3-parameter descriptor
changes while they proliferate. Thus, a unique subcom-
munity (gate) usually contains several distinct phylo-
types but can also be mono-dominant (Zimmermann
et al., 2016). This has been verified by cell sorting
combined with 16S rRNA gene amplicon sequencing in
earlier studies (Lambrecht et al., 2017, van Gelder
et al., 2018, Liu et al., 2018) and also in this study to
reveal community and subcommunity compositions
(Supporting Information S12). The used state variables
were the numbers of gates (summed up to 68 gates,
Supporting Information S5, Fig. S5.1 B), the position of
gates in a fingerprint, and the numbers of cells per gate.

iii. Reference dynamics, or space, must be defined via a
set of states for which a community is considered to
have preserved its key features. For bioreactors, this
definition can be made normative, i.e., via desired fea-
tures, which are unchanging community structures in
our study. The rationale behind the approach lies in the
‘self-identity’ of ecological systems (Jax et al., 1998), or
its resilience: identity is maintained although essential
state variables (community structures) change within
certain boundaries. The boundary marking the refer-
ence space was determined by pairwise estimation of
the deviation between parameter points of the state
variables in a multidimensional space (e.g., by using a
stability-computation tool, URL: https://github.com/
fcentler/EcologicalStabilityPropertiesComputation).
Structural community variations around a reference
point were allowed to fluctuate within a boundary of
approximately 0.2 (Canberra distance, Liu et al.,
2018). As long as a community changes within this
boundary, it is defined as constant or as being
essentially the same (Grimm and Wissel 1997). Each
of the two control reactors, C1 and C2, showed small
community structural changes only at the end of the
processes, which were defined as reference space
(Fig. 1a, C1 and C2). The radius rc was only slightly
different between the two reactors, with rc values of
0.23 for reactor C1 and 0.24 for C2 respectively.

The next three features of the ecological study demand
information on (iv) type and duration of disturbance, as

well as the (v) spatial and (vi) temporal scales. The com-
munities in three of the five reactors (D1, D2 and D3)
were disturbed by a repeated and soft temperature
stressor from 30 �C to 40 �C forwards and twice
backwards, which was chosen to mimic common situa-
tions in wastewater treatment plants (Willers et al., 1998,
Supporting Information S2). The spatial scale was set by
the design of the continuous reactor operation while the
temporal scale was bounded to 91 day (Supporting Infor-
mation S1). Continuous reactor environments are obliged
to avoid disturbances and guarantee steady-state condi-
tions. Pure cultures maintain invariable cell distributions
under those conditions (Müller and Babel, 2003). In this
study, significant variations in cell distributions could be
identified, when, instead of a pure culture, a complex
microbial community was cultivated (Movie 1). These var-
iations were also reflected by the amplicon sequencing
data (Supporting Information S12). The strength and pos-
sible causes of these variations are explored in the fol-
lowing two sections.

Neutral mechanisms in undisturbed communities

The insular reactor set-up guaranteed, prior to the tem-
perature disturbances, well-mixed, homogeneous and
constant environments, which would favour neutral mech-
anisms. They gave every organism with shorter than
23.1 h identical chances to undergo growth and prolifera-
tion. In addition, continuous reactors are open to the envi-
ronment by the outflow, which causes a random loss of
organisms. To test for neutral behaviour, two control
reactors, C1 and C2, were sampled and their community
structures analyzed by flow cytometry. The community
assembly processes were computed by using the cell
data of C1 (dark grey) and C2 (light grey) and compared
by dissimilarity analysis (Bray-Curtis index, Fig. 1b). Dur-
ing nearly identical adaptation phases of the inoculum to
the still unbalanced reactor conditions, a few subcommu-
nities were dominant with extremely high cell abundance
(greater than 45%, e.g., G36 of C1 at day 0.25, Support-
ing Information Table S7.1). This caused a more
geometric-like shape of the rank-order abundance curves
with a steep slope and fewer subcommunities with inter-
mediate cell abundances (red line, Fig. 1c). Geometric-
like distributions and steeper slopes of rank-order
abundance curves are accepted indications for niche-
differentiating mechanisms (Tokeshi, 1993; Hubbell,
2001; Begon et al., 2006). After the adaptation phase,
the microbial communities in C1 and C2 clearly evolved
in different directions (Fig. 1b, confirmed by the ANOSIM
procedure, Supporting Information S8, Table S8.1, R-
value of C1 × C2: 0.317). Here, an equal distribution of
cells between all subcommunities (the average cell abun-
dance per gate is 1.47%) of one reactor would support
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Fig. 1. Community analysis based on all subcommunities in samples of control reactors C1 and C2. A. The boundary of the reference space
was calculated using the last 10 time points (79–91 days). The reference state was determined by calculating the mean values per subcom-
munity of these 10 points. The pairwise deviations between the reference state and successive samples were estimated as Canberra dis-
tances (C1: dark grey, C2: light grey). The maximum value of deviation from the reference state was chosen as the boundary of reference
space per reactor (dashed line). B. Dissimilarity analysis of community structures per reactor. Each point in the nMDS plot represented a
community sample (inoculum: black, C1: dark grey, C2: light grey). The sampling time is represented by increasing point sizes. C. Rank-order
abundance curves of samples from C1 (left) and C2 (right); all 68 subcommunities per sample were ranked according to their relative cell
abundances and displayed in decreasing order from left to right. The horizontal line marks the height of relative cell abundance at 0.01%.
The slopes of samples at 0.25 day (red line) are C1: −0.055 and C2: −0.049; mean values of slopes after the adaptation (grey lines) are C1:
−0.038 and C2: −0.041.
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random community assembly due to the set-up of the
reactor favouring neutrality. Indeed, the S-shape of the
log-normal rank-order abundance curves indicated a high
evenness for the majority of the subcommunities
because only a small number of subcommunities with
very high (above 10%) or very low (below 0.01%) cell
abundancies were present in the assembly curves
(Fig. 1c). These rank-abundance distributions remained
fairly constant in the studied time frame.

However, there was high variation in the order of sub-
communities within the rank-order abundance curves.
During the adaptation phase, nearly identical subcommu-
nities dominated each of the very high and very
low-abundant communities, but this trend changed dra-
matically afterwards. The dominant subcommunities,
which are those subcommunities that contain cell num-
bers above the calculated mean cell abundance value
per gate (55 unique subcommunities for both C1 and C2,
Fig. 2a), were not only frequently changing their ranking
but also receded to values below the mean cell abun-
dance value (e.g., from C1: G16, G37-G44; from C2:
G13-G14, G37-G41) or, more seldom, re-emerged
(e.g., in C1: G1 and G12; in C2: G2 and G49). In addi-
tion, the community structures developed into different
patterns and were not identical between C1 and C2
(Fig. 2a), although both reactors were performing in a
steady-state and started from identical situations.

The observation that the rank-abundance distributions
were constant and yet the gates, occupying each particu-
lar rank, varied significantly is indicative of neutral
dynamics, especially given that the environmental and
initial conditions were the same.

Additional indications for community structure changes
can be provided by cytometric α- and β-diversity values.
The cytometric α-diversity value (Günther et al., 2016;
Koch and Müller, 2018) uses the number of dominant
subcommunities per sample to describe variations
between samples in one reactor set-up (Fig. 2b). The
cytometric α-diversity can also include evenness informa-
tion, calculated using the Hill numbers Dq = 1,2 (based on
all subcommunities per sample; Hill, 1973; Liu et al.,
2018; or by bins, Props et al., 2016). The comparison
between cytometric α-diversity values for dominant sub-
communities (Dq = 0) and those calculated for all subcom-
munities (Dq = 1,2) is provided in Supporting Information
S9 (Fig. S9.1) and showed analogous trends. Therefore,
only the Dq = 0 for dominant subcommunities was used
for further analyses. The variations in α-diversity values
were calculated as 6 to 27 dominant subcommunities for
C1 and 7 to 21 for C2, suggesting huge variations in the
respective community structures during their steady-state
cultivations. In addition, high inter-community β-diversity
values between the C1 and C2 reactors were determined
(Supporting Information Table S9.2, C1 × C2, up to 27 at

day 46), which highlights the diverse trajectories of the
two independently grown communities. Finally, intra-
community differences were calculated by intra-
community β-diversity values, which regard only those
dominant subcommunities that are not present in the
other sample when successive samples are compared
pairwise (Fig. 2b). A threshold defined the highest value
for intra-community β-diversity within the reference
spaces (C1: 8; C2: 9). After the adaptation phase, the
intra-community β-diversity values fluctuated frequently,
but mostly below the threshold. However, some of the
β-diversity values surpassed this threshold. We found
two time points in C1 (days 14 and 46) and three time
points in C2 (days 9, 49 and 65) in which the community
assemblies dramatically changed. These huge dissimilar-
ities between community structures are also recognizable
in Fig. 1b. The data suggest that fluctuations occurred in
the steady-state reactor environments. Such fluctuations
can be regarded as drift, an event that reveals the ran-
dom change in relative species abundance (Vellend,
2010; Nemergut et al., 2013; Zhou and Ning, 2017). In
this study, we consider the term ‘drift’ as a result of the
neutral background that stochastically changes, despite
the steady-state condition of the continuous reactor set-
up, the structure of a microbial community. In our set-up,
drift events were acknowledged only after adaptation.
The data suggest that the microbial communities in reac-
tors C1 and C2 changed their structures by those drift
events in a very pronounced manner (Fig. 2b).

Niche differentiation in undisturbed communities

Niche differentiation comprises the influence from both
the biotic and abiotic environment. In a continuous reac-
tor environment, a niche differentiation process occurred
in the adaptation phase until the steady-state was
reached. In addition, as all organisms with longer than
23.1 h were washed out, this condition selected for
organisms that could grow faster. The provided medium
with carbon sources and nutrients as well as oxygen
availability also promoted certain organisms over others
(Supporting Information S3).

Niche differentiation during adaptation was expected to
result in increased interrelationships between organisms.
Therefore, we expected fewer interrelationships after the
adaptation phase and a rapid occupation of the reference
space where interactions should be low. Steady-states
can be considered to favour neutral dynamics and pro-
mote drift events as random or neutral processes. How-
ever, after a drift event, the new communities must
reorganize themselves to the steady-state conditions,
which are accomplished via new interconnections
between microorganisms, which might then also influ-
ence their immediate environment (self-amplification, Wu
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and Loucks, 1995). Therefore, testing for the strength of
interconnections between microorganisms and their envi-
ronment may reveal situations in which niche differentia-
tion is or is not fulfilled. Recent studies have confirmed
that the number of correlations between subcommunities
and abiotic parameters can unravel these interconnec-
tions (Faust and Raes, 2012; Günther et al., 2016).
In this study, correlation analysis was performed with

Spearman’s rank-order correlation coefficient (rho)
(Koch et al., 2013; Gao et al., 2016). Both the cell abun-
dance per subcommunity (Supporting Information S7,
Table S7.1–5) and the respective abiotic parameters

(Supporting Information S7, Table S7.6–10) were
included in the correlation analysis (Supporting Informa-
tion S8, SC vs. SC and SC vs. Abio). To count meaning-
ful significant correlations, the data were subsampled into
three phases, with the first phase representing adapta-
tion, the second phase comprising the majority of the
data and drift events and the third phase indicating the
reference spaces. The number of significant correlations
per defined phase was counted after testing the p value
(< 0.05, Benjamini and Hochberg, 1995) and choosing a
strong correlation coefficient (rho value >0.75 or < −0.75,
Supporting Information S8).
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Fig. 2. Community analysis based on dominant subcommunities in samples taken from control reactors C1 and C2. A. Variations of community
structures through time were displayed as successive columns. Each column represents a community sample where dominant subcommunities
are shown as squares filed with unique colours. The length and position of a square indicate the corresponding dominant subcommunities with
its relative abundance value and the rank-order of this abundance value (relative abundances of dominant subcommunities per sample displayed
in decreasing order from bottom to top). B. Values of cytometric α-diversity (solid points) and intra-community β-diversity (empty points) measured
through the time. The threshold (dashed line) for recognizing drifts was defined regarding to the maximum of intra-community β-diversity values
in reference spaces which were 8 for C1 and 9 for C2.
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The first phase mirrored the adaptation of the commu-
nity to the new situation, where the number of correla-
tions was the highest of all phases per reactor (summed
up to C1: 92 and C2: 108, Table 1), and the niche differ-
entiation mechanisms were superior. In the second
phase, the numbers of correlations were lower, with C1
representing 85 and 86 and C2 61, 40 and 63 correlations
respectively (Table 1), for comparable time intervals.
While clearly only a minority of the subcommunity corre-
lations depended on abiotic parameters (SC vs. Abio),
the majority of correlations were found between microor-
ganisms. These findings clearly indicate unbalanced
community states. In the third phase, climax communities
were expected with low numbers of correlations between
microorganisms and their environment. Although, the
communities in C1 and C2 were both considered to have
entered reference spaces according to their structure, it
seems that only the community in C1 approached a state
near a climax definition according to the counted correla-
tions (summed up to C1: 12, Table 1). By contrast, an
unexpectedly high number of correlations was still found
for C2 (summed up to C2: 77, Table 1), suggesting that
even after 91 days of steady-state cultivation, the interre-
lationships in C2 were still strong. It can be assumed that
the enhanced interrelationships might occur in response
to the three drift events in C2, which requires a new bal-
ance between the subcommunities and their environment
(Fig. 1b, 2a). Therefore, apart from the adaptation pro-
cesses, niche differentiation mechanisms were also
found in the steady-state environments, herein probably
as response to changes in community structures due to
drift events.

Neutral and niche differentiation mechanisms in
disturbed communities

Circumstantial evidence was provided for random drifts in
community structure and, linked to these events, for high
numbers of correlations between subcommunities in the

control reactors. This begs the question posed by Ferren-
berg et al. (2013) concerning whether an environmental
disturbance could synchronize the community structure
in isolated communities and drive them towards some
new niche-differentiated climax community. Here we
introduced moderate changes in the temperature regime
of three reactors [D1 (blue), D2 (red) and D3 (green)] run-
ning alongside the control reactors, with otherwise
unchanged environments. Moderate temperature
changes from 30 �C to 40 �C and the reverse were
applied two times in succession (Supporting Information
S2). The data were evaluated using the same workflow
as for C1 and C2.

Using the state variables, the reference spaces for
communities in reactors D1-D3 were tested, but only D1
reached a similar value to the controls (rc value of 0.25).
The other communities were not constant (D2: rc = 0.59,
D3: rc = 0.47; Fig. 3a). The stressor clearly did not con-
tribute to approaching the reference space synchronously
and in time.

Other ecological measures confirmed this trend. The
dissimilarity analysis, for which the data for all five reac-
tors were computed together, showed that the initial
adaptation phase traversed nearly identically to the con-
trol reactors (Figs 1b and 3b). However, we subsequently
found again diverging assembly processes (Fig. 3b),
despite the soft disturbances. The cytometric community
structure comparison (Fig. 3b) showed matching devia-
tions between the samples of D2 and D3 in comparison
to the control reactors, while D1 clustered separately
from all of them (confirmed by ANOSIM analysis, see
Supporting Information S8, Table S8.1, R-values of
D2 × D3: 0.029 in comparison to D1 × D2: 0.176,
D1 × D3: 0.119). The numbers of cytometric α-diversity
values were comparable to those in C1 and C2, with 8 to
22 in D1, 3 to 23 in D2 and 5 to 24 in D3 (Fig. 4b) respec-
tively. In D1, only gradual structural changes were found
within the starting 18 days (Fig. 4b) and almost no further
variations until the end of the experiment, in contrast to

Table 1. Counts of significant correlations between dominant subcommunities and abiotic parameters for two control reactors (C1 and C2). Only
strong correlations were involved using the Spearman’s rank order correlation coefficient (rho > 0.75 or < −0.75; p value < 0.05, tested according
to Benjamini and Hochberg, 1995). Correlations were tested for successive phases with equal sample numbers (10 time points). First phase:
adaptation phase; second phase: correlations calculated starting at the height of drift events onwards (C1: days 14 and 46 and C2: days
9, 49 and 65); third phase: reference spaces. Significant correlations were visualized as networks in Supporting Information S8, Fig. S8.1.

C1 Phases 1st phase 2nd phase 3rd phase
Drift 1 Drift 2

SC vs. SC 57 57 77 8
SC vs. Abio 35 28 9 4
Sum 92 85 86 12

C2 Phases 1st phase 2nd phase 3rd phase
Drift 1 Drift 2 Drift 3

SC vs. SC 75 40 29 35 45
SC vs. Abio 33 21 11 28 32
Sum 108 61 40 63 77
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D2 and D3. When the temperature relapsed from 40 �C
to 30 �C (Fig. 4b), only two identical subcommunities
dominated both reactors for approximately 10 days,
although at different times (G44 and G45, Fig. 4a). The
Miseq data (Supporting Information Fig. S12.2) demon-
strated that G44 and G45 revealed exclusively Alpha-
proteobacteria as the dominant phylotype. Respective
mono-dominant communities emerged in both reactors at

days 81 (D2) and 49 (D3), which clearly confirmed a spe-
ciation event. Supported by the intra-community
β-diversity values, only short-lived and dissimilar stable
states could be identified in D2 and D3 (Fig. 4b). The
huge variations in α-diversity and intra-community
β-diversity values suggested unequal responses of the
communities in D1, D2 and D3 to the identical tempera-
ture disturbance.

Fig. 3. Community analysis based on all subcommunities in samples of disturbed reactors D1, D2 and D3. A. The boundary of the reference
space was calculated using the last 10 time points (79–91 days). The reference state was determined by calculating the mean values per sub-
community of these 10 samples. The pairwise deviations between the reference state and successive samples were estimated as Canberra dis-
tances (D1: blue, D: red and D3: green). The maximum value of deviation from the reference state was chosen as the boundary of reference
space per reactor (dashed line). B. Dissimilarity analysis of community structures per reactor. Each point on the nMDS plot represented a com-
munity sample (inoculum: black, D1: blue, D2: red and D3: green). The sampling time is represented increasing point sizes. c: Rank-order abun-
dance curves of samples from reactors D1 (left), D2 (middle) and D3 (right); all 68 subcommunities per sample were ranked according to their
relative cell abundances and displayed in decreasing order from left to right. The horizontal line marks the height of relative cell abundance at
0.01%. The slopes of samples at 0.25 day (red line) are D1: −0.054, D2: −0.055 and D3: −0.056; mean values of slopes after the adaptation
(grey lines) are D1: −0.049, D2: −0.049 and D3: −0.052.
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Furthermore, the rank-order abundance curves of D2
and D3 were not as neutrally assembled as for the control
reactors (C1 and C2) and D1 (Fig. 3c). After the adaptation
phase, they showed steeper slopes (more geometric-like
curves, Supporting Information S8) and more subcommu-
nities with low-cell abundances (below 0.01%; C1:
986, C2: 1076, D1: 1239, D2: 1532 and D3: 1576 out of
4012 (59 samples × 68 gates per reactor)), which also
indicated selection and dominance of fewer subcommu-
nities (Fig. 3c). In addition, the abundance ranking of the
dominant subcommunities did not differ between all three
reactors as for the controls (Fig. 4a, 63 unique subcommu-
nities for D1, D2 and D3). These findings suggested that
temperature shifts transiently but asynchronously affected
community structures by niche differentiation, at least in
the disturbed reactors D2 and D3.

To further assess the niche differentiation forces, sig-
nificant correlations were calculated for D1, D2 and D3
(Table 2), where the first (the adaptation phase) and the
third phases (the reference space) were the same as

previously defined. The second phase was subsampled
according to the temperature stressors (T1-T4, Support-
ing Information S8). The numbers of correlations in the
first phase were high at D1: 98, D2: 98 and D3:
91 (Table 2) and comparable to those of the control reac-
tors (Table 1). In the second phase, higher correlation
numbers were found (D1max: 109, D2max: 138 and
D3max: 125, Table 2) in comparison to those caused by
drifts in controls. In addition, according to the correlation
analysis, the parameter temperature (T) was related to
the majority of dominant subcommunities for almost all
situations in which temperature stress occurred
(Supporting Information S8, Fig. S8.1). In the second
phase, we found 38 edges for D1, 30 edges for D2 and
41 edges for D3 in comparison to the summarized
2 edges for all reactors in the first phase. The third phase
was sustained with lower numbers of correlations (D1:
84, D2: 71 and D3: 62), although the value of C1 was
clearly not reached (Table 1). Thus, the increased num-
bers of correlations and the presence of edges between
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Fig. 4. Community analysis based on dominant subcommunities in samples taken from disturbed reactors D1, D2 and D3, which were treated by
identical temperature changes (black lines in the middle). A. Variations of community structures through time were displayed as successive col-
umns. Each column represents a community sample where dominant subcommunities are shown as squares filed with unique colours. The
length and position of a square indicate the corresponding dominant subcommunity with its relative abundance value and the rank-order of this
abundance value (relative abundances of dominant subcommunities per sample displayed in decreasing order from bottom to top). B. Values of
cytometric α-diversity (solid points) and intra-community β-diversity (empty points) measured through the time (D1: blue; D2: red and D3: green).
The threshold (dashed line) for recognizing drifts was defined as for C1 (intra-community β-diversity = 8).
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temperature and subcommunities during the temperature
pressure also suggested highly active niche differentia-
tion mechanisms in the disturbed reactors.

Stability properties of undisturbed and disturbed
communities

Both neutral and niche differentiation mechanisms
seemed to be linked under steady-state cultivation condi-
tions. Drift events were observed frequently, and soft dis-
turbances increased niche differentiation effects.
Calculating stability properties for all five community
structures will reveal the degree to which communities
resist drifts or disturbances and recover despite neutral
and niche differentiation forces. To validate this situation,
the stability of the communities was estimated by calcu-
lating deviations pairwise in a multidimensional space by
using the state variables and Canberra distance (Lance
and Williams, 1967; Kuczynski et al., 2010; Liu et al.,
2018). The variations were quantified by the deviation dc,
which is calculated on the basis of a reference point that
was placed before the inset of a disturbance or drift
event. The reference space was obtained from C1
(rc = 0.23, Fig. 1a). All communities were found to deviate
from the reference point and pass through the
boundary of the reference space (Supporting Information
S10, Fig. S10.2). The highest community average
deviation (accessed with dc. peak) was found for the reac-
tor D3 with dc.peak.ave = 0.70 and the lowest for C1 with
dc.peak.ave = 0.46. Consistently, resistance was lowest in
the disturbed reactor D3 (average value RS = 0.29),
while constancy was highest for C1 (average value
RS = 0.54). The average values RS of the other three
reactors did not vary remarkably (C2 = 0.39, D1 = 0.45
and D2 = 0.35). Recovery values were also calculated

but found to be extremely low. None of the communities
recovered to their original structure (Supporting Informa-
tion Table S10.1).

These data revealed that soft temperature distur-
bances prompted low resistance, but also drift events in
the controls caused similar high deviations. All five reac-
tors failed to recover from drifts or temperature distur-
bances despite continuous steady-state conditions. Both
neutral and niche differentiation mechanisms led to
unsteady communities and low-stability properties.

Discussion

The aims of this study were (i) to unravel ecological prin-
ciples of microbial community assembly in insular envi-
ronments and (ii) to find concepts for maintaining an
intended community structure over longer time periods.
We found that both niche differentiation and neutral
forces are responsible for different and intermittent
degrees of fluctuations in dynamic community assembly.

The five communities could not be synchronized
despite established steady-state continuous conditions
as can be done for pure cultures (Skarstad et al., 1985,
Strässle et al., 1989); rather, they developed unique
structures. The respective communities did not converge
to a climax community even in individual reactors. Stabil-
ity measures, such as constancy, resistance and recov-
ery values, calculated from references points prior to drift
and disturbances were low or not existent. Instead, the
community assembly characteristics were different
between all reactors and, remarkably, continuously
changing with high frequency. We observed drifts occur-
ring both in the undisturbed reactors and also superim-
posed on the temperature-related variations in the
disturbed environments. The dynamics clearly showed

Table 2. Counts of significant correlations between dominant subcommunities and abiotic parameters for three reactors treated with temperature
stressors (D1, D2 and D3). Only strong correlations were involved using the Spearman’s rank order correlation coefficient (rho > 0.75 or < −0.75;
p value < 0.05, tested according to Benjamini and Hochberg (1995). Correlations were tested for successive phases with equal sample numbers
(10 time points). First phase: adaptation phase; second phase: correlations calculated starting at the inset of temperature stressors (T1-T4); third
phase: reference spaces.

D1 Phases 1st phase 2nd phase 3rd phase
T1 T2 T3 T4

SC vs. SC 64 69 54 27 57 65
SC vs. Abio 34 34 22 26 52 19
Sum 98 103 78 53 109 84

D2 Phases 1st phase 2nd phase 3rd phase
T1 T2 T3 T4

SC vs. SC 79 59 46 80 113 46
SC vs. Abio 19 25 17 32 25 25
Sum 98 84 63 112 138 71

D3 Phases 1st phase 2nd phase 3rd phase
T1 T2 T3 T4

SC vs. SC 53 84 83 82 33 42
SC vs. Abio 38 19 27 43 30 20
Sum 91 103 110 125 63 62
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that the use of disturbance did not re-synchronize the
communities.

The relative roles of niche differentiation vs. neutral
mechanisms

To clarify the relative roles of niche differentiation
vs. neutral mechanisms, ecological measures were used.
Our analyses support that the niche differentiating mech-
anism became only temporarily more dominant based on
two major ecological measures.

First, niche differentiation effects are suggested by the
geometric-like rank order assembly curves with steeper
slopes and by including more subcommunities with low
cell abundances (below 0.01%). Such curves were found
for communities during adaptation (in all five reactors)
and under disturbance. In addition, in D2 and D3, not
only a very low number of highly dominant subcommu-
nities were prevalent temporarily, but these were also the
same ones.

Second, niche differentiating mechanisms were dis-
closed by the numbers of detected significant correla-
tions. An increased number of positive or negative
correlations suggest both increasing interactions between
organisms and between organisms and abiotic parame-
ters (Seebacher and Franklin, 2012; Faust and Raes,
2012; Needham and Fuhrman, 2016; Günther et al.,
2016). Adaptations to new conditions are known to cause
not only changes in cell states, e.g. by cell growth and
proliferation but also to alter community structures and, in
response, lead to variations in abiotic parameters. Large
numbers of correlations were detected in the adaptation
phases of all reactors, but especially in response to drifts
and the soft temperature stressor. While the high correla-
tion numbers during the adaptation process were obvi-
ously caused by the different environmental background
of the origin of the inoculum and the continuous set-up
of the reactors (also see Miseq analysis, Supporting
Information Fig. S12.2), the random drifts and tempera-
ture disturbances initiated new interactions between
microorganisms.

Neutral mechanisms were expected in our set-up
because the environment was maintained in a steady-
state. In addition, the set-up provided no means to buffer
species loss. In this context, both equal competitive abili-
ties per cell and elimination by continuous dilution can be
assumed to be vital features of our set-up. We found
three lines of evidence for the presence of neutral
mechanisms.

First, the strongest evidence for neutral drifts is pro-
vided by the observation that, after adaptation, the shape
of most rank-order abundance curves of all reactors
showed lognormal-like distributions that were not steep.

This phenomenon was predominantly observed in the
controlled but also in the disturbed systems and is
typical for a neutral assembly of communities (Hubbell,
2001; Matthews and Whittaker, 2014; Alroy, 2015). The
S-shape of lognormal assembly curves showed commu-
nities with relatively more subcommunities with a medium
cell abundance (relative cell abundance between 0.01%
and 10%), thus uncovering the weak niche selection of
reactor conditions.

Second, according to Ofiţeru et al. (2010), neutral
mechanisms can also be proven by variations in the rank
order of the entities. Again, this was found predominantly
in the control but also in the disturbed systems.

Third, diverging inter-community β-diversity across reac-
tors suggests active neutral mechanisms (Chase, 2010).
This hypothesis was proposed even for an open system
(with regional exchange), in which stochasticity in assem-
bly history can create multiple stable equilibria of commu-
nity structures across local sites, leading to a high inter-
community β-diversity (Chase, 2003; Pagaling et al.,
2017). In our study, inter-community β-diversity showed a
clear positive trend (gradient value = 0.12, R2 = 0.413) for
the control reactors (C1 × C2, Fig. 5a). By contrast, the
reactors treated with the soft temperature stressor (D1, D2

Fig. 5. Inter-community β-diversity values (points) determined for
samples compared pairwise for two reactors which were operated
under the same conditions. Linear regression of inter-community
β-diversity vs. time (lines) showed gradients of differences in diversi-
ties between communities. A. pairwise comparison of reactors
C1 × C2 (grey). B. pairwise comparison of reactors treated by tem-
perature stressors: D1 × D2 (blue), D1 × D3 (red) and D2 × D3
(green).
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and D3) showed lower gradients with D1 × D2 = 0.09
(R2 = 0.153, blue line) and D2 × D3 = 0.08 (R2 = 0.159,
green line), and even a negative gradient for
D1 × D3 = −0.01 (R2 = 0.005, red line, Fig. 5b).
The results suggest that neutral forces were stronger

in the control reactors but lower in the disturbed ones.
Temperature stress, especially the second one, contrib-
uted only temporarily to more similar structures of com-
pared communities, a phenomenon that was also
demonstrated by Chase (2007) in pond communities.
Nevertheless, the disturbed communities reorganized
themselves within only a few generations into an altered
higher cytometric α-diversity (Fig. 4, Supporting Informa-
tion Table S9.1) which is supported by data from
sequencing analysis on the class level (D2: 81–90 days;
D3: 49–70 days, Supporting Information Fig. S12.2) and
the genus level (https://osf.io/4tkcg). Such results show
that neutral mechanisms were also robust in the dis-
turbed reactors, probably due to the upcoming condition-
ally rare taxa. We have previously suggested that the
upcoming conditionally rare taxa might represent a
response to stress situations (Günther et al., 2016).
Interactions of niche differentiation and neutral mecha-

nisms during community assembly can be assumed
using neutral models as the null hypothesis (Leibold
et al., 2004; Dumbrell et al., 2010; Faust and Raes, 2012;
Zhou et al., 2013). Computational neutral models were
already well used in macroecology (Fisher et al., 1943;
Preston, 1948; MacArthur, 1960) until Hubbell developed
the unified neutral theory of biodiversity and biogeogra-
phy (UNTB, 2001), which has since been modified for
microorganisms (Sloan et al., 2006; Woodcock et al.,
2007; Ofiţeru et al., 2010). When the immigration rate is
equal to zero, a steady loss of richness can be expected,
and the climax community will be random mono-species-
dominant (Hubbell, 2001; Sloan et al., 2006). The precon-
dition for such a development is a disturbance-free envi-
ronment. We did not find indications for developments to
mono-species-dominant communities, but we argue that
the dilution rate itself acted as an intervention in two
directions: it provided new resources continuously,
thereby lowering competition between species, and it cre-
ated sufficient space for competitive inferiors to co-exist
because the slow growth rate allowed them to stay in the
reactor with high probability (Chesson and Huntly, 1997).
Although, the niche differentiation mechanisms in our set
were less strong, we found, like others, that they and
neutral processes are not mutually exclusive (Gravel
et al., 2006; Adler et al., 2007; Ofiţeru et al., 2010). For
instance, the decrease in the ammonium concentration in
the medium of the control reactors was accompanied by
a decrease in pH and electrical conductivity (Supporting
Information S3). Thereby, the activity of the ammonium
oxidizing bacteria caused, in the undisturbed reactors, a

change in reactor conditions, which indicated niche differ-
entiation forces in otherwise neutral environments. This
exemplary relationship shows the interconnection
between neutral and niche differentiation mechanisms
and that the two mechanisms do not appear
independently.

The Intermediate Disturbances Hypothesis (IDH) backs
high α-diversity values

In the disturbed reactors, some α-diversity values were
temporarily very low but subsequently recovered to the
starting values. The α-diversity medians were even slightly
higher (Fig. 6, D1: 17; D2:15; D3:17) in comparison to the
control reactors (Fig. 6, C1: 13; C2: 15). These findings
can be observed in the frame of the IDH, which states that
disturbance regimes that are intermediate in terms of fre-
quency and/or intensity increases diversity, while for low
frequencies diversity is low due to the dominance of a few
species and for high frequencies, overall extinction rates
are too high for most species to persist (Connell, 1978;
Flöder and Sommer, 1999; Buckling et al., 2000; Wu
et al., 2002; Griffiths and Philippot, 2013). For intermediate
disturbance rates or intensities, many species can co-exist
because enough space is created for the weaker competi-
tors without compromising their persistence.

Indeed, we temporarily determined low α-diversity
values for D2 and D3 and concurrent decreases in cell
numbers from 6 × 106 cells mL−1 to approximately
6 × 104 ml−1 (Supporting Information Fig. S3.1).

Fig. 6. Box plot analysis of cytometric α-diversity per each reactor
(C1: dark grey; C2: light grey; D1: blue; D2: red and D3: green).
α-diversity values of 65 samples per each reactor were ranked in
decreasing order from top to bottom, where whiskers mark the rank
positions of 5% and 95% and stars mark the max (solid) and min
(empty) values respectively. Box areas cover the rank range from
25% to 75% and the middle line is the position for medians.
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However, both diversity values and cell numbers were
ultimately recovering, indicating disturbances that act at
intermediate levels and allow the persistence of commu-
nities in their niches. Nevertheless, it needs to be
stressed that persistence in cell number and α-diversity
values did not accompany persistence in community
structures because all the communities developed dispa-
rate structures.

Slow competitive displacement causes non-equilibrium
community states

The purpose of stable community management is to
maintain the community in a desired equilibrium with its
environments. Constant environments are expected to
contribute to the establishment of synchronized or at
least multiple equilibria (DeAngelis and Waterhouse,
1987; Chase, 2003). However, no synchronization and
no such equilibria were found in our reactors, as commu-
nity structures varied disparately and over time. Under
steady-state performance, temperature disturbances
caused unique niche differentiation processes. We
showed that, while being reduced to low values intermit-
tently, a high and unequal α-diversity was finally main-
tained, although approximately 100 generations must
have been produced. In non-equilibrium theories, slow-
competitive displacement (Chesson and Case, 1986)
was considered as one causal mechanism. An intermedi-
ate disturbance may suggest no or slow competitive dis-
placement of organisms; therefore, the non-equilibria in
the disturbed reactors may have been supported by
mechanisms of the IDH. In addition, Chesson and Case
(1986) described the non-equilibrium to be connected to
the competitive equality of organisms in communities,
which can go extinct only by random drift, a situation
established predominantly in the control reactor set-up.
Therefore, competitive equality amongst organisms may
always lead to non-equilibrium in insular steady-state
systems that do not allow species inflow.

In summary, our findings describe the relative roles of
neutral and niche differentiation mechanisms of microbial
community assembly in steady-state insular environments.
The neutral mechanisms were indicated by (i) the absence
of steep lognormal-like abundance curves, (ii) varied order
of ranked subcommunities per sample and (iii) increased
inter-community β-diversity by pairwise community com-
parisons over time. The niche differentiation mechanisms
were indicated by (i) geometric-like rank-order abundance
curves with steeper slopes, which represented strong
selections for specific dominant subcommunities and
(ii) active interactions between abiotic and biotic parame-
ters, as represented by the number of significant correla-
tions. The neutral and niche differentiation mechanisms
led to communities with low stability properties (resistance

and recovery). Neutral mechanisms (especially drifts) were
found to influence the assembly of microbial communities
with superior strength in our system. Thus, disparate
assembly trajectories of communities were found, there-
fore qualifying the communities in our reactors as non-
equilibrium systems. Furthermore, the tested periodic tem-
perature disturbances were not an effective means to syn-
chronize communities, and IDH suggested that the applied
disturbances fell into intermediate disturbance pressure
frequencies that caused competition in which species can
co-exist. These findings suggest that complex microbial
communities in insular steady-state environments probably
cannot be synchronized or maintained in the original or
intended assembly.

Experimental procedures

Origin and cultivation of the microbial communities

A natural wastewater sample was obtained from a full-
scale wastewater treatment plant and cultivated in
parallel in five insular continuous steady-state reactors.
Specific conditions and details are provided in Supporting
Information S1, and the set-up of disturbances is shown
in Supporting Information S2.

Flow cytometric measurements

Cells were directly stabilized after sampling and stored
until measurement (Supporting Information S4). Cells
were stained for DNA and measured by flow cytometry
as described previously (Liu et al., 2018, Supporting
Information S4). Samples were analyzed with a BD Influx
v7 Sorter (Becton, Dickinson and Company, Franklin
Lakes, NJ, USA). The details of the instrumental and
analysis set-up are provided in Supporting Information
S5. In addition to the optical calibration, 0.5 μm and 1 μm
beads were amended into every sample as internal stan-
dards to monitor the instrument stability and allow for a
correct comparison of cytometric data. All raw data can
be accessed at the FlowRepository (URL: https://
flowrepository.org/) under accession number: FR-FCM-
ZYWX. Quality control of the cytometric measurements
was performed with triplicate measures (Supporting Infor-
mation S6). The abundance dynamics of cells per single
subcommunity are shown in Supporting Information S11.

Analytical methods

Parameters were measured according to the German
DIN guidelines as well as standard procedures. The
details of the analytic procedures and values are pro-
vided in Supporting Information S3.
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Analysis of ecological metrics and statistics

If not stated otherwise, all calculations were performed in
RStudio (V1.0.143, Boston, MA, USA) with R (V3.3.3, R
Core Team, 2017), and graphs were generated with the
package ggplot2 (Wickham and Chang, 2017) and R-script
(URL https://github.com/LiuZishu/MCFlowCytoAnalysis).
The R packages vegan (Oksanen et al., 2017) and flowCy-
Bar (Koch et al., 2013, http://bioconductor.org/packages/
flowCyBar/) were used for dissimilarity analysis, and the
packages Hmisc (Harrell, 2017), psych (Revelle, 2017),
and qgraph (Epskamp et al., 2017) were used for correla-
tion analysis. For the stability calculation, an R-script from
Liu et al. (2018) was used. The data in Supporting Informa-
tion S6, S9 and S10 were visualized with the software Ori-
ginPro (V9.0, OriginLab, Northampton, MA, USA).

Analysis of community composition by MiSeq

16S rRNA gene (V3-V4 region) amplicon sequencing
was performed using Illumina Miseq (San Diego, CA,
USA) for exemplary whole community samples and
sorted subcommunities. The procedure for DNA extrac-
tion, library preparation and sequencing data evaluation
are documented in the supplementary information
(Supporting Information S12). The sequencing data sup-
ported the conclusions drawn from the flow cytometry
data as they verified general trends such as community
adaptation to reactor conditions as well as the determinis-
tic influence of the temperature disturbance on commu-
nity composition and its recovery after disturbance.
The samples were resolved on the class (Supporting
Information S12) and genus level (Supporting Information
S12, data repository https://osf.io/4tkcg/). One mock
community (MBARC26, Singer et al., 2016) was added to
the sequencing project to ensure the quality of the
sequencing run as well as the sequencing analysis. All
raw data are available under the BioProject (URL: https://
www.ncbi.nlm.nih.gov/bioproject/) accession number:
PRJNA437592.
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