Skip to main content
. 2020 Jul 23;21:331. doi: 10.1186/s12859-020-03665-5

Table 1.

A brief summary of existing tools for simulating DNA sequencing data

Simulator Layoutb Output Language Genomic variation Tumor sample GC bias Profiles Sequencing strategyc Ref
SNV CNV Indel Impurity Aneuploidy Intra-tumor heterogeneity Position dependent Context dependent
ART SE, PE FQ, SAM C++, Perl X G [7]
Grinder SE, PE FQ, FA Perl X X G [8]
pIRS PE FQ C++, Perl X X X X X G [9]
GemSIM SE, PE FQ, SAM Python X X X G [10]
Wessima SE, PE FQ, SAM Python X X X E [11]
NeSSM SE, PE FQ C, Perl X X G [12]
BEAR SE, PE FQ Perl, Python X G [13]
FASTQSim SE FQ Python X G [14]
SInC PE FQ C X X X X G [15]
SCNVSima SE, PE FQ Java X X X X X X X G [16]
NEAT SE, PE FQ Python X X X X X G, E [17]
IntSIM SE, PE FQ C++, Perl, R X X X X X X X X G [18]
Pysim-sva SE, PE FQ Python X X X X X X X X G [19]
InSilicoSeq PE FQ Python X X G [20]
SimuSCoP SE, PE FQ C++ X X X X X X X X X G, E

X: a given functional capability is supported by a simulator. a: these tools depend on third party NGS read simulator to generate reads. b: SE denotes single end and PE represents paired-end. c: G denotes whole-genome sequencing, and E indicates target or exome sequencing