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Abstract

Background: A number of simulators have been developed for emulating next-
generation sequencing data by incorporating known errors such as base
substitutions and indels. However, their practicality may be degraded by functional
and runtime limitations. Particularly, the positional and genomic contextual
information is not effectively utilized for reliably characterizing base substitution
patterns, as well as the positional and contextual difference of Phred quality scores is
not fully investigated. Thus, a more effective and efficient bioinformatics tool is sorely
required.

Results: Here, we introduce a novel tool, SimuSCoP, to reliably emulate complex DNA
sequencing data. The base substitution patterns and the statistical behavior of quality scores
in Illumina sequencing data are fully explored and integrated into the simulation model for
reliably emulating datasets for different applications. In addition, an integrated and easy-to-
use pipeline is employed in SimuSCoP to facilitate end-to-end simulation of complex
samples, and high runtime efficiency is achieved by implementing the tool to run in
multithreading with low memory consumption. These features enable SimuSCoP to gets
substantial improvements in reliability, functionality, practicality and runtime efficiency. The
tool is comprehensively evaluated in multiple aspects including consistency of profiles,
simulation of genomic variations and complex tumor samples, and the results demonstrate
the advantages of SimuSCoP over existing tools.

Conclusions: SimuSCoP, a new bioinformatics tool is developed to learn informative
profiles from real sequencing data and reliably mimic complex data by introducing various
genomic variations. We believe that the presented work will catalyse new development of
downstream bioinformatics methods for analyzing sequencing data.

Keywords: Next-generation sequencing, Simulators, Base substitution errors, Phred base
quality, Intra-tumor heterogeneity
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Background
As next-generating sequencing (NGS) techniques have become the current standard

for profiling genomes, large amount of data is extensively accumulated in last decade,

but the downstream analysis of these data remains a bottleneck [1]. Therefore, an ar-

senal of bioinformatics tools is constantly being complemented to provide improved

processing ability and inference performance. Benchmarking the newly developed

methods against existing tools is essential to examine their advantage in some specific

aspects, and simulation of sequencing data has become a popular approach to provide

baselines for comparison.

The inner complexity of NGS technologies gives rise to numerous challenges in reli-

ably emulating sequencing data. It is well known that in NGS experiments base-calling

errors often arise in the procedure of translating sensor signals to distinct nucleotides,

and this type of errors is dominant in Illumina sequencing platforms [2]. Note that base

substitution errors may also occur during PCR amplification of the DNA templates [3].

To measure the quality of each base call, Phred quality score is defined as a prediction

of base-calling error probability that can be used to discriminate between correctly and

erroneously called bases [4]. The existing studies demonstrate that specific patterns of

substitution error and distributions of quality scores are observed in Illumina sequen-

cing platforms [5, 6]. Fully investigating these statistical differences in NGS reads is es-

sential to obtain useful knowledge that can be employed to improve the read alignment

quality, and to emulate reliable sequencing data.

So far, numerous tools have been developed for simulating DNA sequencing data

for specific applications (Table 1). These tools show distinct features in multiple

aspects including read layout (single end, paired-end and mate pair), output format

(FASTQ, SAM and FASTA), programming language, supported sequencing strategy

(whole-genome sequencing or/and exome sequencing), error models (positional or/

and contextual dependent), support for GC bias, genomic variation, and tumor

sample simulation. The common pipeline to simulate sequencing data consists of

two steps: 1) manipulate input reference sequence to generate genomes from which

reads are to be captured; 2) sample reads from the produced genomes and insert

sequencing errors into the reads under a deterministic or stochastic manner. The

first step involves insertion of various genomic aberrations including single nucleo-

tide variation (SNV), copy number variation (CNV), loss of heterozygosity (LOH),

indel and other structure variations (SV) into the reference sequence [8, 9, 15, 16,

18, 19]. For instance, pIRS [9] randomly insert variations into the reference se-

quence under fixed frequency. Pysim-sv [19] can simulate both germline and som-

atic genomic variations. Specifically, it is capable of emulating heterogeneous

subclones in an iterative way and generating tumor samples by mixing different

cell populations. Similar to Pysim-sv, SCNVSim [16] mimics tumor subclones using

an iterative manner. Another tool called IntSIM [18] uses hidden Markov models

(HMM) to imitate germline or somatic variations, and can generate reads for im-

pure tumor samples by mixing tumor and normal genomes. There are several tools

that can simulate genomic variations provided that the baseline reference sequence

is preprocessed to include the variations to be simulated, such as ART [7], InSili-

coSeq [20] and FASTQSim [14]. This gives rise to inconvenience and challenge for

non-professional users to accurately generate underlying genome sequences.
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In the second step of the read simulation, base sequences are randomly copied from

the genomes, and further processed to introduce sequencing errors including base sub-

stitutions and indels based on specific error models. The length of reads can be fixed

or sampled from a probability distribution [13]. The error models are used to describe

statistical distributions of base substitution errors, indels and quality scores, which can

be learned from real sequencing data. There are two types of error models imple-

mented in current tools, defined as position and context dependent models. The pos-

ition dependent model captures the relationship between sequencing errors and base

positions, and is usually represented by per-position probability distributions of the er-

rors. The existing simulators almost invariably build this type of models and conclude

some meaningful perspectives: the base substitution error tends to happen at a much

higher rate near the end of read, and the larger the base position, the higher the error

rate. For instance, ART models substitution errors to be positional dependent, and pro-

files indel errors from real training datasets. pIRS generates base sequence according to

a distribution matrix that stores the base-calling information in all read cycles derived

from real sequencing data, and yields quality scores based on a quality-transition matrix

representing the correlation between adjacent bases. Similar model is adopted by BEAR

[13] to generate base quality for correct base calls, and a second-degree polynomial re-

gression is used to sample quality values for erroneous base calls. More recently, InSili-

coSeq is introduced to accurately model per-base quality scores using Kernel Density

Estimation [21], and able to reliably produce reads that show highly consistent base

quality distributions with the underlying truth.

It is noteworthy that existing studies report that substitution errors are also

closely correlated with the genomic sequence contexts and show specific patterns

for different sequencing platforms [22, 23]. This kind of features cannot be fully

covered by the positional information, therefore context dependent error models

should be also built to enable the comprehensive profiling of sequencing errors. To

our knowledge, GemSIM [10] is the only one method that supports both position

and context dependent models. It tracks three bases preceding each position of the

read and corresponding quality scores to simulate substitution errors. Deep mining

of the contextual information is still highly needed to strength our knowledge

about the underlying substitution patterns and provide aid to more accurate simu-

lation of data.

GC-content bias is another factor that should be considered when generating reads.

The existing studies have demonstrated GC-content is one of the main factors that

affect depth of coverage (DOC) of a genomic region, and leads to non-uniform distri-

bution of reads along the genome [24, 25]. Building the relationship between DOC and

GC-content using appropriate models is essential to emulate GC-content bias pre-

sented in real data, and guide the development of effective methods for alleviating GC-

content bias. Several simulators have explicitly modeled this bias [9, 11, 12, 17–19, 26].

For instance, pIRS models GC-content bias by sampling a read with the probability

proportional to the mean coverage associated with the GC-content of the read. IntSIM

does not use the coverage information and employs a linear function of GC-content to

denote the probability of generating a read. Wessim [11] is specifically designed to

emulate whole-exome sequencing data, and employs a probability partially defined by

GC-content to filter generated fragments.
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Despite the high efficiency achieved by current NGS simulators, their practicality

may be degraded by functional and runtime limitations. For instance, both pIRS and

Pysim-sv provide no options for users to specify the exact locations of the simulated

variations. Although a delicate representation of read simulation process is introduced

in IntSIM, it is memory inefficient when inferring quality profiles from raw sequencing

data. InSilicoSeq can only generate reads with fixed length estimated from a BAM file,

and is of memory inefficiency when simulating a large amount of reads. Particularly,

the substitution patterns based on contextual information are not fully investigated in

the existing simulators.

Here we present a novel bioinformatics tool called SimuSCoP to complement the ar-

senal of tools for emulating complex DNA sequencing data. Compared to existing

tools, SimuSCoP gets substantial improvements in reliability, functionality, practicality

and runtime efficiency. First, the base substitution patterns and the statistical behavior

of quality scores in Illumina sequencing data are fully explored from both positional

and contextual views to simulate more reliable reads. Second, effective implementations

of biological (indel, SNV, CNV and tumor heterogeneity) and technological features

(whole-genome or exome sequencing, read layout) enable SimuSCoP to meet require-

ments of different applications. Third, an integrated and easy-to-use pipeline is

employed in SimuSCoP to facilitate end-to-end simulation of complex samples. Finally,

high runtime efficiency is achieved by implementing the tool to run in multithreading

with low memory consumption. We comprehensively evaluate the tool from multiple

aspects, and the results demonstrate SimuSCoP’ advantages over existing tools.

Implementation
SimuSCoP consists of two modules as shown in Fig. 1: 1) inference of base substitution

patterns, base quality distributions, GC-content bias and standard deviation of insert

size from aligned NGS reads; and 2) simulation of complex NGS data using the learned

profiles. The first module takes three inputs: 1) a BAM file of non-tumor sample; 2) a

FASTA file of the reference sequence to which the reads are aligned; and 3) a VCF file

generated from the BAM using GATK [27] HaplotypeCaller utility or SAMtools [28].

Fig. 1 Overview of the SimuSCoP framework. Two functional modules are implemented to learn profiles
from real data and simulate reads
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For exome sequencing, a BED file defining target regions should also be provided. The

second module combines the inferred profiles, user-defined technological features and

various genomic variations to yield complex NGS data.

Profile inference

Inference of base substitution patterns

For estimating base substitution patterns, the alignments with high mapping quality (> 15)

from the BAM file as well as the data in the FASTA and VCF files are extracted to con-

struct all pairs of read sequence and corresponding source sequence. The source

sequence is the underlying sequence from which the read is generated. The VCF file de-

fines the germline heterozygous SNPs inferred from the BAM file, and is used to eliminate

non-error substitutions. To characterize the difference of substitution patterns between

distinct positions within the read, we divide all positions into equal-sized bins and infer

substitution patterns for each bin separately. Using the source sequence X as the baseline

for comparison, each base Yi of read sequence Y is evaluated to measure the probabilities

being substituted for other base y ϵ ΔY i , here ΔY i is the set of all bases (A, C, T and G) ex-

cept Yi. On the other hand, to explore the effects of genomic contexts on base substitution

errors, the base of each position i is considered to be dependent on the k-mer bases (Xi-k +

1,Xi-k + 2, …,Xi) derived from the source sequence, and the conditional probability of Y is

defined as follows:

p Y Xjð Þ ¼
Yk − 1

i − 1

p Y i X1;X2;K;Xijð Þ
YT
i¼k

p Y i Xi − kþ1j ;Xi − kþ2;K;Xið Þ ð1Þ

where T is the length of read sequence. The probability model in (1) effectively char-

acterizes the dependency of observed read on both positional and contextual informa-

tion contained in the source sequence. We estimate each item in (1) as the occurrence

frequency of corresponding substitution given the k-mer bases, and the profiles are

separately inferred for forward and reverse reads in paired-end sequencing.

Inference of base quality distributions

To examine the difference of quality scores among different positions within the read,

the statistical distributions of quality scores of each nucleotide are evaluated. Similarly,

the positions are also divided into equal-sized bins, and the statistics are separately

measured for each bin. Suppose the quality scores of the readout nucleotide sequence

are denoted by Z, the conditional probability of Z is defined as:

p Z X;Yjð Þ ¼
YT
i¼1

p Zi Xi;Y ijð Þ ð2Þ

where we assume the quality scores of different positions are independent, and the

quality score of each base position only depends on the bases at the corresponding pos-

ition. p (Zi|Xi,Yi) represents the score probability of the i-th base and depends on the

positional and contextual information. By comparing the bases at the same positions

within the read sequence Y and source sequence X, the status of the base pair (Xi,Yi)
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can be represented by one of the following scenarios: 1) Xi is correctly called (Xi = Yi);

2) Xi is erroneously called (Xi ≠ Yi). Therefore we define the p (Zi|Xi,Yi) as:

p Zi Xi;Y ijð Þ ¼ pc Zi Y ijð ÞIXi¼Y i þ pe Zi Y ijð Þ 1 − IXi¼Y ið Þ ð3Þ

where pc (Zi|Yi) and pe(Zi|Yi) are the respective quality probabilities under conditions

Xi = Yi and Xi ≠ Yi, and ΙXi¼Y i is an indicator function. We calculate the respective oc-

currence frequency of quality score Zi as the probability pc (Zi|Yi) and pe (Zi|Yi).

Inference of GC-content bias

To explicitly describe the effects of GC-content on depth of coverage (DOC), normal

distributions are used to represent the distributions of the DOC corresponding to dif-

ferent GC percentages. For whole-genome sequencing (WGS) data, the DOC and GC

percentage of non-overlapping 1 kb windows are obtained. For target sequencing, the

DOC and GC percentage of each target region are measured, and the DOC data is fur-

ther normalized for target size. Whereafter, median normalization is applied to the

DOC data, and the mean values associated with each GC percentage are inferred by

adopting locally weighted linear regression of the DOC over GC percentage. The stand-

ard derivation of DOC is then calculated as:

σd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

di −mið Þ2=N
vuut ð4Þ

where di is the DOC of the i-th window, mi is the DOC mean value, and N is the

number of windows.

Simulation of reads

Simulating single read

To simulate a read from a given source sequence, indels of different lengths are first

randomly inserted into the source sequence under fixed occurrence rate. The indel

error rate and the distributions of indel length are inferred from real samples, and the

bases of insertions are randomly sampled from the nucleotides “ACGT”. The read se-

quence is then generated by sampling nucleotides from the conditional probability dis-

tributions given the source sequence. The quality scores are produced under two

different scenarios: for correctly called nucleotides, the quality scores are sampled from

the probability distribution pc(z|y); for erroneously called nucleotides, pe(z|y) is used to

generate quality scores. This process will yield a sequence pair (Y, Z) from source

sequence X.

Simulating reads from a genomic region

To sample M reads from a genomic region, the region is first divided into non-

overlapping 1 kb windows, and the normalized DOC of each window is sampled from

the normal distribution N(mg, σd), here g is the GC percentage of the window and mg is

the mean DOC associated with GC g. The DOC data D is further normalized to calcu-

late the number of reads sampled from the i-th window as Mi =Di/∑jDj. For single end
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sequencing, fixed-length fragments are randomly obtained from each window and base

sequence is captured from either ends of each fragment. For paired-end sequencing,

fragments of normal distributed length are first sampled from each window, and two

base sequences are generated from the ends of each derived fragment. The produced

base sequences are used as source sequences to generate reads by using aforemen-

tioned approach. This process will produce M sequence pairs from a genomic region.

Simulating reads from mixed genomes

To sample N reads from heterogeneous samples mixed by multiple distinct

genomes or cell populations, the average copy number (ACN) of each genome is

first calculated. The number of reads sampled from each genome is then empiric-

ally measured as Ni ¼ wiPiN=
PG
j¼1

wjP j . Here we use wi and Pi to denote the pro-

portion and ACN of the i-th genome respectively, and G to represent the number

of mixed genomes in the heterogeneous sample. Reads are emulated from each

genome by using the approach described in the previous section “Simulating reads

from a genomic region”.

Simulation of complex data

In the second module of SimuSCoP, a configuration file is used to specify the all

aspects of the sequencing data. As shown in Fig. 1, the main parameters and profiles in-

clude: 1) a FASTA file of the reference sequence from which reads are to be generated;

2) the profiles inferred by the first module of SimuSCoP; 3) germline SNPs and

genomic variations to be simulated; and 4) technological features including sequence

layout (single end, paired end), read length, sequencing coverage and insert size (for

paired end sequencing). The following sections give a detailed description of the

configurations.

Simulating SNPs

The required fields to specify each SNP include the name, chromosome, position, ob-

served nucleotides, strand, and reference allele of the SNP. The commonly used SNP

data can be download from https://genome.ucsc.edu/cgi-bin/hgTables. Here we only

consider biallelic SNPs when generating the genome sequences. For instance, to con-

struct a diploid genome, we first use two replicates of the reference sequence as tem-

plates, then iteratively insert the wild allele of each SNP into one of the template

sequences. We employ the produced genome as a baseline to generate other genomes

by inserting various genomic variations.

Simulating genomic variations

The simulated genomic variations such as SNVs, CNVs and indels can be germline or

somatic. The required information to define different variations is explained as follows:

1) A SNV is specified by the aspects including the name of the chromosome, the pos-

ition of the mutation, reference allele, mutated allele and the type of the mutation

(homozygous or heterozygous); 2) a CNV is depicted by the fields including the

chromosome, start position, end position, total copy number, and major allele copy
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number; 3) a short insert is defined by the chromosome, insert position and the nucleo-

tide sequence to be inserted; and 4) a deletion is represented by the chromosome, start

position and the length of the deletion. For homozygous SNV, the alleles at corre-

sponding position from both template sequences are set to mutated allele, and for het-

erozygous SNV, the allele of a randomly selected template sequence is modified to the

mutated allele of the SNV. To simulate indels, the template sequences are manipulated

by inserting nucleotide sequence into specific position or erasing predefined length of

bases from the templates. Whereafter, CNV is emulated by duplicating the specified

genomic region of one template sequence m times, and duplicating the region of an-

other template (n-m) times, here n is the total copy number and m is the major allele

copy number of the CNV. Following the presented procedures, we can generate the

underlying genomes ready for sequencing.

Simulating tumor samples

Tumor sample is often complicated by issues of impurity, aneuploidy and intra-tumor

heterogeneity. To reliably emulate tumor samples, multiple tumor genomes corre-

sponding to different clones are generated and mixed with the baseline genome (the

genome of normal cell) at given proportions. The names indicating each component of

the mixed genomes and an abundance file providing the mixing proportions are de-

fined in the configuration file. The sequencing data of the tumor sample is obtained by

using the aforementioned approach for simulating reads from mixed genomes.

Results
Real sequencing data

To investigate the profiles of the samples generated from different sequencing plat-

forms, the FASTQ files of 8 samples (Table S1 in Additional file 1) are downloaded

from the Sequence Read Archive (SRA) of NCBI by using SRA ToolKit. These samples

are assayed by Illumina Genome Analyzer IIx, HiSeq 2000, HiSeq 2500 or HiSeq X 10

instrument. The reads are aligned to the hg19 human reference genome using BWA

[29] tool, and germline SNPs are further inferred from the BAM files by using GATK

HaplotypeCaller under default parameters.

Base substitution patterns

We analyze the base substitution patterns in forward reads of sample SRR1614306.

Figure 2 shows the conditional probabilities of substituting nucleotide A for other

nucleotides under the 3-mer bases derived from the source sequence. Same to the

previously reported results [10, 18], the overall error rate generally increases towards to

the end of the reads. More significantly, the substitution patterns are different among

distinct nucleotides. The conversions (XCA > XCC), (TTA > TTT), (TGA > TGG) and

(GGA >GGG) are dominant when the relative base position is larger than 0.5, here X

denotes any nucleotide. Particularly, (CCA > CCC) and (GGA >GGG) consistently

represent the most significant error types among all substitutions, which indicates a

strong tendency of substituting A for C and G when the preceding bases are (CC) and

(GG) respectively.
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We then explore the base substitution profiles of nucleotide G (Figure S1 in Add-

itional file 1). The conversions (AAG > AAA), (TAG>TAA), (CCG > CCC), (TCG >

TCC) and (TTG > TTT) exhibit much higher frequency than other substitutions. More-

over, (CCG > CCC) and (TTG > TTT) are observed as the most significant patterns,

followed by (AAG > AAA) and (TCG > TCC). Further investigation of the substitution

patterns presented in nucleotide T shows (XCT > XCC) and (XGT > XGG) are the most

frequent substitutions (Figure S2 in Additional file 1). There is also a tendency of

(AAT > AAA) when the relative base position is larger than 0.5. By comparison, the nu-

cleotide C shows distinct error patterns of (XAC > XAA), (XCC > XCA), (TTC > TTT),

(TGC > TGG) and (GGC >GGG) as illustrated in Figure S3 (Additional file 1).

Next, we measure the base substitution probabilities on samples SRR1802839,

SRR5685282 and ERR2180233, and the results show different patterns. Significant sub-

stitutions such as (CCA > CCC), (GGA >GGG), (AAC > AAA), (CCG > CCC), (TCG >

TCC), (TTG > TTT), (CCT > CCC) and (GCT >GCC) are observed in SRR1802839,

and happen at much higher rates than other conversions. For SRR5685282, (CAA >

CAC), (XCA > XCC), (CGA > CGC) and (TTG > TTT) are frequently observed. Other

conversions are found to have approximately same occurrence frequency. Note that the

rate of errors occurring in sequences AGT, CGT and GGT is much higher than that of

sequence TGT, which implies the presence of A, C and G nucleotides preceding GT

will intensively increase the error rate. For ERR2180233, the substitution patterns are

(XAT >XAG), (XTT >XTG), (XGT > XGG), (XAG >XAT), (XTG >XTT), (TGG> TGT)

and (GGG>GGT).

We further investigate whether similar base substitution patterns can be inferred

from different samples derived from same sequencing instrument. Given a base substi-

tution type, we measure the frequency of the substitution in each base position, then

use Jensen-Shannon Divergence (JSD) [30] to evaluate the similarity between inferred

probability distributions. The smaller the JSD value, the more significant the result.

Fig. 2 Base substitution probabilities of nucleotide A inferred from forward reads of sample SRR1614306.
The conditional occurrence frequency of each base substitution under 3-mer bases derived from source
sequence is measured
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The statistics of the JSD values of each base substitution are calculated and the results

are shown in Figure S4. The median JSD of each base substitution is lower than 0.03,

indicating the similar profiles are shared across different samples generated from same

sequencing instrument. The dominant base substitutions in different sequencing plat-

forms are summarized in Table S2 (Additional file 1).

The presented results demonstrate the error rates of different substitutions are jointly

influenced by positional and genomic contextual information, and the profiles are dif-

ferent across distinct Illumina sequencing platforms, which strengthens our knowledge

about the underlying patterns of base substitutions.

Base quality distributions

We evaluate the distributions of Phred quality scores on sample SRR1614306 and the

results are presented in Fig. 3. For correctly called bases (A > A, C > C, T > T and G >

G), the quality scores show relatively lower values near the start of the reads, and the

mean values decrease from the maximum value of 40 to the minimum value of 33 to-

wards to the end of the reads. Moreover, the per-position variance of the quality scores

increases with the base position. For the erroneously called bases, similar statistical be-

haviors are observed for quality scores, while the mean values range from 30 to 4 when

the base position increases. Analysis of SRR1802839 shows bases near two ends of the

reads have lower quality values than other positions in correct calls, meanwhile the

mean quality value decreases with the position if bases are erroneously called. Similar

results are observed for SRR5685282 (Figure S5 in Additional file 1) except that base

pair (A > C) shows remarkably lower variance of the quality scores. A much distinct

profile of the quality scores is observed in ERR2180233 as shown in Figure S6

Fig. 3 The distributions of Phred quality scores on sample SRR1614306. Base positions of each read are
divided into equal-sized bins, for each of which the mean value and standard deviation of quality scores
are calculated. Two nucleotides above each subplot denote the true and called bases respectively, and the
relative position is calculated as the ratio between bin index and the number of bins
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(Additional file 1). The variance of the quality scores near the start of the reads is much

higher than that of other base positions.

We further evaluate the difference in mean quality scores of each base pair between

sequencing platforms using Student’s t-test, and the p-values in Table S3 (Additional

file 1) demonstrate there are significantly statistical divergences in quality scores for

most of the base pairs. To examine the similarity of the base quality distributions in-

ferred from different samples that are generated from same sequencing instrument, the

JSD value of the per-position quality distribution associated with each base pair is cal-

culated and statistically analyzed. The results in Figure S7 (Additional file 1) suggest

that both Illumina Genome Analyzer IIx and HiSeq X 10 instruments show similar pro-

files across different samples. By comparison, much higher divergence is observed in

HiSeq 2000 and HiSeq 2500 platforms, indicating the statistical behavior of base quality

in these instruments may be sample-dependent.

Taken together, the presented results underscore the necessity of explicitly integrat-

ing the positional and contextual dependency of the quality scores into the simulation

framework. In addition, the inferred statistics can be employed to improve discrimin-

ability between bases and improve the accuracy of read alignment tools or error correc-

tion methods [31].

Indel distribution

To assess the difference in indel error distributions between different Illumina sequen-

cing platforms, we infer the per-base insertion and deletion error rates and the distribu-

tions of indel lengths from the investigated samples, and the results are shown in

Figures S8, S9 and S10. The insertion rate changes from 0.012 to 0.065% and the dele-

tion rate ranges from 0.031 to 0.066%. In addition, the insertion rate is lower than dele-

tion rate in Genome Analyzer IIx, HiSeq 2000 and HiSeq 2500 platforms. The

frequency of both insertions and deletions decreases with the lengths of indels, and the

dominant indels are single nucleotide insertion and deletion.

GC-content bias

To profile the GC-content bias, we employ a locally weighted linear regression of the

read counts over GC percentage, and the results are depicted in Figure S11 (Additional

file 1). For all investigated samples, significant divergence is observed in the read counts

values corresponding to different GC percentages. The unimodal distribution of the

read counts shows the median GC percentages generally yield higher read counts,

which is concordant with the previously reported results [24, 32]. Similar GC bias is ob-

served for the samples generated from same instrument. In addition, the GC-content

biases on samples ERR2180233 and ERR2180232 show a markedly different distribu-

tions when compared to other samples, which may be related to the specific technical

features of HiSeq X 10 instruments.

Simulation results

We emulate massive NGS data by introducing various genomic variations to investigate

the effectiveness of the proposed method. All the simulated samples are generated by

sampling reads from the chromosome 20 of hg19 human reference genome based on
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the sequencing profile inferred from sample SRR5685282. The produced reads are

aligned to the reference genome using BWA tool, and BAM files are prepared for fur-

ther analysis.

Consistency of the profiles

To examine the effectiveness of simulated data, the profiles of emulated samples gener-

ated by ART, InSilicoSeq and SimuSCoP are analyzed and compared to the ground

truth values. Bowtie [33] is used to align real sequencing data when inferring the se-

quencing profile of InSilicoSeq as documented, and the sequencing profiles used by

ART and InSilicoSeq are learned from the same real sample SRR5685282. Each method

is run to generate 2 million reads. The statistics of the JSD values of each base substitu-

tion are calculated and the results are shown in Fig. 4. The median JSD values of ART

and InSilicoSeq are lower than 0.05 for all base substitutions, indicating a good con-

cordance between the inferred and real profiles. Compared to other methods, SimuS-

CoP gets more consistent results with the maximum median JSD value of 0.01.

We then evaluate the consistency of Phred quality scores between the simulated and

real sequencing data. Figure S12 in Additional file 1 shows the mean and variance of

the quality scores with respect to base positions in forward reads. All methods get very

close distribution to the real data, presenting similar mean and variance values. The re-

sults demonstrate the proposed method is highly effective in revealing positional differ-

ence of quality scores. We further explore the ability of different methods in simulating

contextual difference of quality scores (Fig. 5). For different contextual information, the

JSD value of the per-position quality distribution is calculated and statistically analyzed

to examine the consistency. ART shows much better performance in generating quality

values associated with base pair (C > C) than that of other base pairs. Similarly, the per-

formance of InSilicoSeq is also degraded in yielding quality values for most of the base

Fig. 4 The statistics of JSD values of each base substitution. Given a base substitution type, the frequency
of the substitution in each base position is measured, and Jensen-Shannon Divergence is used to evaluate
the similarity between the real and inferred probability distributions. The statistics of JSD values for a given
substitution are obtained by analyzing all 3-mer forms of the substitution. For instance, substitution types
such as (AAA > AAC), (ACA > ACC) and (TTA > TTC) are the 3-mer forms of base substitution A > C
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pairs. By comparison, SimuSCoP maintains high significant JSD values across different

base pairs, highlighting its ability of capturing both positional and contextual difference

of the quality values.

These results demonstrate the proposed simulation framework is effective to generate

sequencing data closely concordant with the real profiles.

Indel and SNV simulation

To examine the indel and SNV simulation results, 20 indels (10 insertions and 10

deletions) and 20 SNVs (10 homozygous mutations and 10 heterozygous

mutations) are inserted into the chromosome 20 of the reference genome. The

genome is sequenced to ~30X coverage, and the generated BAM files are analyzed

using GATK Mutect2 to call somatic variations. The arguments “--genotyping-

mode DISCOVERY, --output-mode EMIT_VARIANTS_ONLY, --sample-ploidy 2”

are adopted for GATK Mutect2. The inferred variations are further filtered with

options “DP > 20, TLOD> 15”, and the results show all indels and SNVs are cor-

rectly identified (Table S4 in Additional file 1).

CNV simulation

We further evaluate the CNV simulation performance, and 5 CNVs are inserted into

the chromosome 20. The simulated CNVs range from one to six copies, and the size

ranges from 0.5Mb to 2Mb. The generated sequencing data is analyzed by Control-

FREEC [34] using the arguments “ploidy=2, window=1000, step=1000”. A CNV is con-

sidered to be accurately called only if any predicted CNV covers the 85% size of the

CNV and has equal copy number with the CNV. The results show all simulated CNVs

are correctly identified (Table S5 in Additional file 1).

Fig. 5 The statistics of JSD values of quality scores. Given a base pair, the JSD value of the per-position
quality distribution is evaluated and statistically analyzed for each investigated simulator. Two nucleotides
above each subplot denote the true and called bases respectively
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Tumor sample simulation

To assess the ability of SimuSCoP in simulating tumor samples, we generate 2 tumor

clones by introducing different aberrations including LOH and heterozygous events

into the normal genome as shown in Table S6 (Additional file 1), then mix the tumor

and normal genomes at different proportions (Table S7 in Additional file 1). The pro-

duced sequencing data is analyzed using CLImAT-HET [35] to infer copy number

alterations and clonal heterogeneity. Table S7 shows the predicted tumor purity is sig-

nificantly correlated with the ground truth (correlation coefficient = 0.99, p-value =

5.78 × 10− 10). In addition, the simulated aberrations and corresponding cell fractions

are accurately inferred, an example of prediction results on a simulated heterogeneous

sample (50% Clone1, 40% Clone2 and 10% normal cells) is shown in Figure S13 (Add-

itional file 1). Two clonal clusters are correctly identified with corresponding cell frac-

tions of 0.49 and 0.86 respectively, meanwhile 15 out of 16 segments are assigned with

the correct clonal cluster and tumor genotype. These results demonstrate the ability of

SimuSCoP in reliably emulating complex tumor samples.

Runtime performance

To test the computation and memory efficiency of SimuSCoP, different volumes of data

are generated under distinct computational constraints (Table 2). The evaluation is per-

formed on a workstation with 16 GB memory and 16-core Dual Xeon E5–2620 CPU.

The results show that processing time presents nearly linear reduction and memory

consumption is gradually aggravated when more threads are used. For instance, using 8

threads to generate 21 million reads needs 4.62 min time and 893MB peak memory,

showing 83% time saving and nearly 3 times memory consumption increasing when

compared to single thread mode. On the other hand, simulating larger volume of data

Table 2 The runtime performance of SimuSCoP

Coverage Number of reads (million) Number of threads Time (min) Peak memory (MB)

5 2.1 1 2.76 145

2 1.58 156

4 0.87 179

8 0.57 234

10 4.2 1 5.67 155

2 3.08 176

4 1.70 227

8 1.03 324

20 8.4 1 11.13 177

2 6.10 224

4 3.35 308

8 1.88 476

50 21.0 1 27.15 225

2 15.12 321

4 8.15 511

8 4.62 893
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does not extensively increase the required memory. For instance, generating one more

2.1 million reads just needs ~ 10MB per-thread extra memory consumption. For com-

parison, we also evaluate the runtime performance of ART and InSilicoSeq by generat-

ing simulation datasets under same coverage. ART is implemented to run in single-

thread mode, it uses nearly 1.1 min to generate 2.1 million reads and the used time

linearly increases with sequencing coverage, while the memory consumption is about

286MB and keeps unchanged when the sequencing coverage increases. The runtime

efficiency of SimuSCoP is comparable to that of ART when using multiple threads.

InSilicoSeq needs approximately 29 min to simulate 2.1 million reads under default

configuration, and fails to generate larger datasets due to excessive memory usage.

Discussion
As SimuSCoP can infer more accurate sequencing profiles from real datasets, it is use-

ful for providing more accurate evaluation of the real performance of downstream vari-

ant calling tools. Table S8 (Additional file 1) shows the SNV detection sensitivity of

GATK by analyzing the sequencing data generated by ART and SimuSCoP. The results

imply a number of heterozygous SNVs are not called from the sequencing data gener-

ated by SimuSCoP at lower sequencing coverage, suggesting further improvement in

the performance of GATK may be achieved by considering the sequencing profiles ob-

tained by SimuSCoP. However, how to incorporate the learned profiles into the variant

calling process is another interesting topic that needs to be extensively investigated,

and we plan to study this potential research direction in the future.

Conclusions
Simulation of NGS data has been a long-standing interest in the literature, and numer-

ous bioinformatics tools have been developed for this propose. An overview of current

NGS simulators is provided in this work to show the difference in functional imple-

mentations and supported applications of each tool. By making comparative analysis,

we point out the functional and runtime limitations of the existing simulators, and

underscore the necessity of developing new bioinformatics tools that are more effective

and easy-to-use.

To overcome the downsides of current simulators, we introduce a novel simulation

framework called SimuSCoP to reliably emulating complex NGS dataset. To effectively

represent the read generation procedure, a probability model is employed to investigate

the patterns of base substitutions and statistical differences of Phred quality scores from

both positional and contextual views. Analysis of real sequencing data suggests that

there are significant divergences in base substitution patterns and quality score distri-

butions between different Illumina sequencing platforms, demonstrating the necessity

of integrating such knowledge into the read simulation models. By using the inferred

profiles, an integrated read simulation pipeline is implemented by incorporating the

correlated biological and technological features into one framework. Finally, the evalu-

ation of our tool from multiple aspects shows its high effectiveness, functionality and

efficiency.

Taken together, we believe that the presented work will catalyse new development of

downstream bioinformatics methods for analyzing NGS data.
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