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Introduction

Abstract Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of in-
sects are thought to play roles in olfactory recognition affecting host choice, copulation,
reproduction and other behaviors. Previous descriptions of OBPs and CSPs in the whitefly
Bemisia tabaci often provided no or incomplete genetic information. In this study, we
present a genome-wide and transcriptome-wide investigation of the OBPs and CSPs in
B. tabaci MEAM1 (Middle East-Asia Minorl species). Eight OBP and 19 CSP genes
were identified that covered all previous sequences. Phylogenetic analyses showed that
the CSP genes had a lineage-specific expansion (BtabBCSP1, BtabBCSP3, BtabBCSP13,
BtabBCSP17, BtabBCSP18 and BtabBCSP19). Expression profiling of OBPs and CSPs by
transcriptome sequencing and quantitative real-time polymerase chain reaction (QPCR) re-
vealed that expression patterns differed among developmental stages of B. tabaci MEAMI1.
Five OBP genes and 11 CSP genes significantly differed between males and females; four
of the 19 CSP genes were highly expressed in adults, while two were highly expressed
in nymphs. The expression profiles of the OBP and CSP genes in different tissues of
B. tabaci MEAM1 adults were analyzed by qPCR. Four OBP genes found in B. tabaci
MEAMI1 were highly expressed in the head. Conversely, only two CSPs were enriched in
the head, while the other six CSPs were specifically expressed in other tissues. Our results
provide a foundation for future research on OBPs and CSPs in B. tabaci.

Key words Bemisia tabaci; CSPs; expression patterns; genome-wide identification;
OBPs; phylogenetic

is the solubilization and transport of odor molecules
from the external environment to the olfactory sensory

The olfactory recognition system plays a critical role
in feeding, mating, oviposition, and other important be-
haviors of insects. The first step in olfactory recognition
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neurons. In insects, this task is performed by two major
families of small, soluble proteins: odorant-binding
proteins (OBPs) and chemosensory proteins (CSPs)
(Vogt & Riddiford, 1981; Vogt ef al., 1991; Angeli et al.,
1999; Pelosi et al., 2006, 2014, 2018). OBPs provide
the initial molecular interactions with chemical signals
such as pheromones and host odors and are thought to
ferry the semiochemical molecules across the antennal
sensillum lymph to the olfactory receptors (Steinbrecht,
1998). OBPs are small (10-30 kDa), globular and
abundant water-soluble acidic proteins with a pattern of
six conserved cysteine residues. These cysteine residues
are paired into three interlocked disulfide bridges, which
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together with other amino acids form an odorant-binding
pocket that binds and protects small hydrophobic ligands
(Leal et al., 1999; Scaloni et al., 1999; Laughlin et al.,
2008). OBPs in insects have rich and expanded roles in
pheromone signal transduction (Xu et al., 2005) and in
the manipulation of host selection and mating behavior
(Hooper et al., 2009; Pannure et al, 2012), and are
also important for the identification of cryptic species
(Lardeux et al., 2012; Gholizadeh et al., 2015). CSPs are
small, soluble proteins that are abundant in the sensilla
lymph and that have many functions (Wanner et al., 2004;
Gong et al., 2007). Like OBPs, CSPs are odor-binding
proteins (Ban et al., 2003; Ozaki et al., 2005; Foret
et al., 2007; Zhou et al., 2010; Li et al., 2013), but
CSPs have fewer conserved cysteine residues and more
conserved nucleotide sequences than OBPs across insect
species (Pelosi et al., 2005). CSPs have more functions
than OBPs in non-sensory organs of insects, and these
functions include pheromone delivery, solubilization of
nutrients, and the development of insecticide resistance
(Kamikouchi ef al., 2004; Wanner ef al., 2005; Maleszka
etal.,2007; Xu et al., 2009; Liu et al., 2010; Guo et al.,
2011, 2012; Zhou et al., 2013; Zhang et al., 2013, Jean-
Francois, 2014). CSPs can also act as effector proteins to
trigger plant physiological defenses (Bos et al., 2010).

The sibling and cryptic species of the whitefly Bemisia
tabaci include some of the world’s most damaging agri-
cultural pests and are considered among the World’s Worst
Invasive Species (Global Invasive Species Database:
http://www.issg.org/database/welcome/). Among the B.
tabaci sibling species, Bemisia Middle East-Asia Minor
1 (MEAMI1 or ‘B’) and Bemisia Mediterranean (MED or
‘Q’) are the most extensively studied. They are consid-
ered to be highly invasive and destructive pests in many
parts of the world because of their broad host range and
their ability to transmit viral pathogens of plants (Jones,
2003; De Barro et al., 2011; Gilbertson et al., 2015; Wan
& Yang, 2016).

To date, OBPs and CSPs and the genes that encode
them have been partly identified in B. tabaci based on
expressed sequence tags and head transcriptome data (Li
etal,2012,2014, 2016; Wang et al., 2016, 2017). How-
ever, the sequences obtained are incomplete. A compre-
hensive understanding of OBPs and CSPs in B. fabaci
requires a more complete genome-wide analysis. In this
research, we used previously published data on B. tabaci
genomes (Chen et al., 2016; Xie et al., 2017) and new an-
tenna transcriptome data (obtained in the current study)
to complete a genome-wide analysis of OBP and CSP
gene families in B. tabaci MEAMI1. We systematically
classified, characterized, and phylogenetically analyzed
the OBP and CSP genes. By searching both genomic and
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transcriptomic data and experimentally validating the re-
sults, we identified eight candidate OBP genes and 19
candidate CSP genes in this species. We also used RPKM
(reads per kilobase per million mapped reads) and quan-
titative real-time polymerase chain reaction (QPCR) to
determine the expression profiles of these genes in differ-
ent developmental stages and different tissues. In addition
to providing a framework for further research on B. tabaci
OBPs and CSPs, the results will be useful for compar-
ing OBP and CSP genes and proteins among different
species.

Materials and methods
Insect rearing and sample preparation

A B. tabaci MEAMI1 population was maintained on
cotton plants at 27 £ 1 °C with an L : D 16 : 8 pho-
toperiod and a relative humidity (RH) of 70% =+ 10%.
Every three to five generations, the purity of the strain
was monitored using PCR and the sequence of mitochon-
drial cytochrome oxidase I (mtCO I) gene (Chu et al.,
2010). Samples of stages (eggs, the four nymph stages,
females, males) and tissues (head, abdomen and mixture
of thorax, legs and wings) were separately collected from
the B. tabaci MEAM 1 population, rapidly frozen in liquid
nitrogen, and stored at —80 °C.

RNA isolation, cDNA library construction, Illumina
sequencing and antennae transcriptome assembly

RNA from the anatomical antennae tissues of thousands
of adults of MEAM1 was extracted with Trizol reagent
(Invitrogen, Carlsbad, CA, USA). according to the man-
ufacturer’s instructions, and RNA purity and degradation
were checked on 1% agarose gels. RNA integrity was
further confirmed using the 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) with a minimum
RNA integrity number of 8. Poly (A)-containing RNA
was separated from the total RNA using the Dynabeads®
mRNA purification kit (Invitrogen, Carlsbad, CA, USA),
and the quality was verified on a denaturing gel. The
messenger RNA (mRNA) was then used for SMARTer
first-strand complementary DNA (cDNA) synthesis
using the SMARTer Ultra Low Input RNA for Illumina
Sequencing Components — HV (cat. nos. 634822,
634825, 634827 and 634831). This was followed by full-
length double-stranded cDNA (ds-cDNA) amplification
using limiting dilution PCR. PCR-amplified cDNA was
purified by using SPRI Ampure Beads, and purity was
confirmed by using the Agilent 2100 BioAnalyzer. After
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covaris shearing of full-length cDNA, the Low Input
Library Prep Kit (cat. no. 634947) was used to create
the final cDNA library. The paired-end cDNA libraries
(200 bp size) were prepared following the manufacturer’s
recommendations and sequenced on an Illumina GAII
platform. The resulting high-quality cleaned reads were
assembled de novo into contigs using Trinity (trini-
tyrnaseq-r20131110) with default parameters except
that ‘min_kmer_cov’ was set to 2 (Friedman et al,
2011).

Identification of putative OBPs and CSPs in B. tabaci

The computational pipeline is detailed in Figure S3.
The protein sequences of known OBPs and CSPs were
used to search the B. tabaci (MEAM1) genome 1.0, the
B. tabaci (MEAM1) genome (Chen et al., 2016), and
the antenna transcriptome using the program TBLASTN
with an e-value threshold of 107>, The sequences meet-
ing the criteria were collected as candidate OBP/CSP
sequences. After removal of the identical sequences,
the remaining sequences were classified into two types
(OBPs and CSPs). Putative OBP/CSP sequences were
confirmed by subjecting them to BLASTX analysis with
the non-redundant protein sequence (NR) at GenBank
(http://www.ncbi.nlm.nih.gov/). The conserved domains
of these identified OBPs and CSPs were predicted us-
ing SMART (simple modular architecture research tool,
http://smart.emblheidelberg.de/) (Letunic et al., 2015)
and were confirmed using the National Center for
Biotechnology Information conserved domain search ser-
vice tool. All candidate OBP and CSP sequences were fur-
ther validated by cloning and sequencing. Gene-specific
primers were designed and used to clone the open read-
ing frame (ORF) or partial sequences of each OBP and
CSP. The method of identification of putative OBPs and
CSPs in B. tabaci MED is the same as above in B. fabaci
MEAMI1 except for MEAMI1 antenna transcriptome
application.

Sequence and phylogenetic analysis

The putative N-terminal signal peptides and the most
likely cleavage sites were predicted using the SignalP
V4.1 program (http://www.cbs.dtu.dk/services/SignalP/).
Sequences were aligned using the program Clustal W with
default gap penalty parameters of gap opening 10 and
extension 0.2. A neighbor-joining tree was constructed
using the program MEGA 6.0 with a p-distance model
and a pairwise deletion of gaps (Tamura ef al., 2013). The
bootstrap support of tree branches was assessed by re-

sampling amino acid positions 1000 times. Phylogenetic
trees were then presented in circular shape and colored
taxonomically using online tools provided by Evolview
(He et al., 2016).

Motif analysis

A total of 120 of OBPs and 64 CSPs from B. tabaci
MEAMLI, B. tabaci MED and other insects (Supplemen-
tary file) were used for motif discovery and pattern anal-
ysis. The MEME (version 4.12.0) on the line server
(http://meme-suite.org/index.html) was used to discover
and analyze the motifs in this analysis. The parameters
used were as follows: minimum width = 6, maximum
width = 10, and the maximum number of motifs to
find = 6.

Expression profiling of OBPs and CSPs

Expression profiles of OBPs and CSPs in different de-
velopmental stages of B. tabaci MEAM1 were obtained
using transcriptome data. Samples were represented by
three biological replicates that were independently pro-
cessed. Total RNA was extracted using Trizol reagent
according to the manufacturer’s instructions (Invitrogen,
Carlsbad, CA, USA). RNA was quantified using a Nan-
odrop 2000 (Thermo Scientific, Wilmington, DE, USA),
and purity was checked on 1% agarose gels. RNA-seq
libraries were constructed as previously described and se-
quenced on a HiSeq 2500 system according to the manu-
facturer’s instructions with sequencing at 125 bp (PE125,
library size is 280-320 bp). The software Fastq_clean
was used for RNA-seq data cleaning and quality control
(Zhang et al., 2014). The raw RNA-seq reads were fil-
tered with Fastq_clean software by trimming low-quality
(Q value < 20) nucleotides on both ends, clipping the
adapter and barcode sequences from the 3’ end, and dis-
carding the ribosomal RNA (rRNA) sequence. We then
aligned the high-quality cleaned RNA-seq reads to the
pre-prepared RNA sequence data set with the Bowtie pro-
gram allowing one mismatch. Following alignments, raw
counts for each transcript and in each sample were derived
and normalized to RPKM. Statistical analyses and plot-
ting were conducted using the software R v2.15.3 with
the Bioconductor packages (Gao et al., 2014). Differ-
entially expressed genes (fold-change > 2 and adjusted
P-value < 0.05) between two selected conditions were
identified with the DESeq package. The transcript levels
of B. tabaci CSPs and OBPs in different developmental
stages were determined by calculating log2 (RPKM + 1)
values.
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Besides transcriptomic validation, qPCR analysis was
used to confirm mRNA expression of CSPs in B. tabaci.
Based on the RPKM value generated from the RNAseq
data, we selected nine genes (differentially expressed
genes between adult and egg, fold-change > 2 and ad-
justed P-value < 0.01) that are representative of all of
the B. tabaci CSPs for the qPCR validation study. We
also selected eight CSP genes and four OBP genes (dif-
ferentially expressed genes between males and females,
fold-change > 2 and adjusted P-value < 0.01) to confirm
the transcript levels in different tissues. qPCR was con-
ducted using an ABI PRISM 7500 Real-time PCR Sys-
tem (Applied Biosystems, Foster City, CA, USA), and
non-treated B. tabaci adults were subjected to the analy-
sis. All qPCR analyses included three technical replicates
for each of three biological replicates. EF-/o and SDHA
were selected as the reference genes. The qPCR was car-
ried out in a 20 mL reaction volume containing 10 uL
of 2 x Super Real PreMix Plus, 0.4 uL of 50 x ROX
Reference Dye, 0.5 uL of forward primer (10 wmol/L),
0.5 uL of reverse primer (10 umol/L), 1.0 L of cDNA
(300 ng/uL) and 7.6 uL of ribonuclease-free ddH,O. The
instructions of the Super Real PreMix Plus (SYBR Green)
kit (Tiangen, Beijing, China) were followed. The thermal
cycling conditions were polymerase activation at 95°C for
15 min, followed by 40 cycles of denaturation at 95°C for
10 s, annealing at 60°C for 30 s and elongation at 72°C
for 32 s. The amplification efficiency was estimated using
the following equation: E =[10" (—1/slope) —1] x 100%,
in which the slope was derived by plotting the cycle thresh-
old (Ct) value against six serially diluted template con-
centrations. The transcript levels of CSP and OBP genes
were quantified according to the 2722¢ method. SPSS
20.0 was used to analyze correlations between qPCR data
and RNA-seq data.
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Results

Candidate odorant-binding proteins and phylogenetic
analyses in B. tabaci MEAM1

Among the eight candidate OBP genes that we identi-
fied in the B. fabaci genome, three (BtabBOBPI, Btab-
BOBP6 and BtabBOBPS) are located on the same scaffold
and have the same orientation (Table 1; Fig. 1). Each of
these three OBPs contains 6—7 exons within the 30 kb
genomic region. By aligning the sequences and counting
the cysteine motifs, we found that BtabBOBP6 lacks two
cysteine residues (C2 and C5) and that BrabBOBP2 and
BtabBOBP3 have two additional cysteine residues, that is,
one after C4 and one after C6. These additional cysteine
residues and a conserved proline residue are the key fea-
ture of Plus-C (Fig. S1). We used all of the putative OBPs
from B. tabaci representative homologous sequences from
20 hemipteran species to build a neighbor-joining phylo-
genetic tree. The tree showed a clear cluster represent-
ing the Minus-C OBP class, consisting of BtabBOBP6
and other similar genes, and a Plus-C clade OBP class
covering BtabBOBP2 and BtabBOBP3 (Fig. 2). Remain-
ing OBPs (BtabBOBP1, BtabBOBP4, BtabBOBPS5, Btab-
BOBP7 and BtabBOBPS) were grouped and belonged to
the classic clade according to their percentage of similar-
ity among hemipteran species (Fig. 2).

Expression profiles of the B. tabaci MEAM1 OBPs
across developmental stages

Expression significantly differed between males and
females for five OBP genes (BtabBOBP2, BtabBOBP3,
BtabBOBP4, BtabBOBP6 and BtabBOBPS) (Fig. 1B).
Among all developmental stages, expression was highest

Table 1 List of genes encoding odorant-binding proteins (OBPs) in Bemisia tabaci genome.

. . Location
Gene name OREF (bp) Signal peptide (aa)
Orientation Start End

BtabBOBP1 426 1-24 scaffold_135— 465930 459692
BtabBOBP2 741 1-22 Scaffold 24— 1533820 1523195
BtabBOBP3 747 1-26 Scaffold_7— 1994480 1961838
BtabBOBP4 426 1-19 Scaffold 267— 547353 508414
BtabBOBPS 633 1-24 Scaffold 277+ 384969 402084
BtabBOBP6 435 1-25 Scaffold_135— 485754 472890
BtabBOBP7! 267 ND Scaffold_188— 215970 204845
BtabBOBPS 477 1-21 Scaffold_135— 454393 438508

"Indicates that the gene is partial and lacks an intact open reading frame (ORF). ND indicates not detected.
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Fig. 1 Structure and expression profiles of odorant-binding protein (OBP) genes in Bemisia tabaci. (A) Structures and locations of
OBP genes on scaffolds. The blue arrows indicate the transcription orientations of OBP genes on the scaffold. The transcript sequences
of OBPs were matched to B. tabaci genomic sequences in order to identify the exons and introns. The exon regions are shown with blue
boxes. (B) Expression profiles of OBPs in different developmental stages (E = egg, N = nymph stages 1 to 4 as indicated, F = adult
female, and M = adult male). The transcript levels were determined by calculating log2 (reads per kilobase per million mapped reads +
1) values. Relative expression levels are indicated by a 15-grade color scale. e indicates differentially expressed genes (fold-change >
2 and adjusted P-value < 0.05) between males and females. (C) Electrophoretic separation of BtabOBPs on an agarose gel.

for BtabBOBP1 and BtabBOBP3 and lowest for Btab-
BOBP6 and BtabBOBP?7. Expression of BtabBOBP2 and
BtabBOBP4 was low in eggs but high in other stages. Ex-
pression of BtabBOBP5 was highest in nymphs followed

by eggs.

mRNA expression of selected B. tabaci MEAM1 OBPs as
determined by gPCR across different tissues

gPCR analyses were conducted to measure the expres-
sion levels of the four BtabBOBP genes in the head, thorax
(mixture of thorax, legs and wings) and abdomen. The re-
sults indicated that four genes (BtabBOBP2, BtabBOBP3,
BtabBOBP4 and BtabBOBP$8) were approximately 2—100
times more expressed in head than in the other parts
(Fig. 3). Furthermore, the two OBPs (BtabBOBP3 and
BtabBOBP4) exhibited an expression level of 2.5 and 6.85
times difference between the thorax and abdomen, respec-
tively (P < 0.05).

Candidate chemosensory proteins and phylogenetic
analyses in B. tabaci MEAM1

We identified 19 candidate CSP genes distributed
across 11 scaffolds in the B. tabaci genome. More than half
of them are located within clusters (Table 2). The largest
cluster contains six CSP genes, which occur in both orien-
tations on scaffold211 (Fig. 4). The alignment of the pre-
dicted B. fabaci CSP proteins showed high average pair-
wise sequence identity between CSP family members. All
of the 19 candidate CSPs contain four intact, conserved
cysteine residues (Fig. S2). The neighbor-joining method
was used to construct a phylogenetic tree for the CSPs of
B. tabaci and of seven other hemipteran species (Fig. 5).
CSPs in B. tabaci are represented in all major clades in
phylogenetic trees constructed for these multi-gene fam-
ilies in hemipterans. Phylogenetic analyses showed that
the CSP genes had a lineage-specific expansion (Btab-
BCSP1, BtabBCSP3, BtabBCSP13, BtabBCSP17, Btab-
BCSP18 and BtabBCSP19).
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Fig. 2 Phylogenetic analysis of the amino acid sequences of BtabBOBPs (indicated by blue) in the context of various hemipteran
odorant-binding proteins (OBPs). Neighbor-joining tree of the odorant-binding proteins (OBPs) based on amino acid sequences of
Bemisia tabaci and other hemipterans. Bootstrap values were calculated with 1000 replications, and those larger than 50% are marked
on the nodes. The protein names and sequences of the 112 OBPs used in this analysis are listed in a supplementary file. Btab =
Bemisia tabaci, Apis = Acyrthosiphon pisum, Mper = Myzus persicae, Agos = Aphis gossypii, Sfur = Sogatella furcifera, Nlug =
Nilaparvata lugens, Psal = Pterocomma salicis, Agly = Aphis glycines, Aluc = Apolygus lucorum, Alin = Adelphocoris lineolatus,
Rpad = Rhopalosiphum padi, Mdir = Metopolophium dirhodum, Mvic = Megoura viciae, Bbra = Brevicoryne brassicae, Lery =
Lipaphis erysimi, Afab = Aphis fabae, Acra = Aphis craccivora, Tsal = Tuberolachnus salignus, Dpla = Drepanosiphum platanoidis

and Nrib = Nasonovia ribis-nigri.

Expression profiles of the B. tabaci MEAM1 CSPs across
developmental stages

Of the 19 identified CSP genes, the expression of
the following 11 significantly differed between females
and males of B. tabaci: BtabBCSP2, BtabBCSP3, Btab-
BCSP4, BtabBCSP7, BtabBCSPS8, BtabBCSP9, Btab-

BCSP10, BtabBCSP11, BtabBCSP13, BtabBCSP15 and
BtabBCSP16) (Fig. 4B). Expression in adults was highest
for BtabBCSP2, while expression in eggs was highest for
BtabBCSP4. The latter gene had the lowest expression in
females among the 19 genes. Expression of BrabBCSP11,
BtabBCSP13 and BtabBCSP16 was highest in the 1st and
2nd instar nymphs.
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Fig. 3 Bemisia tabaci odorant-binding proteins (OBPs) transcript levels in different tissues as measured by quantitative real-time
polymerase chain reaction (qQPCR). The expression levels were estimated using 272 2¢t method. Standard error for each sample is
represented by error bar and the different letters (a, b, ¢) above each bar denote significant differences (P < 0.05).

mRNA expression of selected B. tabaci MEAM1 CSPs as
determined by gPCR

The transcriptome expression profiles of nine selected
CSP genes were confirmed by qPCR (Fig. 6). The tran-
scriptome and qPCR expression profiles were highly
consistent (P < 0.05) for four of the nine CSPs (Btab-
BCSP2, BtabBCSP6, BtabBCSP7 and BtabBCSP12). The
two kinds of expression profiles also tended to be similar
for the other five CSP genes (Fig. 6).

gPCR analyses were conducted to measure the expres-
sion levels of the eight BtabBCSP genes in the head,
thorax (mixture of thorax, legs and wings) and abdomen.
The results showed that expression level of three genes
(BtabBCSP2, BtabBCSP8 and BtabBCSP12) were

significantly higher in abdomen than that in head and
thorax (Fig. 7). Expression in thorax was highest for
BtabBCSP3, BtabBCSP4, BtabBCSP9 and BtabBCSP10,
while expression in head was highest for BtabBCSP7
(Fig. 7).

Comparison of OBPs and CSPs between B. tabaci
MEAM]I and MED

B. tabaci MEAM1 and MED both had eight OBP and
19 CSP genes, respectively. Full-length amino acid se-
quences alignment showed the sequences of four OBPs
and 11 CSPs of B. tabaci MEAMI1 were completely the
same as B. tabaci MED but different in OBPI1, OBP4,
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Table 2 List of genes encoding chemosensory proteins (CSPs) in Bemisia tabaci genome.

. . Location
Gene name OREF (bp) Signal peptide (AA)
Orientation Start End

BtabBCSP1 381 1-19 Scaffold_1728+ 4851 6514
BtabBCSP2 393 1-18 Scaffold 211+ 417237 419266
BtabBCSP4 321 1-19 Scaffold_1760— 41222 37927
BtabBCSP5 483 1-16 Scaffold_1760+ 17122 27511
BtabBCSP6 414 1-20 Scaffold 211+ 319755 323826
BtabBCSP7 384 1-19 Scaffold 4— 522706 513251
BtabBCSP8 327 1-20 Scaffold_893— 64906 62662
BtabBCSP9 372 1-20 Scaffold_14— 2936398 2933040
BtabBCSP10 408 1-22 Scaffold 211+ 425352 428930
BtabBCSP11 738 ND Scaffold 211+ 368338 398455
BtabBCSP12 408 1-18 Scaffold 211— 296951 293093
BtabBCSP13 381 1-19 Scaffold_1728— 44016 41267
BtabBCSP14 426 1-22 Scaffold 211+ 340569 353913
BtabBCSP15 336 1-19 Scaffold 95— 900768 897021
BtabBCSP16 453 1-16 scaffold74— 114714 108425
BtabBCSP17 381 1-19 Scaffold_135— 89732 88317
BtabBCSP18 381 1-19 Scaffold_708+ 116559 117889
BtabBCSP19 381 ND Scaffold_102+ 531873 533667

ND indicates not detected. CSPs that could not be aligned well with the scaffold are not shown. ORF, open reading frame.

OBPS, OBPS, CSP4, CSP5, CSP7, CSP10, CSPII,
CSP13, CSP16 and CSP17 (Figs. S4 and S5).

Discussion

Before the current study, the cDNA sequences of OBPs
and CSPs had been only partly identified in B. tabaci
(only eight OBP and 13 CSP sequences had been iden-
tified in MED, and only three CSP sequences had been
identified in MEAM1), and especially in many cases, the
sequences were incomplete (Li et al., 2012; Liu et al.,
2014, 2016; Wang et al., 2016a, 2016b, 2017). In the
current study, we obtained complete sequences for the
eight OBPs and 19 CSPs in MEAMI1 (Table 1; Table 2;
Table S3) based on genome and antennae transcriptome
data sets; these covered (and in some cases completed) all
previously published sequences, and added six CSP se-
quences. We also validated all of these OBP and CSP se-
quences by molecular cloning and sequencing. It follows
that OBP and CSP sequences in this study are accurate
and complete. In addition, genome-wide (no antenna tran-
scriptome) investigation of the OBPs and CSPs in another
whitefly B. tabaci MED as the same method of MEAM 1
was conducted. Sequences comparison between MEAM 1
and MED indicated, as expected, that no evident difference
were shown regardless of putative sequence number or se-

quences similarity (Fig. S4 and Fig. S5). This means the
two invasive B. tabaci MEAM1 and MED may have sim-
ilar evolution regarding olfactory recognition. These data
substantially expand our knowledge of olfactory-related
genes in B. tabaci and will be useful for future research
concerning the function of these genes and olfactory
systems.

The number of OBPs detected in B. fabaci (eight)
is substantially lower than that detected in Drosophila
melanogaster (52), Anopheles gambiae (69), Bombyx
mori (44), Tribolium castaneum (50) and Apis mellifera
(21) (Table S4) (Lynch & Conery, 2000; Zhou, 2010;
Vieira & Rozas, 2011; Xue et al., 2014; Benoit et al.,
2015; Mesquita et al., 2015; Pelosi et al., 2018). The
relatively low number of OBPs in B. fabaci has several
possible explanations. First, species in the Hemiptera may
in general have fewer OBPs than species in other orders
(Table S4). However, Hemiptera species do not encounter
a less diverse odorant complexity compared to other in-
sect species. There’s parallel relation between the num-
ber of OBPs and the degree of diversity of odor space.
OBPs play important roles as carriers for odors through
the sensillar lymph to transmembrane chemoreceptors.
The odorant receptors (ORs) interact with odors, initiate
downstream signaling, and ultimately lead to behavioral
responses (Leal, 2013). Therefore, the number of ORs and
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OBPs is related to the diversity of odor. Second, the low
number of OBPs may be compensated for the substantial
number of CSPs in B. tabaci. Both OBPs and CSPs sol-
ubilize and transport odor molecules (Pelosi ef al., 2006,
2014,2018). Compared to Cimex lectularius, Nilaparvata
lugens and Acyrthosiphon pisum, the number of OBPs
in B. tabaci was lower while the number of CSPs was
higher (Table S4). The combined number of OBPs and
CSPs is similar in A. pisum, C. lectularius, N. lugens and
B. tabaci.

We found that BtabBOBPI1, BtabBOBP6 and Btab-
BOBPS8 were arranged on scaffold 135 with the same
transcription orientation. Our analysis also revealed that
10 CSPs were organized into three clusters on three

scaffolds. This suggests that OBPs and CSPs may have un-
dergone gene duplications in the genome. The duplication
of individual genes has long been recognized as a major
source of evolutionary novelties, including new genes and
gene functions (Hanada et al., 2008; Kaessmann, 2010).
Several OBPs and CSPs are organized in large clusters
and are localized on the same scaffold in Rhodnius pro-
lixus, C. lectularius and Papilio xuthus (Ozaki et al., 2008;
Benoit et al., 2015; Mesquita et al., 2015). A previous
study has shown that silkworm OBPs have undergone
rapid evolution following a complex set of gene dupli-
cation events, which was hypothesized to have enhanced
the ability to detect diverse sets of odorants (Gong et al.,
2009). Therefore, we suspect that the OBPs and CSPs in
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Fig. 6 Quantitative real-time polymerase chain reaction (qQPCR)-based expression profiling of nine selected chemosensory protein
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expression analysis of CSP genes by qPCR (dark blue bars) and RNA-seq (black lines). The relative expression level of each CSP in
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per kilobase per million mapped reads + 1) values. E = egg, N = nymph stages 1 to 4 as indicated, F = adult female, and M = adult

male.

B. tabaci evolved to detect specific odorants important to
the species.

To explore OBP and CSP functions, we investigated
expression patterns in different developmental stages,
sexes and tissues. Some BtabBCSPs had unique expres-
sion patterns with respect to developmental stage, which
suggests stage-related functions. BtabBCSP2 and Btab-
BCSP3, for example, were mainly expressed in adults,
while BtabBOBP4 and BtabBOBPS5 were highly expressed
in nymphs. B. tabaci nymphs normally feed on only one
individual plant, while adults may disperse and feed on
multiple plants. Therefore, BtabBCSP2 and BtabBCSP3
may be involved in the perception of plant volatiles. In
N. lugens, an OBP (NlugOBP3) with a similar expression

pattern as BtabBOBP4 and BtabBOBP5 is hypothesized to
have non-olfactory functions, such as the transporting of
juvenile hormone (He et al., 2011). Perhaps BtabBOBP4
and BtabBOBPS5 are involved in the metamorphosis of
B. tabaci nymphs into adults. BfabBCSP4 is also highly
expressed in eggs, which suggests that it is associated
with B. tabaci development. In Locusta migratoria; 17
OBPs are abundantly expressed in female reproductive
organs, and CSP91 was distinctly expressed in male or-
gans (Jean-Frangois, 2014). In our study, the expression
of BtabBOBP2, BtabBOBP3, BtabBOBPS, BtabBCSPS,
BtabBCSP10 and BtabBCSP12 significantly differed be-
tween males and females, suggesting that these genes may
be related to reproduction and mating. For BtabBCSP10
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Fig.7 Bemisia tabaci chemosensory protein (CSP) transcript levels in different tissues as measured by quantitative real-time polymerase
chain reaction (qQPCR). The expression levels were estimated using 27 2 method. Standard error for each sample is represented by
error bar and the different letters (a, b, ¢) above each bar denote significant differences (P < 0.05).

and BtabBCSP12, based on their high expression levels
in different tissues, we can speculate that BtabBCSP12
has a potential function in recognition of semiochemicals
and BtabBCSP10 has a potential function in reproduc-
tion. Moreover, our study showed that expression of Btab-
BOBP2, BtabBOBP3 and BtabBOBPS8 was biased toward
the head. In S. litura, female antennae-biased expression
of two OBP genes is consistent with their binding to the
sex pheromones and plant volatiles with different binding
affinities (Liu ef al., 2015). Therefore, these three OBPs
in B. tabaci are important to study further.

Finally, the OBP and CSP sequences and gene expres-
sion data presented in this report provide a foundation
for the further study of olfactory functions in B. tabaci.
In addition, the comparison of B. fabaci OBPs and CSPs
with those of other insect species may provide insight
into the evolution of insect chemosensory mechanisms
and environmental adaptation.
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Table S1 Primers used for polymerase chain reaction
analysis of chemosensory proteins (CSPs).

Table S2 Primers used for polymerase chain reaction
analysis of odorant-binding proteins (OBPs).

Table S3 Currently available odorant-binding proteins
(OBPs) and chemosensory proteins (CSPs) of Bemisia
tabaci.

Table S4 Numbers of validated peripheral chemorecep-
tion genes in insects.

Fig. S1 Alignment of B. tabaci odorant-binding pro-
teins (OBPs). Full-length amino acid sequences of
Bemisia tabaci OBPs were aligned by Clustal W and edited
using BoxShade. Pink boxes show conserved cysteines,
and blue boxes are features of Plus-C. The conserved Cys
residues are indicated. Shading indicates sequence iden-
tity >70%.

Fig. S2 Alignment of B. fabaci chemosensory proteins
(CSPs). Full-length amino acid sequences of Bemisia
tabaci CSPs were aligned by ClustalW and edited us-
ing BoxShade. Pink boxes show conserved cysteines. The
conserved Cys residues are indicated. Shading indicates
sequence identity >70%.

Fig. S3 The computational pipeline used to identify the
odorant-binding proteins (OBPs) and chemosensory pro-
teins (CSPs) in two MEAMI1 Bemisia tabaci genomes
(Chen et al., 2016, and another unpublished MEAMI1
genome, FTP: http://111.203.21.119/download/B.gene.
v3.cds.fa) and MEAMI1 antenna transcriptome (FTP:
http://111.203.21.119/download/B/antenna.fasta).

Fig. S4 Alignment and motif analysis of odorant-
binding proteins (OBPs) between Bemisia tabaci
MEAMI1 and MED. (A) Sequence alignment and motif
information of four different full-length OBPs (OBP1,
OBP4, OBP5 and OBPS8) between B. tabaci MEAM1 and
MED. Pink boxes in alignment show different sites. (B)
Summarized motifs conserved in insect OBPs but motif
5 missing in B. fabaci. The protein names and sequences
of the 120 OBPs from different species were listed in a
supplementary file.

Fig. S5 Alignment and motif analysis of chemosen-
sory proteins (CSPs) between Bemisia tabaci MEAMI1
and MED. (A) Sequence alignment and motif informa-
tion of eight different full-length CSPs (CSP4, CSPS5,
CSP7, CSP10, CSP11, CSP13, CSP16 and CSP17) be-
tween B. tabaci MEAM1 and MED. Pink boxes in align-
ment show different sites. (B) Motifs discovered in insect
CSPs. The protein names and sequences of the 64 CSPs
from different species were listed in a supplementary
file.

Supplementary file Protein names and sequences of
the odorant-binding proteins (OBPs) and CSPs used in
this analysis.
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