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Machine Learning Methods as a Tool for Predicting Risk
of Illness Applying Next-Generation Sequencing Data

Patrick Murigu Kamau Njage,1,∗ Clementine Henri,2 Pimlapas Leekitcharoenphon,1

Michel-Yves Mistou,2 Rene S. Hendriksen,1 and Tine Hald1

Next-generation sequencing (NGS) data present an untapped potential to improve microbial
risk assessment (MRA) through increased specificity and redefinition of the hazard. Most of
the MRA models do not account for differences in survivability and virulence among strains.
The potential of machine learning algorithms for predicting the risk/health burden at the pop-
ulation level while inputting large and complex NGS data was explored with Listeria monocy-
togenes as a case study. Listeria data consisted of a percentage similarity matrix from genome
assemblies of 38 and 207 strains of clinical and food origin, respectively. Basic Local Align-
ment (BLAST) was used to align the assemblies against a database of 136 virulence and stress
resistance genes. The outcome variable was frequency of illness, which is the percentage of re-
ported cases associated with each strain. These frequency data were discretized into seven or-
dinal outcome categories and used for supervised machine learning and model selection from
five ensemble algorithms. There was no significant difference in accuracy between the mod-
els, and support vector machine with linear kernel was chosen for further inference (accuracy
of 89% [95% CI: 68%, 97%]). The virulence genes FAM002725, FAM002728, FAM002729,
InlF, InlJ, Inlk, IisY, IisD, IisX, IisH, IisB, lmo2026, and FAM003296 were important pre-
dictors of higher frequency of illness. InlF was uniquely truncated in the sequence type 121
strains. Most important risk predictor genes occurred at highest prevalence among strains
from ready-to-eat, dairy, and composite foods. We foresee that the findings and approaches
described offer the potential for rethinking the current approaches in MRA.
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[Correction added on 7 December 2018, after first online publica-
tion: In section 2.4.5, the equation “Kappa = O − E / 1 − E 1 − E”
was changed to “Kappa = O − E / 1− E”.]

1. INTRODUCTION

Listeria monocytogenes is a ubiquitous Gram-
positive bacterium responsible for listeriosis, which
has severe manifestations such as septicemia and
meningitis in high-risk groups such as newborn
children, pregnant women, the elderly, and immuno-
compromised patients (Goulet et al., 2012). Even
though listeriosis is a rare disease, the associated
fatalities make it an important foodborne pathogen.
For instance, L. monocytogenes was associated with
the second highest case fatality rate (21%) and the
highest hospitalization rate (90.5%) of all foodborne
pathogens (Goulet, King, Vaillant, & de Valk, 2013;
Orsi, Bakker, & Wiedmann, 2011). Contaminated
food has been estimated as the source in as many as
99% of the cases (Scallan et al., 2011).
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The limitations of existing risk assessment efforts
are that dose–response models for L. monocytogenes
do not always take into account differences in
survivability and virulence among strains. The appli-
cation of omics data to explore the pathogen–host
interaction leading to variation in susceptibility in
different high-risk groups needs to be considered
(Brul et al., 2012). The advent of next-generation
sequencing (NGS) technologies provides an ideal
subtyping tool for rapid, reproducible, and highly
discriminatory characterization of pathogens and
creates the opportunity to resolve variations in
microbial populations and, in future research, for
host populations (Brul et al., 2012). The recent
decrease in cost and increase in throughput of whole
genome sequencing (WGS) techniques has resulted
in a rapid increase in the availability of WGS data
(Leekitcharoenphon, Nielsen, Kaas, Lund, &
Aarestrup, 2014; Pielaat et al., 2013).

Still, efforts toward incorporation of WGS data
in risk-based decision making remain largely unex-
plored (Pielaat et al., 2015). WGS may provide the
required evidence-based, transparent, and rigorous
approaches to estimate and compare the risk of food-
borne illness from microbial hazards. Classical mi-
crobial risk assessment (MRA) involves studying the
changes in undesirable microorganisms in the food
chain using classical microbial identification, enu-
meration, and stress response study methods. Even
though the specificity, sensitivity, and relevance of
such methods have been adequate for the purpose,
variations in the molecular characteristics of a partic-
ular strain may introduce variability in the behavior
of the microbial cell (Brul et al., 2012). Application of
WGS data in MRA will assist in accounting for this
variability in the behavior of the microbial cell.

The initial step in MRA involves hazard identifi-
cation, which refers to the pathogen or toxin of inter-
est (Brul et al., 2012). WGS presents an opportunity
in hazard identification to further study the associ-
ation between genomic variation and pathogenicity
in different subpopulations, which may resolve dif-
ferences between virulence in foodborne pathogens
when coupled with phenotypic data (Pielaat et al.,
2013). This will aid in the prediction of virulence
based on core and accessory genes associated with
increased virulence and eventually aid in the un-
earthing of undescribed genes or proteins whose
function is influenced by nucleotide variations (Brul
et al., 2012). WGS data provide a potential oppor-
tunity for increased resolution microbial risk assess-
ment by addressing the effect of genetic variations

in pathogens on morbidity, mortality, antimicrobial
resistance, and adaptations to environmental stress
(Houle, Govindaraju, & Omholt, 2010). Such out-
comes cannot be realized without phenotypic data.

Efforts toward incorporation of WGS data in
MRA have resulted in a number of reviews (Brul
et al., 2012; Carriço, Sabat, Friedrich, & Ramirez;
ESCMID Study Group for Epidemiological Markers
(ESGEM), 2013; Havelaar et al., 2010; Pielaat
et al., 2013) as well as initial attempts at practical
application (Pielaat et al., 2015). The principal step,
however, is linking of relevant derivatives of WGS
data to particular risk indicators, especially pheno-
typic health endpoints. A key challenge remains the
highly dimensional nature of genomic data versus
the number of isolates. This constitutes a major
challenge in the application of common statistical
analysis methods (Pielaat et al., 2015). Traditional
epidemiological models were developed to address
a reasonable number of predictor variables and one
or a few response variables. However, WGS data
present a phenomenal increase in possible geno-
types, which often outstrips the increase in sample
size (Houle et al., 2010). This may result in either
poorly or over fitting models. Data reduction tech-
niques may in such cases either result in biologically
irrelevant outcomes or discarding important data
(Houle et al., 2010). A robust and emerging family of
models to handle highly dimensional data sets with
risk prediction in mind consists of either network-
based analysis techniques (Okser, Pahikkala, &
Aittokallio, 2013) or machine learning algorithms
applying methods such as partial least squares regres-
sion (Sjöström, Wold, Lindberg, Persson, & Martens,
1983), random forests (RFs) (Breiman, 2001a; Liaw
& Wiener, 2002), and support vector machines
(SVMs) (Breiman, 2001b; Houle et al., 2010).

Machine learning algorithms involve the de-
velopment and application of computer algorithms
that improve with experience (Libbrecht & Noble,
2015). These techniques further enable the identi-
fication of predictor combinations that will predict
the risk outcome, thus allowing further refinement
of risk assessment inputs from big data sets to a
fewer number of predictors. Microbial pathogenesis
may be mediated by genetically complex microbial
variations due to contributions from combinations of
genetic variation in different loci (Okser et al., 2013).
Traditional statistical association models often av-
erage genetic interactions. Machine-learning-based
predictive modeling, on the other hand, takes into
consideration individual effects that are dependent
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on interactions with other genetic and environmental
factors (Okser et al., 2013).

Machine learning (ML) methods further enable
the possibility of prediction as well as interpretation
using data. It is, therefore, possible to reveal the
properties of a sequence that are the most impor-
tant for determining a certain phenotype or, on
the other hand, to predict the occurrence of the
protein. Machine learning provides an opportunity
to carry out MRA whose inference is flexible to
genetic variations acquired over time, which may
aid early identification of strains with new virulence
characteristics. Machine learning algorithms are in-
creasingly being utilized as alternatives to traditional
genome-wide association (GWAS) studies and have
been applied extensively in genomics. Potentially
important disease biomarkers have been revealed by
the use of machine learning methods on gene expres-
sion data, where algorithms learn to differentiate
between different disease phenotypes (Libbrecht &
Noble, 2015). Recent successful application includes
cancer research, where crucial information re-
garding patient genotypes, gene-expression-related
phenotypes, and patient outcomes (Griffith et al.,
2013; Libbrecht & Noble, 2015; Shipp et al., 2002;
Whitney et al., 2015) has been revealed. In the
field of bacterial pathogens, three recent studies
successfully used machine learning algorithms in
the discovery of regions in the genome that are
associated with antimicrobial resistance (Davis et al.,
2016; Drouin et al., 2014; Santerre, Boisvert, Davis,
Xia, & Stevens, 2015).

We describe this approach to application of
WGS data in microbial risk analysis with L. monocy-
togenes as a case study. A risk assessment approach
applying WGS data to produce distinct associations
between genotypes and frequency of clinical cases
is proposed. Such models will facilitate the setup of
web-based tools for the analysis of whole genome
sequence data from microbial pathogens or potential
pathogens that return an estimate of the resulting
risk or health burden at the population level. We
also explore the potential of machine learning algo-
rithms for the identification of relevant features in a
complex WGS data set, which may facilitate robust
and reliable predictions.

2. METHODS

2.1. Hazard Identification

L. monocytogenes is a highly diverse species.
A distinction can be made into four lineages

(Piffaretti et al., 1989), where L. monocytogenes from
lineage I have been more strongly associated with
clinical cases than those from lineage II (Orsi et al.,
2011). Some strains from lineage I as well as II are
responsible for 95% of listeriosis cases (Kathariou,
2002). Strains from lineages III and IV are more
strongly associated with animal and natural environ-
ment (Haase et al., 2014).

Another distinction can be made using multi
loci sequence types (MLST) (Ragon et al., 2008),
which detect nucleotide variations within seven
housekeeping genes and define sequence types (STs)
(same ST defined when all alleles are identical) or
clonal complexes (CCs) (separate CC defined when
only one allele is different) based on allele combi-
nations. This method has indicated that seven CCs
are prevalent among food and clinical cases (Ragon
et al., 2008). The most widespread clones are CC121,
CC1, CC9, CC2, CC6, CC8, CC16, CC5, and CC4.
Strains from CC1, CC2, CC4, and CC6 are strongly
associated with human infections, whereas CC121
and CC9 with food (Maury et al., 2016). Hyperviru-
lent strains from CC4 harbor a six-gene cluster that
was recently demonstrated to enhance invasion of
the brain and placental tissues in humanized mouse
models (Maury et al., 2016). Maury et al. (2016)
further differentiated L. monocytogenes clones using
NGS data based on their association with human
central nervous system (CNS) or maternal–neonatal
(MN) listeriosis. The use of NGS data input such
as genetic loci associated with virulence factors as
well as the phenotypic tendency toward bacteremia,
CNS, or placenta infections in susceptible groups of
the population is an opportunity to further refine
risk assessment in L. monocytogenes.

2.2. Hazard Characterization

Strains of L. monocytogenes have demonstrated
considerable variation in virulence, which may also
influence the variation in risk of illness associated
with different strains. However, serogroups are
defined as strains in most studies addressing strain
variability in virulence or risk of illness (FDA, 2003;
Pouillot, Hoelzer, Chen, & Dennis, 2015). Even
though particular serogroups have been associated
with higher proportion of cases and outbreaks,
serotypes from foods do not reflect the disease
distribution, and WGS rather than serotyping
data have been recommended for strain-specific
studies (FDA, 2003). An increasing number of
virulence and environmental stress resistance genes
have been reported in L. monocytogenes and
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their occurrence singly or in combination may be
associated with increased pathogenic potential and
the associated epidemiological increase in disease
incidence (Maury et al., 2016). Surface and secreted
proteins support the mediation of microbial response
to the environment and the eventual host infection
by pathogens (Abee, Van Schaik, & Siezen, 2004).
Various surface or secreted proteins in L. mono-
cytogenes also play a role in invasion, escape from
the phagocytic vacuole, and cell-to-cell spread. Food
safety concerns are increased when such adaptation
of microorganisms to changes in environments
increase resistance to environmental and host stress
(Abee et al., 2004). Recognition and efforts have
been made to account for virulence variability in
L. monocytogenes and recent attempts have been
made to develop dose–response modeling taking
this variability into account by defining serogroups
as strains (FDA, 2003; Pouillot et al., 2015). How-
ever, higher-resolution data are needed for more
precise dose–response models that better capture
the variability in L. monocytogenes strain virulence.

2.3. Microbial Strains and Bioinformatics Analysis

2.3.1. L. monocytogenes Strains

The bottleneck in the hazard characterization
step in MRA using NGS data is often the lack of
reproducible health endpoints linking genotypic to
phenotypic data (Brul et al., 2012). The L. monocy-
togenes isolates included in this study were from an
exhaustive and epidemiologically balanced surveil-
lance in France. The 245 strains were selected from a
nonredundant collection of 7,342 isolates from food
(n = 4,551) and clinical (n = 2,791) sources sampled
in France between 2005 and 2013. Selection of the
246 strains from the collection was based on MLST
and PFGE typing by Maury et al. (2016) for further
study aiming at sampling a representative panel of L.
monocytogenes species diversity. The 7,342 isolates
were collected by the French National Reference
Center (NRC) for Listeria (ntotal = 6,804; nfood =
4,013; nclinical = 2,791) and the French National
Reference Laboratory (NRL) for Listeria (ntotal =
nfood = 538). In France, surveillance of L. mono-
cytogenes in food and occurrence of listeriosis are
organized around the “Cellule Listeria” consisting
of multiple partners dedicated to either clinical or
food investigation. The aim is to identify the foods
associated with listeriosis cases with the ultimate aim
of proactively reducing the risk of exposure and new

cases of the disease. Listeriosis is a noticeable disease
and each case as well as its details should be reported
to the responsible ARS (regional health agency).
The ARS sends each isolated strain to NRC (na-
tional reference center represented by the Pasteur
Institute in Paris). Food consumption investigation
is then performed based on a questionnaire in order
to identify the origin of the infection. Samples are
also collected from homes of consenting patients
and strains isolated from these investigations are
sent to the NRC, where they are characterized and
compared to the strains isolated from the patient
(Roussel et al., 2012). Due to the route of contamina-
tion of L. monocytogenes, food industries routinely
perform “own-check” at various steps of the food
production chain and send isolated strains to LNR
(French agency for food, environmental, and occu-
pational health and safety represented by Anses)
or NRC. In addition, state authorities regularly
organize inspections to monitor L. monocytogenes
in multiple food matrices. Strains isolated from these
sources are sent to the LNR for comprehensive
characterization. The NRC collects nearly all isolates
involved in human infection cases in France, amount-
ing to an average of 360 strains per year. NRC also
collects approximately 700 food or environmental L.
monocytogenes strains from food alerts.

This systematic and dual surveillance also
ensures that each year more than 98% of clinical
strains are sampled and possibly cross-linked with
source food to both investigate and prevent listeriosis
cases or outbreaks. Because of this exhaustiveness in
sampling, a reliable report of all listeria cases is pub-
lished every year and realistic frequencies of each
type of listeriosis are performed (septicemia, neuro-
logical infection, maternal fetal, and other rare types)
(Lecuit, Leclercq, Chenal-Francisque, & Charlier,
2015). Food isolates in this study were part of a
collection of 3,143 isolates from food alerts (Roussel
et al., 2012). The 4,551 food strains also included
strains isolated during investigations of neurological
forms of listeriosis (n = 178, 3.9%), self-reports by
food industries (n = 692, 15.2%), and food surveil-
lance activities (n = 538, 11.8%). Redundancy in the
panel of strains from food alerts was prevented by
selecting only one isolate from the same date, food
source, food alert number, and MLST clone. Other
nonalert food isolates were deduplicated by selecting
an isolate from the same date of isolation and food
source. This resulted in 7,342 food and clinical-
associated isolates from which the 245 sequenced
strains were selected after MLST and PFGE typing
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to obtain a panel of strains representative of the orig-
inal population. The clinical frequency, consisting
of percentage of reported cases associated with each
of the clinical strains, was treated as the outcome or
dependent variable in this study (Maury et al., 2016)
(data available in Supporting Information Tables SI
and SII).

The 245 strains encompassed 207 strains from
food as well as food environment and 38 clinical
strains. The 38 clinical case strains consisted of (i)
30 clinical strains from the work of Maury et al.
(2016), (ii) strains representative of ST218 and ST2
consisting of six strains isolated from an outbreak
in England by Public Health England and two other
clinical strains belonging to ST121.

2.3.2. Virulence Genes Database

The L. monocytogenes population is very struc-
tured, as shown by the huge diversity between
lineages almost to species level (Haase et al., 2014).
This study considered an exhaustive set of viru-
lence and associated genes and compared their
profiles among two diverse panels of food and
clinical strains. An exhaustive literature review for
all known virulence-associated factors, virulence
factors, virulence genes, and environmental stress
tolerance genes was performed. A final set of 136
genes was selected (Supporting Information Tables
SI and SII). Amino acid sequences of the genes were
extracted from the NCBI protein database. Multiple
sequences were found for each query and in such
cases, sequences from EGD-e strain, which has been
the most extensively annotated strain, were used as a
reference. A multi fasta nucleic acid (multi-fna) file
was subsequently built for use as a query database.

2.3.3. Assembly and Alignment

The program Velvet for de novo assembly of
short reads (Zerbino & Birney, 2008) was used for
the assembly of the raw reads. Prediction of open
reading frames and proteins was performed using
Prodigal for each of the de novo assemblies (Hyatt
et al., 2010). Each genome’s predicted proteins
were aligned against the virulence database using
BLASTP, a Basic Local Alignment Search Tool
(NCBI-blast version 2.3.31+). The best hits from
the assessment of the length and similarity were
kept as the desired potential virulence gene. A
matrix consisting of best hit in percentages for each
virulence gene in each genome was constructed.

Heatmaps were used to visualize the percentage
alignment matrix of both the food and clinical strains
using R version 3.3.1.

2.4. Predictive Modeling

For MRA based on WGS data, we aimed at
linking data on the genome composition with the
clinical outcome in humans. We used machine learn-
ing algorithms that in design follow the scientific
methodology involving design–learn–test processes.
The hypothesis is that a machine learning model can
recognize certain feature(s) based on the sequences
from the strains used as inputs. This is followed by
the use of the algorithm itself to predict features in an
unknown sample based only on the sequence. Sup-
porting Information Fig. S1 illustrates the machine
learning workflow adopted in this study for predict-
ing risk of illness from virulence and environmental
adaptation genes in L. monocytogenes.

We used classification, which aims to identify
discrete categories of new observations by studying a
training data set. We used supervised learning, which
allows for the classification of patterns in the data
set (also referred to as instances or features) into a
set of categories (also referred to as classes or labels)
(Rokach, 2010). Classification algorithms were used
for the discrete categories of the frequency of illness
outcome. The following steps were followed: (1)
selection of the best model in predicting frequency
of illness given the sequencing data, (2) examination
of the predictive importance of genes (features) or
their groups using the best performing model, and
(3) optimization of the performance of the chosen
model while accounting for influence of feature
selection on model accuracy, and other performance
measures such as positive and negative predictive
power (Supporting Information Fig. S1). Exploration
and further analyses were performed in R version
3.4.1 and for reproducibility, session information
and the list of respective packages along with their
versions are included in Supporting Information.

2.4.1. Data Exploration

Models fit on data whose generating mechanisms
result in zero-variance predictors may either crash or
result in unstable fit (Kuhn & Johnson, 2013). When
predictors have only a handful of unique values oc-
curring at low frequencies, they may also yield zero-
variance predictors when the data are split into cross-
validation/bootstrap subsamples. The first step was
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to identify such predictors in the data by two metrics.
The first one is the frequency ratio, which is the fre-
quency of the most prevalent value compared to the
second most frequent value. Values should ideally be
either close to one for satisfactory predictors or sub-
stantially large for highly unbalanced data. We also
calculated the percent of strains having unique val-
ues per predictor (i.e., gene) as the number of unique
values over the total number of strains expressed as a
percent. Percent of unique values approaches zero as
the granularity of the data increases. Applying both
criteria is important to avoid false exclusion of data
in instances such as data from a discrete uniform
distribution, where data have low granularity even
though they are evenly distributed. Excluding such
data resulted in a selection of 50 predictor genes.

Frequency of illness consisted of percent of re-
ported cases associated with each isolate within an
ST (Supporting Information Table SII). This fre-
quency of illness was sparse in that some deciles
did not contain data values, while values were not
well distributed in the other deciles. In such cases,
statistics as well as machine learning algorithms pro-
duce better performing models when continuous at-
tributes are discretized by partitioning into K equal
lengths or width from K% of the total data. Based on
the performance statistics in Section 2.4.5, the clin-
ical frequencies associated with the clinical strains
were discretized into dentiles (10 parts, each contain-
ing one-tenth of the class percentage). The accuracy
of the models trained using classes resulting from
this discretization was confirmed by the high class-
specific accuracy sensitivity and specificity. Clini-
cal frequencies associated with the clinical isolates
ranged from 7 to 71, which resulted in seven classes.

2.4.2. Subsampling for Class Imbalances

Exploration of predicted variable or classes
(Supporting Information Fig. S2) revealed class
imbalances. Frequency of illness for two isolates was
missing. Imputations of missing data were conducted
using the missForest R package, which is an RF-
based technique that is computationally efficient for
high-dimensional data consisting of both categorical
and continuous predictors (Stekhoven & Bühlmann,
2012).

Robustness and the use of accuracy as a model
fitness measure in machine learning methods are
adversely affected by class imbalances (Velez et al.,
2007). The learning of most ML methods is biased
toward important patterns for the larger of the

two classes. In many instances, available WGS
data versus the associated phenotype do not allow
for a priori sampling approach to cater for class
imbalances. Post hoc sampling approaches may help
to mitigate the effects of the imbalance during model
training (Kuhn & Johnson, 2013). Such subsampling
approaches include downsampling and upsampling
the data. In an approach by Ling and Li (1998),
upsampling is performed by sampling cases from the
minority classes with replacement until each class
has approximately the same number. Additional
random samples to the initial minority class data
equalize the minority class to the majority. We used
upsampling in R environment for our data set.

2.4.3. Data Splitting

The isolates were first divided into training
(70%) and testing sets (30%) (Supporting Informa-
tion Fig. S1). A validation set was not split from the
data owing to the size of the data set, which may
lower the power or precision of both the test and
validation data sets. Validation using a single test set
can be a poor choice (Hawkins, Basak, & Mills, 2003;
Martin & Hirschberg, 1996; Molinaro, Simon, &
Pfeiffer, 2005). Resampling by cross-validation was
applied to produce performance estimates superior
to single test sets by the evaluation of multiple
alternate versions of the data. The model sequence
was such that the model input samples were ran-
domly partitioned into 10 sets of roughly equal size,
held-out samples were used to estimate accuracy, the
first subset was returned to the training set, and the
procedure was repeated with the second subset held
out and so forth (Kuhn & Johnson, 2013). Accuracies
recorded from each run were extracted and used for
model performance assessment and model selection.

2.4.4. Model Selection

The predictive performance of the most ac-
curate machine learning methods of common
choice in many application domains was compared.
These methods include RF (Machado, Mendoza, &
Corbellini, 2015; Ogutu, Piepho, & Schulz-Streeck,
2011), SVM (radial and linear kernels) (Kuhn, 2008;
Ogutu et al., 2011), neural networks (NNs), gradient
boosting (GBM), and logit boost (LB) (Kuhn, 2008).
Each of these methods presents inherent beneficial
properties, which are outlined in the Supporting
Information.
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Each model was built 10 times followed by a
selection of the best performing model based on
average accuracy and Pearson correlation between
the observed and predicted values from the testing
data set. Random data splitting was performed, the
models were trained, predictions were performed,
and accuracies were recorded in each run using caret
packages for the R statistical environment (Kuhn
et al., 2012; Liaw & Wiener, 2002). A train control pa-
rameter was included in each of the models to enable
cross-validation (10 folds) and parallel processing.

The statistical significance of the differences
in the model accuracies was tested using analysis
of variance, at significance α value of 0.05. To
further assess the predictions, model agreement
accuracy was also compared for RF, LB, NN, GBM,
and SVM-radial by comparing prediction Pearson
correlation values.

2.4.5. Model Evaluation and Prediction

A confusion matrix was plotted for initial model
evaluation. This is a cross-tabulation of the observed
and predicted classes for the data whose diagonal
cells denote cases where the classes are correctly
predicted, while the off-diagonals illustrate the
number of errors for each possible case. The overall
accuracy was also compared to the no-information
rate. The no-information rate is a measure of the
accuracy rate possible from randomly guessing the
classes without the use of a model. It is desirable
that models show accuracy greater than this random
guess rate. In order to take into account the class
distributions of the training set samples in model
diagnosis, Cohen’s kappa was also computed as:
Kappa = O − E/1 − E, where O is the observed
accuracy and E is the expected accuracy based on
the marginal totals of the confusion matrix. Kappa
statistic values range from −1 to 1, where 0 implies
no agreement between the observed and predicted
classes and 1 suggests perfect concurrence between
the predicted and observed classes in the model.

Landis and Koch (1977) proposed kappa statistic
values of 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60
as moderate, 0.61–0.80 as substantial, and 0.81–1
as almost perfect. Fleiss, Levin, and Cho (2003)
suggested kappa values greater than 0.75 as excel-
lent, 0.40–0.75 as fair to good, and <0.40 as poor.
While both scales are arbitrary, accompanying them
with a confusion matrix enhances confidence in
the accuracy of the interpretation. Sensitivity and

specificity, as well as balanced accuracy, were also
calculated for the individual classes. The final model
selected from Section 2.4.4 was used to perform
predictions on the food isolate data set.

2.4.6. Variable Importance

A model-variable importance measure was used.
The advantage of model based in contrast to outside
measures is that performance measures are closely
associated with model performance. Additionally,
the correlation structure between the predictors can
be included in the importance calculation. Variable
importance was assessed from the final selected
model using the caret package in R. For instance,
for the RF model, the prediction accuracy from an
out-of-bag portion of the data is documented for
each tree during the model run as well as for each
associated predictor variable. The average of the
difference between the two accuracies over all trees
is then computed and normalized by the standard
error. Correlation among trees is lessened by a
random selection of predictors, where trees are built
from a random subset of the top k predictors at each
split in the tree (Dietterich, 2000).

2.5. Data Availability

Accession numbers, metadata, and gene align-
ment data of L. monocytogenes strains used are pro-
vided in Supporting Information Tables SI and SII.

3. RESULTS

3.1. Virulence-Related Genes and Factors

A set of 81 genes of the 136 tested genes from
the food isolates was aligned at full length for all the
L. monocytogenes strains (Supporting Information
Fig. S4). Some genes were heterogeneously dis-
tributed among the strains. The virulence gene
profiles of strains from similar lineages were ho-
mogeneously distributed except for 13 strains from
lineage II. Similarly, strains of the same molec-
ular serotype, ST, and CC showed similarities in
their virulence gene profiles. InlF demonstrated a
unique characteristic by appearing exceptionally
truncated, at less than 30% of its full length, among
L. monocytogenes belonging to ST121. This gene was
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considerably truncated among strains from lineage
II at a length of up to 70% of the full-length protein.

A similar trend was exhibited by the clinical
isolates, which clustered according to their lineage,
molecular serotype, CC, and ST (Supporting Infor-
mation Fig. S5). All the 81 genes that occurred at
full alignment length and the ones that varied among
the food isolates also showed a similar trend for
the clinical strains. The alignment of clinical strains
belonging to ST121 was also truncated at only 30%
of the full-length protein for InlF.

3.2. Predictive Modeling

3.2.1. Model Selection

We compared the performances of the ma-
chine learning methods RF, SVM (radial and linear
kernels), GBM, NN, and LB. Details on these
methods and their strengths are included in the
Supporting Information. A selection of the best
performing models was performed by evaluating
average accuracy and Pearson correlation between
the observed and predicted values from 10 model
repeats. Predictive performances were tested with
these 10 cross-validations for the candidate models
RF, SVM (radial and linear kernels), GBM, NN, and
LB models (Supporting Information Fig. S3).

From average accuracy point of view, NN, GBM,
and SVM-linear kernel were the best performing
models. These differences were, however, not sta-
tistically significant (F-statistic: 0.24 on 5 and 54 DF,
p-value: 0.943). The valid accuracies for RF, GBM,
NN, LB SVM-linear kernel, and SVM-radial kernel
were 0.89, 0.88, 0.89, 0.86, 0.89, and 0.7, respectively.
All three models were in full agreement of predicted
values and we choose to proceed with SVM-linear
kernel for building the final model.

3.2.2. SVM-Linear Kernel Model

The final SVM model was trained using 70% of
the data and tested using the rest of the data as a test-
ing set (30%). Resampling by cross-validation was
applied to produce performance estimates. The con-
fusion matrix (Fig. 1) depicting a cross-tabulation of
the actual and predicted classes using a percentage
normalization of the tabulated data showed that the
model predicted at least 67% of the classes correctly.

The accuracy of the final SVM model trained
with all the predictor variables over the 10-fold cross-
validation was 89% (95% CI: 68%, 97%). The no

Table I. Sensitivity, Specificity, and Balanced Accuracy for the
Frequency of Illness Predictions from the Support Vector

Machine Model

Class

1 2 3 4 5 6 7

Sensitivity 1 1 1 1 0.8 0.67 1
Specificity 1 1 0.91 0.95 1 1 1
Balanced accuracy 1 0.96 0.98 0.9 0.83 1

information rate (NIR) was 0.25 and the test as-
sessing if accuracy was greater than NIR yielded a
p-value of <0.001.

The kappa statistic was 0.85, which is almost
perfect according to criteria by Landis and Koch
(1977) and excellent according to Fleiss et al. (2003).
Sensitivity and specificity except the sensitivity for
class 6 were all �0.8. The balanced accuracies for the
classes were �0.8 (Table I).

3.2.3. Variable Importance

The most important genes included Inlk, Auto,
GtcA, InlJ, IisY, IisD, IisX, IisH, IisB, Ami, GadA,
ActA, InlF, and lmo2026 as well as a selection of
recently reported genes FAM002725, FAM002729,
FAM002728, FAM003296, FAM003297, and FAM-
003164 (Fig. 2).

FAM002725, FAM002728, and FAM002729 were
associated with probabilities around 1 as important
predictors for all the classes of illness frequencies.
InlF also occurred at highest probabilities for all fre-
quency of illness categories except highest category
7. Several virulence genes were associated at high
probabilities with frequency of illness categories
above 5 (50%). Virulence genes InlJ and Inlk were
uniquely associated with high frequencies of clinical
illness categories 6 and 5, respectively, and were
least important predictors of the lower categories of
illness frequencies. The genes IisY, IisD, IisX, IisH,
and IisB also uniquely occurred at high probabilities
in higher frequency of illness categories 4 and 5.
Genes lmo2026 and FAM003296 were associated
with highest clinical frequencies categories 6 and 7.

We also assessed the prevalence of the predictor
genes among the different types of matrices of origin
of the isolates (Fig. 3). Virulence genes InlJ, Inlk, and
lmo2026, which were associated at high probability
with high frequencies of clinical illness categories
(Fig. 2), were also highly prevalent in all sources
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Fig. 1. Cross-tabulation of the actual and predicted classes for the predictions from the support vector machine model normalized as a
percentage.

of the isolates (Fig. 3). Gene lmo2026 associated
with highest clinical frequencies categories 6 and
7 occurred at highest probability in isolates from
ready-to-eat foods. InlF, which occurred at high
probabilities in isolates associated with high illness
categories, occurred at high prevalence in clinical
isolates as well as in isolates of dairy and composite
food origin. Isolates from composite foods (as well as
clinical isolates) also contained genes FAM002725,
FAM002728, and FAM002729, which are associated
at both low and highest probabilities with highest
frequencies of clinical cases.

4. DISCUSSION

The use of historical strains from selected cases
to set dose response in risk assessments neglects
within-species heterogeneity in microbial virulence.
Such is the case for L. monocytogenes, which are
considered in risk assessments to exhibit uniform
pathogenicity despite the fact that lineage I (serotype
4b) has been associated more with clinical isolates
when compared to lineage II (Maury et al., 2016).

Efforts to account for variability in strain virulence
during MRA have enabled the exploration of the
marginal distribution of virulence in L. monocy-
togenes by regarding serotypes as strains (FDA,
2003). WGS provides a potential for higher resolu-
tion MRA by precise classification of virulence in
individual strains (Pielaat et al., 2013). However, the
high-dimensional nature and complexity of the in-
teraction between the contribution of environmental
and genetic factors to disease for individual cases
present challenges in risk modeling using single-
variant association testing procedures. Furthermore,
even though erstwhile successful approaches such as
GWAS studies have revealed an increasing number
of genetic variants associated with certain traits and
human disease, the statistical association testing
approaches have only enabled the identification of a
small portion of the heritability whose clinical utility
both as individual and combined effects is diminutive
(Maher, 2008; Okser et al., 2013). Machine learning
methods play a potential role in both prediction and
interpretation based on such large, complex data
sets, where machine learning techniques “learn” to
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recognize important patterns in the data (Libbrecht
& Noble, 2015). We evaluated machine learning as
a tool for increasing the precision of current MRA
using the case of L. monocytogenes.

4.1. L. monocytogenes Strains

Incorrect classification from classifiers may
result from variations in strains not captured in the
training set. Dissimilarities in population genetic
structure, where a number of hidden microbial
strains or human population subgroups may result in
divergent disease phenotypes, result in higher false-
positive rates (Okser et al., 2013; Tian, Gregersen,
& Seldin, 2008). To circumvent such a possibility,
we used a reasonably representative panel from an
exhaustive screening of L. monocytogenes from five
main food matrices and clinical cases consisting of 46
different STs and 38 distinct CCs.

4.1.1. Virulence-Related Genes and Factors

The gene InlF was exceptionally truncated at
below 30% of its full length in L. monocytogenes

from ST121 in both food and clinical isolates and at
70% of the full-length protein in strains from lineage
II. ST121 is the most prevalent L. monocytogenes
clone, followed by CCs 1, 9, 2, 6, 8 and 16, 5, and
4 in decreasing order of prevalence (Maury et al.,
2016). It is also reported that ST121 is one of the STs
that encompasses the less pathogenic strains and has
not been associated with large outbreaks but only
with a few sporadic cases (Henri et al., 2016). InlF,
which is part of a large group of surface-exposed
leucine-rich repeat (LRR) proteins, is involved in
adhesion between L. monocytogenes and the host
cell. The internalin family has a modular architecture
comprising an N-terminal cap domain, an LRR
domain containing 22 amino acid repeats, an interre-
peat region domain, and varying C-terminal repeats
(Bierne, Sabet, Personnic, & Cossart, 2007). InlF
was previously identified as involved in mediated
adhesion and invasion of murine fibroblasts and hep-
atocytes under ROCK pathway inhibition (Kirchner
& Higgins, 2008). Ghosh et al. (2018) recently iden-
tified InlF using mouse models as a surface protein
involved in the infection of the brain interactively
with vimentin, a host cell surface protein. More
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Fig. 3. Prevalence of important genes in clinical and different food sources of the isolates. FPE, food process environment; RTE, ready-to-
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investigations are suggested regarding the possible
consequence of L. monocytogenes possessing this
truncated InlF gene in epidemiology and food safety.

4.2. Predictive Modeling

4.2.1. Model Selection

When comparing different machine learning
models, including RF, SVM-radial, SVM-linear, NN,
GBM, and LB, the average accuracy of NN, GBM,
and SVM-linear kernel was highest though this dif-
ference was not statistically significant. We pro-
ceeded with SVM-linear kernel as the comparison
with the other top models, based on their average ac-
curacy ranking, was close to full agreement. Model
diagnostic statistics supported SVM-linear kernel as
an appropriate model for the sequence data. An
SVM model presents training data as points in space,
which are mapped so that the data from separate cat-
egories are divided by a clear gap by making this gap
as wide as possible (Cortes & Vapnik, 1995). SVMs

are finding increased applications in biology, espe-
cially in gene expression data analysis in research ar-
eas such as tissue classification, gene function predic-
tion, protein subcellular location prediction, protein
secondary structure prediction, and protein fold pre-
diction (Moguerza, Muñoz, & Mu, 2006). SVMs ap-
ply mathematical features that highly adapt them for
the highly dimensional genetic data such as the flex-
ibility in choosing a similarity function, sparseness of
solution for large data sets, aptness for large feature
spaces, and the capacity to recognize outliers (Brown
et al., 2000). SVMs have therefore been reported to
perform better or equally well when compared to
other machine learning methods in biological appli-
cations (Moguerza et al., 2006). Davis et al. (2016),
who used AdaBoost to make accurate classifiers for
antibiotic resistance prediction, recommended the
exploration of other algorithms, such as RFs and
SVMs, which may improve the predictions. In our
study, SVM was highly accurate in classifications
based on genes corresponding to genomic regions in-
fluencing clinical phenotype in L. monocytogenes.
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4.2.2. Variable Importance

In addition to accurate risk prediction, machine
learning models enable feature selection by identify-
ing subsets of genes whose expression patterns lead
to different types of specific phenotypes. This allows:
(i) identification of a small set of genes with best
predictive potential, (ii) use of the trained algorithm
to comprehend the biological background (Glaab,
Bacardit, Garibaldi, & Krasnogor, 2012; Libbrecht
& Noble, 2015; Urbanowicz, Granizo-Mackenzie, &
Moore, 2012) to identify only the genes relevant to
the study objective, and to (iii) training the model
with the highest accuracy (Libbrecht & Noble, 2015).
The most important genes FAM002725, FAM002728,
and FAM002729 were also associated with proba-
bilities around 1 as important predictors for all the
classes of illness frequency. These genes are part of
syntenic genes strongly associated with high viru-
lence in L. monocytogenes by Maury et al. (2016).
The most important gene group also included LlsX,
LlsY, LlsH, LlsG, LlsD, and LlsB. These genes
are part of an extra pathogenicity island designated
LIPI-3, which is found in lineage I strains of L. mono-
cytogenes as part of eight genes in the sequential
order: llsAGHXBYDP (Clayton et al., 2014). LlsA
encodes a structural peptide LlsB, while Lls Y and
D encode enzymes that perform post-translational
modifications; Lls G and H encode an ABC trans-
porter; Lls P encodes a protease; while the function
of Lls X is unknown. The associated promoter, Plls A,
which is situated upstream of lls A, is induced by
oxidative stress, suggesting that expression of the
LIPI-3 genes may be induced in the phagosome of
macrophages. LIPI-3 genes when expressed lead
to the production of a hemolytic and cytotoxic
factor, Listeriolysin S (LLS), which plays a role in L.
monocytogenes virulence (Cotter et al., 2008). LLS
contributes to the survival of L. monocytogenes in
polymorphonuclear leukocytes and contributes to
virulence in the murine model (Clayton et al., 2014).
Lineage I strains have therefore been linked to most
of the listeriosis outbreaks (Cotter et al., 2008).

The most important genes also included Auto
as well as a selection of recently reported genes
by Maury et al. (2016), namely, FAM003292,
FAM003294, FAM003296, FAM003297, FAM003-
298, and FAM003299. These genes are associated
with high illness frequency in clones, which were
found to infect the liver (CC1 and CC6) and brain
(CC1, CC4, and CC6) more efficiently. Among these
clones, CC4 is associated with the highest propor-

tion of clinical isolates and is strongly associated
with both CNS and MN infection in humans (Maury
et al., 2016). The gene Auto encodes Auto, which
is a surface-associated autolysin of L. monocyto-
genes necessary for entry into eukaryotic cells and
virulence (Cabanes, Dussurget, Dehoux, & Cossart,
2004). Among the internalins, InlF, InlJ, and Inlk
were among the top predictors of high clinical fre-
quencies. Internalins are key virulence factors that
contribute in pathogenesis steps ranging from ad-
hesion to receptor recognition (Bierne et al., 2007;
Neves, Job, Dortet, Cossart, & Dessen, 2013; Sabet,
Lecuit, Cabanes, Cossart, & Bierne, 2005). Inlk is
a surface-associated internalin involved in escape of
listeria from autophagy (Neves et al., 2013). The re-
sults indicated that certain well-described virulence
and virulence regulation genes involved in infection
pathogenesis steps by L. monocytogenes, such as ad-
hesion and invasion in the mammalian host cells (for
instance, inlA, Lap, FbpA, lapB, InlF, DltA, InlB,
and Vip), growth in the host cell cytoplasm, intra-
cellular mobility, and phagosomal escape (hly, plcA,
and plcB), were not among the important predictors
of frequency of illness. Furthermore, important viru-
lence genes such as inlA and the central transcription
regulator PrfA were present at alignment percent-
ages close to 100 in the genomes of all food and clin-
ical isolates and were therefore not good predictors
of the frequency of illness. These important genes
can be used to infer risk heterogeneity in L. mono-
cytogenes by decomposing pathogenicity into differ-
ent strata. Machine learning models enables identifi-
cation of interactions between genetic loci, thereby
capturing the multifactorial nature of complex dis-
eases. Due to the complexity of the interaction be-
tween the environmental and genetic factors in their
contribution to disease for individual cases, single-
variant association testing procedures are inadequate
(Cordell, 2009; Lehner, 2007; Okser et al., 2013).
Such effects are too minute to be accepted under
the significance cut lines selected in most research
despite the fact that they still have a significant im-
pact on the predictive power at strain level or when
considered in combination with other nongenetic risk
factors. However, attention should be given to model
overfitting or variation from linear descent, which
may result in the selection of genes with an unclear
role as important predictors (Davis et al., 2016). As
the diversity of strains used in training the learn-
ers increases, such bottlenecks may be recognized or
eliminated.
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4.2.3. Occurrence Patterns of Important Genes in
Food Types

We also assessed the prevalence of the important
genes in different types of food matrices of origin of
the isolates. InlF, which occurred at high probabili-
ties in isolates associated with high illness categories,
occurred at high prevalence in clinical isolates as
well as in isolates of dairy and composite food origin.
It is also of concern that the gene lmo2026 asso-
ciated with highest clinical frequencies categories
occurred at highest probability in isolates from the
ready-to-eat foods, which receive no preconsump-
tion heat treatment or other microbial inactivation
treatments. Isolates from composite foods (as well as
clinical isolates) also contained genes FAM002725,
FAM002728, and FAM002729, which are associated
at high probabilities with highest frequencies of
clinical cases. Foods of dairy origin, especially soft
cheeses, have been implicated as the leading source
of listeriosis and have been a major concern to the
dairy industry and public health authorities (Melo,
Andrew, & Faleiro, 2015). This is especially due to
the optimal growth conditions suitable for growth
of Listeria in dairy products as well as adaptation to
adverse conditions during processing (Melo et al.,
2015).

This presents an example of how machine learn-
ing can be used to derive lower dimensional data
from higher ones. Such opportunity is a potential so-
lution to the curse of high-dimensionality data en-
countered in genomics, epigenomics, proteomics, or
metabolomics (Libbrecht & Noble, 2015). Further
predictions based on reduced features could be used
to explore pathway analysis approaches. Pathway
analysis examines whether a group of related loci in
the same biological pathway is jointly associated with
a trait of interest and may be used for a food chain
risk assessment incorporating genes coding for pro-
teins likely to be involved in preservation stress sur-
vival, growth, and/or virulence (Okser et al., 2013).
When predictive models are based on WGS data, the
hypothesis is that this will greatly reduce the need for
future validation of models in the laboratory and in
food (Okser et al., 2013).

The success of an infection, however, is also
influenced by host factors. However, Maury et al.
(2016) found novel evidence that specific virulence
factors among invasive clones compensate for the
absence of comorbidities and still successfully caused
illness, thereby demonstrating the hypervirulence
nature of infection-associated clones. Improved

predictive accuracy, as well as the aggregation of
such improvements by the revelation of molecular
elements that synergistically enhance the risk of
disease phenotype when combined, may result in
significant predictive benefits (Okser et al., 2013).

4.3. Linkage with Currently Applied Microbial
Risk Assessment

Here we discuss the utility of the proposed
approach for improved inference in currently ap-
plied MRA approaches by incorporating NGS and
epidemiological data to derive higher resolution
MRA. We illustrate this using the case of “preci-
sion medicine” in human medicine, where similar
approaches have already shown promise toward
improved diagnostic, therapeutic, and prognostic re-
sults. The concept of “precision medicine” emerged
in human medicine as a result of increased data avail-
ability, decrease in cost of NGS, and availability of
high computing capacity. In this approach, medical
treatment is tailored to the individual characteristics
of a patient (Deisboeck, 2009; Reynolds, 2012).
Individuals can be categorized into heterogeneous
subpopulations differing in their susceptibility to
certain diseases, in prognosis, as well as therapeu-
tic response (Deisboeck, 2009; Reynolds, 2012).
Mitigation efforts can therefore be more precisely
focused, which addresses the risk versus benefits
discrepancies in human medicine (Deisboeck, 2009;
Reynolds, 2012). Similarly, past MRA efforts have
relied on fixed data about a species from selected
historical studies to define hazards, evaluate expo-
sure, characterize the hazard, and set dose response.
The pathogen is assumed to be a unit characterized
by within-species homogeneity in virulence. Current
dose response models are aimed at estimation of
the probability of illness taking into account concen-
tration of ingested pathogenic microorganisms. For
successful infection and subsequent illness, a propor-
tion of the ingested microorganisms survive human
host barriers. For instance, the infection process by
L. monocytogenes consists of a number of steps,
including survival and passage through the intestine
and invasion of membranes in the intestines, as
well as ability after intracellular infection to survive
and multiply in phagocytic host cells. It is assumed
in most MRA studies that each of the ingested
microorganisms is a taxonomic unit with similar
probability to complete these steps toward infection
and illness so that the number of microorganisms
surviving different barriers follows a binomial
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distribution. However, exchange of genetic determi-
nants between bacterial species implies a dynamic
heterogeneity in virulence within the taxonomic unit.
The WGS approach defined in this study involves
viewing the pathogen not as a taxon, but as a genetic
unit. This presents an opportunity for more precise
dose–response assessment. The pathogen may be
viewed as a genetic unit or strain i, with probability
pi expressible as pi = f(p1i, p2i . . . . pni), where each
pxi is the probability of a strain i completing each
of the n infection steps x. A prerequisite toward
this concept is the calculation of pi for every i in the
taxonomic unit population. Using this concept, dose–
response relationships can be redefined from the
relative proportions of each strain from WGS data.

Inputting whole genome sequence data may
assist to resolve differences between clinical end-
point estimations. Priority setting of risk from highly
pathogenic strains from the full spectrum of strains
based on sequencing data is therefore foreseen in
what Pielaat et al. (2013) called an “organization
principle.” We hypothesize that this approach will
also support more discriminatory food safety efforts
by setting more specific microbial criteria. First, the
approach overcomes the traditional blanket removal
of foods based on pathogens where risk is general-
ized. The qualified presumption of safety status of
existing species can, therefore, be dynamically rede-
fined (Pielaat et al., 2013). For instance, in our study,
we demonstrated that L. monocytogenes strains hav-
ing genes FAM002725, FAM002728, FAM002729,
InlF, InlJ, Inlk, IisY, IisD, IisX, IisH, IisB, lmo2026,
and FAM003296 were important predictors of the
higher frequency of illness. Second, the ML risk
prediction approach provides more specific hazard
identification and characterization, which may pro-
vide important real-time resolution and prevention
of outbreaks caused by new and emerging strains
of foodborne bacteria. Further studies are proposed
utilizing ML approach inputting genomic data to pre-
dict exposure and adaptation of microorganisms to
changes in environments, which increases resistance
to environmental, processing, and host-associated
stress. Phenotypic data such as adaptation to various
environmental stresses, for example, salt, acid, des-
iccation, and temperature, can be used as dependent
variables in ML algorithms trained to categorize
strains into different stress response categories based
on WGS data. The ML approach will facilitate stress
response prediction from the large, complex, and
highly dimensional genomic data sets, where ML
techniques “learn” to recognize important patterns

in the data (Libbrecht & Noble, 2015). Predictive
models based on WGS will therefore form a predic-
tive platform for survival, eventual exposure, and
more precise dose response during MRA.

4.4. Future Perspectives

WGS-based MRA will improve the resolution
of risk assessments to a level where models that
predict the commensal existence of a certain strain
in one type of food may also depict the pathogenicity
of the same strain to humans in another food type
(Pielaat et al., 2013). This may allow for the setting
of product-specific microbial criteria, which could
avoid blanket removal of foods based on the findings
of pathogens whose perceived threat is general-
ized (Pielaat et al., 2013). More specific hazard
identification and characterization may provide
important real-time resolution and prevention of
outbreaks caused by foodborne bacteria. Genes
involved in virulence, the severity of disease, host
specificity, ecological niche, and mechanisms to
adapt to particular nutrient supply in certain food
may be revealed (Pielaat et al., 2013). This will lead
to the identification of genetic markers that can be
measured for epidemiological inference in advance
of clinically concerning outcomes such as outbreaks.
Genomic inputs data, e.g., SNPs, k-mers, and whole
genome MLST, will enable further exploration and
improvement of the predictive power and important
predictor information obtainable from the models.

An important assumption in this study is that
disease frequencies are a proxy for virulence. Like in
the case of other virulence proxies, potential bias in
this approach emanates from not accounting for host-
associated factors that may explain variations in dis-
ease progression due to immune response and other
individual factors. This may be improved in the fu-
ture as data become available on host-individual vari-
ation in genomic and immunological characteristics.
Models can therefore account for relative propor-
tions of each microbial genomic form i as well as hu-
man subpopulation j. The clinical frequencies in this
study were collected from near exhaustive epidemio-
logical studies and may be a considerable estimation
reflection of risk at the population level (Maury et al.,
2016). The bottleneck in the hazard characterization
step in MRA using NGS data is often due to the lack
of reproducible health endpoints linking genotypic to
phenotypic data (Brul et al., 2012). This hampers the
use of WGS data in MRA (Pielaat et al., 2013). With
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this study as a first step, future studies will be needed
to demonstrate the clinical utility of the approach.

5. CONCLUSIONS

We have described a potential approach toward
the application of WGS data in L. monocytogenes
risk analysis.

The approach looks promising because predic-
tion of pathogenicity of bacterial pathogens prior to
phenotypic data will be an important prerequisite
to more informed decision making and improved
reaction time. Such models will enable the set up of
real-time online analysis of whole genome sequence
data from L. monocytogenes, which could estimate
risk/health burden at the whole-population or
strain level. Such models/tools could both improve
food safety and reduce the number of unnecessary
withdrawals of food contaminated with non/low-
pathogenic strains. Additionally, early detection
of the evolution of new pathogenic strains, which
lead to new threats, will support timely outbreak
detection and decision making. For instance, this
study indicates that the InlF gene is truncated among
a specific subpopulation of L. monocytogenes that
could explain reduced illness frequency of those
strains. The role of the truncated InlF protein in at-
tenuating the ability of L. monocytogenes to adhere
to host cells resulting in decreased virulence needs
to be further investigated.

Further studies on the role of important disease
outcome predictor genes in L. monocytogenes and
other pathogens need to be conducted. Still, this is to
our knowledge the first approach where WGS data
have been used to predict disease frequencies in hu-
man listeriosis.
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