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Antibodies are vital proteins of the immune system that rec-
ognize potentially harmful molecules and initiate their removal.
Mammals can efficiently create vast numbers of antibodies with
different sequences capable of binding to any antigen with high
affinity and specificity. Because they can be developed to bind to
many disease agents, antibodies can be used as therapeutics. In
an organism, after antigen exposure, antibodies specific to that
antigen are enriched through clonal selection, expansion, and
somatic hypermutation. The antibodies present in an organism
therefore report on its immune status, describe its innate ability
to deal with harmful substances, and reveal how it has previ-
ously responded. Next-generation sequencing technologies are
being increasingly used to query the antibody, or B-cell receptor
(BCR), sequence repertoire, and the amount of BCRdata in pub-
lic repositories is growing. The Observed Antibody Space data-
base, for example, currently contains over a billion sequences
from 68 different studies. Repertoires are available that repre-
sent both the naive state (i.e. antigen-inexperienced) and that af-
ter immunization. This wealth of data has created opportunities
to learn more about our immune system. In this review, we dis-
cuss the many ways in which BCR repertoire data have been or
could be exploited.We highlight its utility for providing insights
into how the naive immune repertoire is generated and how it
responds to antigens. We also consider how structural informa-
tion can be used to enhance these data and may lead to more
accurate depictions of the sequence space and to applications in
the discovery of new therapeutics.

Antibodies are proteins that play a key role in the adaptive
immune response. They are produced by B cells and are either
secreted or membrane-bound (in the latter case, they are
known as B-cell receptors, or BCRs). They are able to neutralize
and initiate the removal of foreign entities (known as antigens)
from the body by binding to them (1). The ability of the
immune system to respond to a huge range of antigens origi-
nates in the diversity of the antibodies that can be generated—
antibodies can be produced that bind to nearly every antigen,
with both high specificity and affinity (2). This property has
made antibodies highly successful as therapeutics; to date, 87
have been approved for use in the clinic across a number of dis-
ease areas, and many more are undergoing clinical trials (3, 4).
Antibodies are currently the largest class of biotherapeutic (5).
It is estimated that the human antibody repertoire contains

around 1013 unique sequences (6). This diversity is a result of
how the proteins are encoded in the genome. Antibodies are
composed of two types of protein chain, known as the heavy

and light chains (Fig. 1). Each of these is encoded by multiple
gene segments that are spliced together using a process called
V(D)J recombination (7). The sequence for the light-chain vari-
able region (Fv) is made up of two segments: the variable seg-
ment (V) and the joining segment (J). The heavy chain is
encoded from variable, joining, and diversity (D) segments.
There are many genes for each of the V, D, and J segments,
which can be matched up in different combinations to produce
a diverse range of antibody sequences. Further diversity is
introduced through the insertion or deletion of nucleotides at
the segment junctions (8) and somatic hypermutation (a pro-
cess through which the number of random mutations that
occur is increased) (9). The majority of the variation in
sequence occurs in the complementarity-determining regions,
or CDRs—there are three of these on each of the heavy and
light chains. Themost variable of these is the H3 loop (the third
CDR on the heavy chain), because the DNA encoding it is
found at the join between the V, D, and J segments. By creating
a large, diverse repertoire of antibody sequences, an individual
is able to react to almost any antigen it may encounter.
The ability of an antibody to bind to its target antigen is gov-

erned by its three-dimensional structure. Knowledge of an anti-
body’s structure therefore allows for a deeper understanding
of its physicochemical properties than can be gained from
sequence alone. The general structure of an antibody is
depicted in Fig. 1 The heavy and light variable domains both
adopt a b-sandwich structure known as the immunoglobulin
fold. Framework (non-CDR) regions are very highly conserved
between different antibodies; in accordance with the observed
variability of antibody sequences, the structural diversity that
allows binding to many different targets occurs mainly in the
CDRs. These correspond to loops in the three-dimensional
structure, which are responsible for most of the antigen-bind-
ing interactions (10). For five of the six CDRs (H1, H2, and L1–
L3), structural diversity is limited—only a few different shapes
have been observed, forming a set of discrete conformational
classes known as canonical structures. However, as described
above, the H3 loop is much more variable in sequence than the
other CDRs and consequently is also more structurally diverse.
It is thought that the H3 loop contributes the most to antigen-
binding properties (11, 12).
Upon exposure to an antigen, antibodies that are able to bind

to it do so and are thus selected from the repertoire (clonal
selection) (13). Having a large repertoire of antibodies present
in the body at any time increases the chance that at least one
has the ability to bind to the antigen, even if only weakly,
thereby allowing the initiation of an appropriate immune
response. B cells producing binding antibodies undergo cycles*For correspondence: Charlotte M. Deane, deane@stats.ox.ac.uk.
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of proliferation (clonal expansion) with simultaneous somatic
hypermutation (9) to produce antibodies with higher affinity.
The antibody repertoire is consequently enrichedwith antibod-
ies that bind to the target antigen.
The antibodies present in an organism therefore describe

both its current and past immune status; what it is able to
respond to, and what it has previously dealt with. Whereas pre-
viously only a handful of sequences could be obtained at a time,
technological advances mean that large snapshots of this reper-
toire can now be obtained using next-generation sequencing
approaches. This technique of BCR repertoire sequencing was
first described by Glanville et al. in 2009 (14), and since then
the volume of data available has increased exponentially (Fig.
2). As it is the H3 loop that mostly determines binding proper-
ties, many studies have focused only on sequencing this region.
However, BCR repertoires containing full-length sequences are
increasingly being produced—commonly only the heavy chain
(15), but some studies have focused only the light chain (e.g.
Refs. 16 and 17), and some data sets include both (e.g. Refs. 18
and 19). Recent advances in sequencing technology have led to
a small but growing number of repertoires that also include
native pairing information (i.e. which heavy-chain sequences
belong with which light-chain sequences).
The largest repertoire sequencing study to date, by Briney

et al. (20), alone resulted in a set of over 300 million heavy-

chain sequences. In addition, many algorithms and pipelines
have now been created that preprocess the generated data
ready for analysis, performing tasks such as translation from nu-
cleotides to amino acids, error estimation and correction, and
sequence numbering (21). Recently, efforts have been made to
create standardized, publicly available repositories for these
sequencing data (e.g. iReceptor (22), VDJServer (23), Immu-
neDB (24), and others (25–29)). This has provided researchers
with easy access to a vast number of sequences and created

Figure 1. A, antibody structure. An antibody is made up of four chains: two light (orange) and two heavy (blue). Each chain is made up of a series of domains—
the variable domains of the light and heavy chains together are known as the Fv region (shown on the right; PDB entry 12E8). The Fv features six loops known
as CDRs (shown in dark blue); these are mainly responsible for antigen binding. B, example sequences for the VH and VL, highlighting the CDR regions and the
genetic composition.

Figure 2. The cumulative growth of publicly available (redundant) anti-
body sequences over time (data from the Observed Antibody Space
database (28)).
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opportunities for large-scale data mining. The Observed Anti-
body Space (OAS) database, for example, which collates full-
length variable region sequences, currently contains over 1 bil-
lion sequences spanning 68 different studies (28).
The studies included in OAS cover many different repertoire

characteristics. Sequences are available for six different species,
with the majority (64%) being human. Diseased states are rep-
resented (i.e. repertoires from individuals who have been
exposed to a specific antigen) as well as healthy ones (meaning
the individual has not been exposed to the antigen of interest
and also has not suffered from a disorder of the immune sys-
tem). Repertoires from vaccination studies also feature (e.g.
HIV, hepatitis B, flu, etc.), and in some cases, OAS has the
repertoires of the same individual both pre- and post-immuni-
zation. Although the snapshots of the repertoire achieved
through sequencing are actually small relative to the potential
number of antibodies present in an organism (e.g. data sets in
OAS contain between 20,000 and 300 million redundant se-
quences) and most studies feature only the heavy chain or have
no pairing information, the data available still provides oppor-
tunities to investigate many different aspects of the immune
response. In this review, we explore what can be done with the
wealth of antibody sequence data stored in repositories such as
OAS. We give examples of how this data has been used to give
insights into the workings of the immune system, look at how it
can be enhanced with structural information, explore how it
offers new avenues for therapeutic antibody discovery and de-
velopment, and consider what advances may be made in the
future.

Biological insights from antibody repertoire data

Until the advent of BCR repertoire sequencing, antibody
sequences were analyzed in much smaller numbers (normally a
few hundred B cells per experiment (15)), only a tiny fraction of
the estimated total repertoire. This approach can be useful
when investigating a few key antibodies (e.g. those that bind to
an antigen of interest (e.g. Refs. 30 and 31)) but cannot give an
in-depth view of the repertoire as a whole (e.g. little can be
learned about its diversity). Analysis of larger repertoire snap-
shots, on the other hand, gives a much more detailed picture
and can provide valuable insights into how the immune system
works. It can be used to explain how in its naive state (i.e. before
exposure to a given antigen) it is capable of protecting against
such diverse threats and can give a deeper understanding of the
processes that produce higher-affinity antibodies after antigen
exposure.
Sequencing data has been used to learn more about the

underlying mechanisms that shape the repertoire, such as V(D)J
recombination (32, 33). Increasing amounts of large-scale
sequence data, along with the development of computa-
tional tools that annotate sequences with their V(D)J gene
origins (34–37), have allowed trends in this process to be identi-
fied. It has been shown that the process is intrinsically biased; the
available V, D, and J segments in the genome are not used with
the same frequency, and therefore some combinations are
observedmore commonly than others (14, 38–41).Mathematical
models of V(D)J recombination have been developed that repro-

duce the natural biases (42, 43). It has been proposed that this
has the potential to aid in the discovery of new antibody thera-
peutics—replicating the underlying architecture of observed
human repertoires should lead to the creation of more human-
like (and hence less immunogenic) screening libraries (44).
During the proliferation of B cells in clonal selection, the rate

of mutation is increased up to 106-fold (45) compared with
normal cells, due to somatic hypermutation (as described ear-
lier). Variations on the original antigen-binding antibody
sequence are therefore generated, and higher-affinity antibod-
ies are iteratively produced. Repertoire data has been used to
analyze this process (46–50). This has increased our under-
standing of mutation frequencies, substitution bias, and the
location of mutation hot spots and, hence, how the repertoire
reacts to an antigenic stimulus. For example, researchers have
demonstrated that memory cells of different isotypes experi-
ence different selection pressures (46) and that substitution
profiles vary between V genes (47), are dependent on neighbor-
ing bases, and are conserved across individuals (48). As in the
case of V(D)J recombination, these insights have enabled accu-
rate models of somatic hypermutation to be established (49,
50). These models have led to the creation of software that sim-
ulates repertoires (51) and mean that more accurate B-cell line-
ages can be established (49). These phylogenies have the poten-
tial to be used in the identification of antibodies with high
binding affinities (50).
Researchers have also investigated the interplay between all

the processes that dictate repertoire diversity to ascertain how
much is genetically predetermined and how much is antigen-
driven; analysis indicates that both are important factors, but
genetics are more influential (39). Further research has com-
pared the repertoires of humans and other species (52, 53),
revealing that immune system development is broadly similar
across different mammals (53) and that mice BCR repertoires
tend to be closer to germline sequences than those of humans
(52). The effect of disease on the immune system has also been
studied (54) and has indicated that repertoire analysis can have
more practical applications; for example, it can be used tomon-
itor the diversity of the repertoire before and after an organ
transplant (55), and machine learning methods have been used
to predict vaccination status or the presence of disease (56–58).
The overall architecture of the antibody repertoire can be

investigated by inferring relationships between sequences (i.e.
by predicting which ones originated from the same precursor
antibody and hence which bind to the same antigen). One
approach is to consider the repertoire as a network, with each
sequence being a separate node and the presence of an edge
between them indicating an evolutionary relationship (44).
These relationships are normally defined based on sequence
identity; for example, two sequences can be connected if they
differ by one amino acid in their H3 region (44). Common net-
work analysis metrics can then be used to explore the repertoire
architecture—for example, the degree distribution (the degree
of a node is the number of edges it is connected to) can reveal
the presence or absence of clonal expansion (33), because
highly connected nodes are likely to represent sequences
derived from a common precursor during affinity maturation
(Fig. 3).
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Clonotyping is another related way of investigating the diver-
sity of repertoires and, in particular, how they change upon
antigen exposure. Similar antibody sequences are clustered
into “clonotypes”; these are generally defined as sequences orig-
inating from the same V and J genes and with H3s that are the
same length and similar in sequence (normally a sequence iden-
tity of 80–100%) (59–62), although alternative approaches have
been used (63). Antibodies belonging to the same clonotype are
assumed to share the same precursor sequence (i.e. they arose
from the proliferation of the same B cell) and are therefore pre-
dicted to bind to the same epitope. This is therefore a method
of monitoring the clonal selection and expansion that occurs
after exposure to an antigen and can be used to identify the
antibodies that bind to a particular target.
Because the repertoires of many individuals have now been

sequenced, we can compare them to identify which characteris-
tics of the repertoire are shared and which are unique to each
organism. The idea of “public sequences” has recently been

proposed—a set of sequences or clonotypes that are observed
in the repertoires of two or more individuals (20, 44, 61,
64–66). One may expect that this is rare, due to the enormous
potential number of sequences (estimated at 1013) and the rela-
tively small proportion of those sequences sampled in current
data sets (the largest samples from a single individual currently
have on the order of 106 sequences). However, whereas reper-
toires are largely unique to the organism (67), it has been shown
that individuals share more heavy-chain sequences than would
be expected by coincidence. Briney et al. (20), in their recent
large-scale study, showed that in the repertoires of 10 individu-
als, on average 0.95% of clonotypes were shared between at
least two subjects, and 0.022%were common to all 10. The pool
of subjects contained both men and women, individuals from
both Caucasian and African American ethnic backgrounds,
and a variety of blood types; the authors report that the reper-
toires did not cluster based on these factors. The work of Soto
et al. (64) indicates that this public subrepertoire could be even

Figure 3. The process of affinity maturation and methods of analyzing the resulting antibody repertoires. A, upon exposure to an antigen, those anti-
bodies present in the naive repertoire that are able to bind to it proliferate, undergoing somatic hypermutation to produce variations upon the initial binder.
Successive rounds of this process produce antibodies with high affinity. B, clonotyping groups antibodies in the repertoire based on sequence similarity; nor-
mally they must originate from the same V and J genes and have an H3 sequence identity of 80–100%. Antibodies of the same clonotype are predicted to
bind to the same epitope. C, network analysis of antibody repertoires, where each node is a different sequence and edges are present between them if they
meet set sequence similarity criteria. The lineages of different antibodies can be inferred using this method.

JBC REVIEWS: How repertoire data is changing antibody science

9826 J. Biol. Chem. (2020) 295(29) 9823–9837



larger, making up between 1 and 6% of the whole. Greiff et al.
(68) have used machine learning techniques, trained on pub-
licly available data sets such as those in OAS, to predict the
public or private nature of a given sequence with 80% accuracy,
hinting that this property is not random and that there are fun-
damental characteristics of the sequences that separate the
two subsets. In their network-based analysis of antibody H3
sequences, where each node is a unique H3 sequence, Miho et
al. (44) demonstrated that public clonotypes were among the
most connected nodes (i.e. they are similar in sequence to
many other nodes) and that most private clonotypes (74%)
were connected to at least one public one. The removal of
public clonotypes from the network therefore changed the
underlying repertoire architecture; however, the system was
robust to the removal of a large number of randomly selected
clonotypes. This implies that public clonotypes are key in
maintaining functional immunity against antigens, whereas
the presence of other clonotypes is able to fluctuate over
time.
Light chain data has also been analyzed; VL sequences are

less diverse than their VH counterparts (52, 69, 70), so the per-
centage of the repertoire comprising public sequences is much
larger. For instance, Soto et al., in a three-individual experi-
ment, observed that 20–34% of light chains (of both k and l
types) were shared by at least two people (64).
Overall, the presence of shared clonotypes across different

individuals, although small, may signal the existence of a base-
line common functionality of the immune system. This core
subset of the repertoire may be responsible for an organism’s
response to common antigens (66), and it has been hypothe-
sized that these public clonotypes are more likely to display low
levels of immunogenicity and be more versatile binders and
hencemay be useful starting points in therapeutic development
(71).1

Combining sequence with structure

Although much can be learned from sequences alone, it is
the three-dimensional structure of the antibody that deter-
mines how it interacts with an antigen and therefore governs its
binding properties (1, 72). It is known that CDRs belonging
to the same canonical class (i.e. that have nearly identical struc-
tures) can have very different sequences, and conversely H3
loops with similar sequences can adopt different conformations
(Fig. 4) (73). Therefore, by considering sequence alone
(e.g. in clonotyping), antibodies may be grouped together that
have structurally dissimilar binding sites, and vice versa (74). It
is therefore crucial to consider structure as well as sequence to
allow more accurate comparisons to be made and to properly
understand antibody function.
Antibody structures can be obtained experimentally, normally

through X-ray crystallography or NMR. However, the sequence-
structure gap is large—whereas OAS consists of over a billion
sequences, SAbDab, a database of publicly available antibody
structures (75), currently contains;4000 entries. This is because

experimental structure determination is time-consuming and
hence low-throughput; as such, it can be used to probe the chem-
istry of a select few sequences (76, 77), but it cannot yet be used to
structurally characterize a BCR repertoire.
Computational modeling offers an alternative. It has been

shown that the majority of antibody sequences from BCR rep-
ertoires can be mapped to known structures (74). A number of
algorithms have been developed that predict the structure of an
antibody’s Fv region from its sequence (78–91). Due to the con-
served nature of the antibody framework structure (see Fig. 1)
and the existence of canonical classes, these tools generally rely
on homology modeling (i.e. an existing structure with high
sequence identity to a segment of or to the whole target is used
as a template). Normally the structure is considered as separate
regions, first the frameworks of the VH and VL and then the six
CDRs. Separate templates may be chosen for the VH and VL;
however, if a single template is available with high sequence
identity to both chains, only one is required (78). In this case,
the orientation of the two chains can be directly copied from
the chosen template; otherwise, a further template that is simi-
lar in sequence to both chains is required, or the orientation
between the chains must be predicted (92). The framework can
be modeled with very high accuracy, typically with a root mean
square deviation (RMSD) of below 1 Å. In the second Antibody
Modelling Assessment (AMA-II), a blind test of prediction ac-
curacy, VH and VL were modeled with an average backbone-
atom RMSD of 0.65 and 0.50 Å, respectively (87, 88, 90, 93–96).
Prediction of the orientation of the two domains was more
challenging, however, with predicted tilt angles differing from
the true angle by 5–128 (93).
Once a framework template has been selected, CDR struc-

tures can then be predicted, again using templates through
knowledge-based loop modeling algorithms. As mentioned
previously, in the majority of cases, CDRs L1–L3, H1, and H2

Figure 4. Sequence is not always a reliable indicator of structural simi-
larity. A, L1 loops of the PDB entries 3PHO (red) and 3QUM (blue). The two
loops differ in sequence at every position except one (sequence identity =
10%); however, they have very similar conformations (RMSD = 0.60 Å). B, H3
loops of the PDB entries 5I1G (red) and 5I1C (blue). These loops have very sim-
ilar se-quences (sequence identity = 92%) and therefore may be predicted to
have similar structures; however, this is not the case (RMSD = 4.15 Å). RMSDs
were calculated across all backbone atoms after superposition of the anchor
residues (two residues on each side of the loop, shown in gray).

1M. I. J. Raybould, C. Marks, A. Kovaltsuk, A. P. Lewis, J. Shi, and C. M. Deane,
manuscript in preparation.

JBC REVIEWS: How repertoire data is changing antibody science

J. Biol. Chem. (2020) 295(29) 9823–9837 9827



adopt a limited number of known conformations known as ca-
nonical classes (97–99). As a result, they can be predicted accu-
rately and quickly using this technique. Templates are selected
from a database of known CDR structures based on sequence
identity and the geometry of the anchor residues (the residues
on either side of the CDR). The database of CDR structures can
either include all known structures or be limited to the known
conformations for the predicted canonical class of the target
(78, 80). Average RMSDs achieved during AMA-II ranged from
0.50 Å for L2 to 1.6 Å for L3 (93).
H3 can also be modeled using this method; however, its

sequence and structural diversity compared with the other
CDRs makes prediction more challenging (100). The H3
loop has also been shown to be structurally distinct from
typical protein loops (101); researchers have therefore
developed specialized software to model H3 loops more
accurately (102–105). Ab initio techniques, which create
potential loop conformations without knowledge of tem-
plates, are often used here, either in isolation or in combina-
tion with knowledge-based strategies as a hybrid algorithm
(102). Despite the existence of H3-specific prediction algo-
rithms, H3 modeling remains challenging, achieving RMSDs
normally in the region of 2-3 Å (74, 93). In addition, ab initio
methods typically require much longer run times than
knowledge-based methods, and therefore H3 prediction is
currently the main bottleneck for accurate modeling of BCR
repertoires. Attempts have been made to circumvent this
issue, either by imposing an H3 length cutoff (long loops are
modeled less accurately due to the absence of experimental
data) (107) or by only considering those H3 sequences that
can be confidently modeled using a knowledge-based algo-
rithm (74, 107).1 Whereas this may introduce some biases
into the analysis—for example, long H3 loop structures will
be underrepresented in model libraries—it increases the
confidence we have in the models that are considered and
subsequently in the conclusions that are drawn.
Several studies have used antibody modeling to enhance the

information given by BCR repertoires. DeKosky et al. (108)
modeled 2,000 VH/VL pairs using RosettaAntibody (82, 83),
limiting their sequences to those with high-identity templates
available. They analyzed the physico-chemical properties of the
antibodies, such as solvent-accessible surface area and hydro-
phobicity, and were able to demonstrate how these properties
change with antigen experience and link their observations to
germline usage. Raybould et al. (106) used ABodyBuilder (78)
to predict the structures of a large subset of a BCR repertoire
(;19,000 sequences) and compared these models with those of
a set of therapeutics to deduce which properties are required to
reduce developability issues. Because antibody properties can
be predicted with greater accuracy with the inclusion of struc-
tural data (109), models representing the repertoire have the
potential to improve strategies such as directed design by using
them as inputs to other computational tools (e.g. predictors of
the sets of residues on the antibody and antigen that are
involved in binding (known as the epitope and paratope respec-
tively) and developability predictors).
One problem with modeling the antibody sequences

obtained through repertoire sequencing is that they are nor-

mally not paired (i.e. we do not know which VH belongs with
which VL). Native pairings are important in creating accurate
models that represent the repertoire and will affect the proper-
ties of the antibody, such as its folding, stability, expression,
and binding. Pairing is currently thought to be mostly random
(20, 65), meaning that most VH chains are capable of associat-
ing with most VLs. Prediction of true pairings is therefore diffi-
cult. Techniques currently used to propose likely pairings
include comparing all of the potential interfaces with those
observed in known structures (106),2 pairing based on the rela-
tive frequency of the sequences (110), or by constructing phylo-
genetic trees (111). Recently, experimental methods for immu-
noglobulin sequencing that preserve native pairings have been
developed (112); as these techniques becomemore widespread,
the amount of paired data will increase, and these approxima-
tions will no longer be required.
Producing complete models of the antibody variable region

can be time-consuming; for example, in the study by DeKosky
et al. (108), RosettaAntibody took 570,000 CPU hours to pro-
duce 2,000 models. Even for algorithms that are considered to
be fast, execution times would be prohibitive—ABodyBuilder,
for example, takes on average 567 CPU hours per 1,000 sequen-
ces (78). An alternative, faster method of characterizing a reper-
toire is the structural annotation of sequences. Instead of run-
ning a complete modeling protocol, sequences can be quickly
matched up to their predicted templates using sequence iden-
tity. The conformations of the CDRs can be assigned by either
exploiting a knowledge-based loopmodeling algorithm (74) or a
canonical class predictor (for the non-H3 CDRs) (99, 107).
Sequences can therefore be structurally annotated in much
greater numbers than could be done using modeling tools. It
has been shown that the majority of sequences can be mapped
to an existing structure in this way (74).
SAAB (Structural Annotation of Antibodies) (74) and its suc-

cessor SAAB1 (107) are algorithms that have been used to
annotate millions of sequences with their proposed template
structures, allowing thorough analysis of repertoire-wide struc-
tural properties. For example, Kovaltsuk et al. (107) investi-
gated structural changes that occur with B-cell differentiation.
Clustering based on their proposed H3 templates resulted in
the separation of antibodies from different stages of the
immune response, indicating that there are structural changes
that occur as the response progresses. The effect of aging on
the repertoire has also been studied in this way, revealing that
older individuals have a higher number of antibodies that are
structurally distinct from the germline (113).
The idea of public sequences has been extended to that of

public structures. Instead of searching for sequences that are
observed in the repertoires of multiple individuals, we can
look instead for antibodies with shared backbone conforma-
tions, which may be a greater indicator of common function-
ality. Sequence-only analyses have shown that the shared
space is present but only makes up a small percentage of the
overall repertoire (20); however, by incorporating structure it
can be seen that the public repertoire is likely to be much
larger (107).1
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BCR repertoire sequencing and therapeutic discovery

Discovering antibodies specific to an antigen of interest

Currently, potential therapeutic antibodies are commonly
discovered in two ways: through the immunization of an ani-
mal, such as a mouse, with the target antigen and subsequent
extraction of the antibodies it produces and through phage dis-
play, where viruses displaying antibodies on their surface are
screened against the target antigen. High-throughput sequenc-
ing of the antibody repertoire has been used successfully to
enhance both approaches. For example, researchers have ge-
netically engineered mice such that they contain human anti-
body genes—the antibodies produced by these mice are there-
fore less likely to be immunogenic. The “humanness” of the
repertoire was validated through sequencing of the mouse BCR
repertoire (114). Sequencing techniques have been used to
characterize phage display libraries, to monitor their diversity
and hence evaluate their capability of isolating antibodies that
bind to different antigens (115). Screening libraries can also be
designed using BCR repertoire data—Zhai et al. (116) and
Prassler et al. (117) have shown how this is possible, by repro-
ducing the observed amino acid usages at each sequence posi-
tion. Both groups found that the antibodies in their libraries
exhibited better expression levels than other synthetic libraries,
with high genetic diversity, and they were able to isolate high-
affinity antibodies for a range of different antigens.
It is now becoming possible to identify binders directly from

BCR repertoire data. If an antibody that binds to the target anti-
gen is already known, approaches such as clonotyping can be
used to identify more potential binders with closely related
sequences, expanding the pool of candidates that can be taken
forward for further study. Known binders are not essential,
however. The immunization of an organism with an antigen, as
explained previously, leads to the enrichment of the repertoire
with antibodies that bind to that antigen. Therefore, by analyz-
ing how often a given sequence or clonotype appears in the rep-
ertoire after antigen exposure, specific antibodies can be identi-
fied. This approach can be used either to find antibodies that
might work as therapeutics or tomonitor the immune response
during the development of vaccines (66, 118–122). The reper-
toires of multiple individuals who have been exposed to the
same antigen can be investigated to find potential binders, by
identifying common features that hint at shared functionality
(e.g. identical H3 sequences) (123). The volume of data pro-
duced also means that deep learning techniques can be used
effectively; for example Mason et al. (124) have generated neu-
ral networks that classify antibodies as HER2 binders or non-
binders based on sequence and thereby successfully identified
30 antigen-specific antibodies. BCR repertoire sequencing
experiments have been carried out to discover binders for a
wide range of antigens, including HIV (71, 111, 125, 126), Ebola
(127), hepatitis B (66, 128), and many others (77, 110, 116, 118,
120, 123, 128–133).
Following the isolation of binders in this way, a small

number can be taken forward as starting points for further
development (77), or a larger number can be employed as a
targeted screening library (110). A comparison between rep-
ertoire mining and phage display has demonstrated that the

antibodies isolated by each method are not necessarily the
same, and therefore it could be beneficial to use the two
techniques together (129).
Much of the data from these experiments has been deposited

in public sequence repertoires (28), meaning it can be exploited
by other researchers in their therapeutic discovery pipelines, for
example to provide new lead molecules. It has recently been
shown that there is a close sequencematch tomany known ther-
apeutic antibodies in the OAS database (134). Of 242 antibodies
that are either currently used as therapeutics or undergoing clin-
ical trials (Phase II or later), sequences with over 90% identity
were available for 90 H chains and 158 light chains. Notably, for
H3, which is thought to contribute the most to an antibody’s
binding properties, 54 perfect matches were found. Given the
huge number of potential sequences, this is significantly more
than would be expected by chance alone in a sequence database
of this size (around 1 billion sequences) and implies that artifi-
cially developed sequences are not dissimilar from their natural
counterparts. It therefore follows that natural sequence reper-
toires could potentially be mined for new therapeutic leads, per-
haps removing the need for large-scale screening experiments at
the beginning of an antibody discovery project.
Structural annotations and modeling can also be applied

to discover antigen-specific antibodies. Krawczyk et al. (74)
annotated;3.4 million sequences from individuals who had
been exposed to the influenza virus with their proposed
templates and therefore whose repertoires were enriched
with influenza-specific binders. They discovered that many
of the templates assigned came from known influenza-bind-
ing antibodies. They therefore propose that sharing of a sim-
ilar structural template could be an indication of similar
specificity. Assuming that a structure of an antibody specific
to a given antigen or epitope is known, antibodies can be
selected from a repertoire if they are predicted to have a
high degree of structural similarity to it. Other computa-
tional tools can also be exploited to find potential therapeu-
tics: a large set of models generated from repertoire data can
be used as an in silico screening library (135)1 in conjunction
with epitope predictors (109, 136–144), paratope predictors
(72, 145–150), and docking algorithms (83, 151–164). As com-
putational methods continue to improve and become faster,
this approach will become more accurate and more feasible,
potentially making an entirely in silico antibody discovery plat-
form a reality.
However, issues arise due to most sequencing experiments

focusing on only the heavy chain and unknown native pairings
even when both the heavy and light chains are sequenced. Anti-
bodies with high affinity and specificity are identified more of-
ten when the true VH/VL pairings are known (165); however,
this is not achievable with most of the available data. As previ-
ously stated, single-cell approaches that retain pair information
have been developed (112); however, the method is not as high-
throughput as other sequencing techniques, so less data is cur-
rently available. In the future, this is likely to change, but for
now, other approaches must be applied. For experiments
resulting in both heavy- and light-chain sequences, pairings can
be exhaustively tested for plausibility (135)1 or by observing rel-
ative frequencies (110). Alternatively, especially when light
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chains have not been sequenced, it may be possible to use an ar-
tificial light chain with the ability to associate with a range of
heavy chains (166). The concept of public sequences may also
help here; a subset of the public light chain sequences could be
used as a pairing library, as these sequences are clearly widely
used and are therefore more likely to form successful pairings.
In general, known public sequencesmay be a good place to start
when attempting to discover a new therapeutic (e.g. in the
design of a screening library), because they are likely to have
low immunogenicity and be of high importance in the immune
response tomany common antigens.

Using BCR repertoire data to identify undesirable properties
during therapeutic development

Binding affinity is not the only feature of a potential thera-
peutic that needs to be optimized. In addition to being biologi-
cally active, it must be safe to administer to humans and be able
to withstand the stresses of the production process (i.e. the
antibody should have good “developability”) (167). Antibodies
discovered through the immunization of an organism (such as
a mouse) against the target antigen cannot be used directly as
therapeutics, because they would be identified as nonnative by
the human immune system and would therefore cause an
unwanted response themselves (168). Changes made to poten-
tial therapeutics during the development process can also
introduce nonhuman-like characteristics. It is therefore desira-
ble to be able to quantify the similarity of a sequence to those
from natural human repertoires (its “humanness”) and to pro-
pose changes that could be made to a sequence to make it more
human and hence less likely to be rejected by a patient. This
“humanization” process can be guided through comparisons
with human BCR repertoires, because they are natural and rep-
resent what is “allowed” and what is safe in an organism (see
Fig. 5). Previous work has used small sets of reference sequen-

ces (such as known germline sequences) to infer humanness
(169–171), but the growth of BCR repertoire sequencing has
created new opportunities. The amount of data now available
allows not only the identification of which amino acids are
allowed at which positions, but also the investigation of residue
couplings and covariation (172). Recently, Wollacott et al.
(172) described amachine learning-based humanizationmethod,
trained on large sets of sequence data, and demonstrated that it
outperformed other methods at evaluating the humanness of
antibodies from sequence.
The chemical properties of a potential therapeutic can also

cause problems, such as instability, self-association, high vis-
cosity, polyspecificity, and poor expression (167). These char-
acteristics can be determined experimentally; however, this is
time-consuming and hence low-throughput, meaning the ex-
amination of thousands or millions of sequences from a BCR
repertoire is not feasible. However, some of these properties
can be predicted from the amino acid sequence of the antibody.
For example, a number of sequence motifs have been identified
that indicate sites of potential post-translational modification
(78, 173); hydrophobic residues in the CDRs are thought to
lead to high aggregation, viscosity, and polyspecificity (167,
174–179); patches of electrostatic charge on the antibody sur-
face have been linked to high clearance rates and poor expres-
sion (180, 181); and asymmetric charges of the heavy and light
variable domains result in self-association and high viscosity
(175, 182). A number of computational tools have therefore
been developed that predict these risk factors (e.g. Refs.
175–179 and 183). Whereas some of these attempt to predict
solely from sequence, the majority require structural knowl-
edge—for instance, it is important to know which residues are
located on the antibody surface (176, 177). The tools can be
exploited during the identification of binders as described
above tominimize issues further along the therapeutic develop-
ment pipeline.
The properties described above can also be examined by

calculating repertoire-wide distributions. As a simple exam-
ple, consider the lengths of the CDRs. Using sequence reper-
toires, the distribution of observed lengths can be obtained. If
a given length falls outside the range of this distribution, it
can be assumed that this property is “unnatural,” and therefore
the antibody is more likely to have undesirable characteristics in
vivo. Raybould et al. (106) used this approach, alongside the gen-
eration of antibody model libraries, to contextualize known ther-
apeutic sequences against human repertoires. They were there-
fore able to define five developability guidelines that predict
whether a given antibody will be successful as a therapeutic,
based on total CDR length, patches of hydrophobicity, patches of
positive and negative charge, and the overall surface charge of
VH and VL domains. Testing the guidelines on sequences from
two antibody discovery projects showed that this approach suc-
cessfully highlighted candidates with known developability
issues.
In summary, by representing the allowed antibody sequence

space, BCR repertoires can be used to guide the antibody dis-
covery and development process towardmore successful thera-
peutic candidates. Using developability or humanness predic-
tion algorithms in conjunction with in silico screening of BCR

Figure 5. WebLogo representations for the second framework region
(residues 39–55 in the IMGT numbering scheme) for known human and
mouse antibody sequences. Hydrophobic amino acids are shown in red,
hydrophilic in blue, and neutral in gray. Data were extracted from OAS; we
only considered repertoires from individuals with no disease and no vaccine
recorded. Whereas amino acid usage is the same atmany positions along the
sequence, it can be seen that there are differences that could potentially be
used to measure “humanness” and guide the humanization process. For
example, it is rare to observe lysine at position 43 in human antibodies, but
this is common in mice. Changing a lysine to an arginine at this position in a
potential therapeutic may therefore reduce immunogenicity.
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repertoires should be of great benefit to the therapeutic devel-
opment community, and as sequence repositories continue to
grow and computational techniques become more sophisti-
cated, we can expect more advances to bemade.

Conclusions

Advances in next-generation sequencing and its increasing
use in characterizing the immune system has led to the expo-
nential growth of the number of known antibody sequences.
Subsequently, there is now a wealth of information, which has
increased opportunities for large-scale data mining. The
amount of data presents its challenges, however. Curated, pub-
licly available sequence repositories such as the OAS are
addressing the problem of storage and accessibility, but
changes may have to bemade as we learn more about the needs
of researchers wishing to use the data. The increase in the
amount of data will also create computational obstacles; we
must continue to develop methods that can analyze huge num-
bers of sequences in a time- and resource-efficientmanner.
Repertoire data can be used to gain a deeper understanding

of human immune system, including the mechanisms that
drive repertoire diversity and its response to antigen exposure.
Comparisons between individuals have detected the presence
of a core set of shared sequences or clonotypes known as the
public repertoire, potentially of great importance in protecting
against common antigens.
The antigen-binding properties of antibodies are governed

by their structures. Sequence-similar antibodies may adopt dif-
ferent structures, and vice versa; by using sequence alone, these
subtleties are not discerned. The incorporation of structural in-
formation into repertoire analyses, through annotation ormod-
eling, therefore allows more accurate comparisons to be made
and hence provides a better representation of the repertoire
space. Ongoing improvements in modeling algorithms, in par-
ticular increased speed and accuracy of H3 structure predic-
tion, will mean that larger subsets of the repertoire can be ana-
lyzed in this manner and with more reliability. An increase in
the number of available templates would also improve struc-
tural modeling—repertoire data itself may be used in this pro-
cess, to highlight areas of sequence space for which structures
are currently lacking.
Large-scale sequencing data can also be of great benefit dur-

ing the discovery of antibodies for therapeutic use. Clonal selec-
tion and expansion leads to the enrichment of the repertoire
with antigen binders post-exposure; these can be identified and
used as starting points for further development. The presence
of sequence-similar antibodies to known therapeutics in OAS
(74) indicates that it should be possible to mine these reposito-
ries for new therapeutic leads without performing specific
experiments. For example, in silico screening libraries could be
developed, by combining BCR repertoire data with modeling
protocols and other computational tools (e.g. docking algo-
rithms) to select likely binders.
Currently, it is possible for the computational approaches

such as those described in this review to be used in tandem
with experimental work. For example, after a potential binder
is identified experimentally, clonotyping can be used to select

similar antibodies from a repertoire, thereby expanding the
pool of candidates for further study. In the long term, however,
the objective of many researchers is to make the discovery of
new therapeutic antibodies completely computational, with lit-
tle or no human input. Consolidating all of the knowledge
gained from large-scale repertoire analysis may enable the crea-
tion of an in silico immune system, or at the least a completely
human-like synthetic repertoire that can be screened to identify
potential therapeutics. Although it is too soon to say whether
an entirely in silico protocol would produce better results than
an experimental one, it would remove the need for expensive
and time-consuming experimental work and would mean the
immunization of animals is no longer required. There are
many obstacles to achieve this, perhaps most importantly in
the initial selection of antibodies that bind to a specific antigen
of interest—improvements in structural modeling, docking,
and binding affinity prediction in particular will help this.
Even though there is a large quantity of data already avail-

able, there is a vast amount of the antibody sequence space that
remains unknown. For example, at around one billion sequen-
ces (including redundant sequences), the Observed Antibody
Space database represents less than 0.01% of the potential total
number (predicted to be around 1013 nonredundant sequen-
ces). Efforts should also be made to sequence repertoires with
different attributes (e.g. ethnic background)—currently, this is
not routinely disclosed, making analysis of its effect on the reper-
toire difficult. The continued growth of available sequence infor-
mation should mean that currently unknown parts of sequence
space are investigated, and therefore we should be able to analyze
the workings of the immune system and predict antibody/reper-
toire properties more accurately. Importantly, with the develop-
ment of experimental techniques that preserve the native VH-VL
pairings, wewill no longer have to rely on approximations and ex-
haustive combinatorics to achieve an accurate view of what bind-
ing sites are present. Overall, access to large-scale sequencing
data has providedmany opportunities to deepen our understand-
ing of the immune system and improve our ability to design bio-
therapeutics andwill surely continue to do so.
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